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The dynamical elimination or reduction of macroscopic superpositions has long been of interest,
particularly with regard to the quantum theory of measurement. A number of models have demon-
strated this for the reduced density matrix of a system interacting with an environment. Alterna-
tively, Ghirardi, Rhimini, and Weber [Phys. Rev. D 34, 470 (1986)] have proposed a fundamental

modification of the Schrodinger equation, quantum mechanics with spontaneous localization
(QMSL), which provides a master equation similar in mathematical form. In this paper we consider
an isotropic environment that is elastically scattered by the system of interest with negligible
momentum transfer, extending a previous result of Joos and Zeh [Z. Phys. B. 59, 223 (1985)] from
small length scales to all length scales. %'e discuss the physical nature and relevance of the
differences between our result and similar open systems calculations. %'e describe the mathematical
similarity between our extended environmental model and the QMSL dynamics determining the

QMSL parameters that allow calculations using QMSL to be used as a model for the effect of the en-

vironment. That gives us access to a number of interesting results obtained for the QMSL master
equation. Finally, we discuss some experimental considerations for the purposes of detecting
effective nonunitary evolution of this form.

I. INTRODUCTION

Quantum mechanics, as a fundamental theory, has met
tremendous success in its ability to predict physical phe-
nomena. The interpretation of various features of the
theory, however, remains fraught with conceptual
difficulties when applied to macroscopic systems, as in
the quantum theory of measurement.

A significant source of difficulty in the interpretation of
quantum mechanics is the superposition principle. Quan-
tum mechanics allows any superposition of states, and yet
the superposition of macroscopically distinguishable
states has never been observed. Although it begs the
question as to how one should go about measuring such
superpositions, it seems that macroscopic variables
should have well-defined values, in accordance with clas-
sical mechanics. The problem is compounded by the col-
lapse postulate of quantum mechanics: when a measure-
ment is completed the system is in an eigenstate corre-
sponding to the result of the measurement. However,
when the apparatus is included in the quantum-
mechanical description, the apparatus is found to be
correlated to the quantum system resulting in a superpo-
sition of the apparatus in the various states of outcome.

A number of models have been explored that dynami-
cally reduce, via interaction with an environment, the
coherence between macroscopically distinct states for the
reduced density operator of the macroscopic system. '

The possibility of the observation of macroscopic super-
positions, such as in the Schrodinger cat paradox, is
effectively eliminated in these models. This type of
decohering mechanism was employed by Zurek to pro-
duce a natural selection of the pointer basis in the Everett
interpretation of quantum mechanics, and indeed charac-

terizes how quantum-mechanical degrees of freedom can
become classical in nature. ' We should point out that
Zurek referred to this effect as environment-induced su-
perselection, though it is not a superselection principle in
the usual sense. We will generally refer to the dynamical
reduction of the coherence terms between spatially
separated states as localization.

The effective elimination of macroscopic superposi-
tions by "hiding" the coherence in correlations with an
environment has been argued to be an inadequate solu-
tion to the measurement problem. This has motivated
Ghirardi, Rhimini, and Weber (GRW) to propose a fun-
damental modification of the Schrodinger equation, quan-
tum mechanics with spontaneous localization (QMSL),
which produces the desired decoherence between position
states of a macroscopic system. Another feature of
modified quantum mechanics such QMSL is that the
direction of the arrow of time (increasing entropy) is im-

plicit in the fundamental dynamics, independent of the
boundary conditions (initial state of the environment).
We should emphasize that QMSL does introduce new
physics, that is, the modifications to the Schrodinger
equation do not in any sense come from within the frame-
work of standard quantum mechanics. Because of the
implications of such a mechanism, like those mentioned
above, we believe the search for experimental tests of
QMSL to be fairly important.

A number of interesting results have been obtained for
QMSL, including a free-particle propagator and a non-
demolition measurement model. ' ' The analysis of
environmental localization in specific measurement mod-
els has not been carried out in as great detail. The
mathematical similarity between environmental localiza-
tion and QMSL (which we wi11 display) suggests that
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some of the calculations performed for the QMSL model
could be employed as environmental models, with the ap-
propriate selection of parameters. One of our objectives
in this paper is to obtain a natural selection of these pa-
rameters.

We are particularly interested in the effect of a thermal
environment on the evolution equations of the density
matrix. We will calculate the effect of an isotropic envi-
ronment which elastically scatters from the system of in-
terest with negligible momentum transfer, extending a
previous result of Joos and Zeh. ' Wigner has written
down, on general principles, a master equation for a sys-
tern interacting with an environment which incorporates
dynamical elimination of coherence, which is of the form
of the equations which we shall be discussing. ' Dekker
obtained a similar equation by introducing quantal noise
operators. ' The mathematical form of localization ob-
tained by Joos and Zeh' is given by the modification of
the Schrodinger equation,

[H,p] A[x, [x—,p]],
valid at short length scales.

A similar master equation,

()p 1 y 2mgkg T
p]= [ ~ Ip, ~ ]— [,[

(1.2}

has been obtained by Caldeira and Leggett (CL) for a sys-
tem coupled to a distribution of oscillators all at the same
temperature T using influence functional techniques.
The Hamiltonian in Eq. (1.2) is just the Hamiltonian for
the isolated system. The parameter y is related to the
classical dampening constant g by y=g/2m, which can
most easily be understood as the coeScient of velocity for
a velocity-dependent frictional force. The second term of
the right-hand side of Eq. (1.2) represents the transfer of
momentum between the system and the oscillator bath,
while the third term corresponds to the environmental lo-
calization.

The model composite system used by CL has the total
Hamiltonian

22m gm

pD(~)C (co)= . vr

0, co)O, (1.4)
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where pD(co) is the number of oscillators per unit angular
frequency interval, C(co) is the coupling constant of an
oscillator of frequency co to the system of interest [corre-
sponding to CI, in Eq. (1.3)], and the high frequency
cutoff 0 is assumed to be higher than any other relevant
frequencies; that is, the relevant time scales are much
longer than 1/Q. They obtain the effective master equa-
tion under the assumption 2kb T ~ AO. The effective mas-
ter equation for the reduced density operator becomes
identical in form to the result of Joos and Zeh when we
take the simultaneous limit T~ ~, y~ ~, @~0, hold-
ing y T finite. By taking this limit, we are focusing on lo-
calization effects and neglecting the transfer of mornen-
tum to the environment. This limit is reasonable if the
localization time scale is much shorter than the relaxa-
tion time scale of the system of interest (where the system
comes to equilibrium with the environment). CL ob-
served that interference eff'ects are destroyed (for their
model) on time scales much shorter than the relaxation
time scale of the system. '

Hakim and Ambegaokar have explored the oscillator
bath of CL with nonfactoring initial conditions. They as-
sumed that the composite system was in thermal equilib-
rium, and found differences from the results of CL in the
details of the propagator for the system of interest. These
initial conditions are not relevant to the types of systems
in which we are interested, particularly where the system
of interest is a measurement apparatus assumed to be ini-
tially in a preparted state, not in thermal equilibrium
with its environment.

More recently, Unruh and Zurek (UZ) examined envi-
ronmental localization for a system coupled to a scalar
field where the action is given by

2 p2
H„,= + V(x)+xg CgRk+g + Mco~qRk-
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00
+5(x) —

aqua
—
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(1.5)

(1.3)

for the system of interest coupled to the oscillator bath.
The first two terms are the Hamiltonian of the system of
interest, the third is the interaction between the system
and the oscillator bath, and the remainder is the self-
energy of the oscillators. The propagator for the reduced
density operator of the system of interest has been found
using path-integration techniques, given the initial condi-
tions of a total density operator which factors into the
tensor product of system and environment density opera-
tors. The environment initially is in a state of thermal
equilibrium at a temperature T. The limit is then taken
as the discrete set of oscillators becomes a continuum.
CL choose the distribution of oscillators given by

They examine this action for three cases of the system: a
harmonic oscillator (00 real), a free particle (00=0), and
an "upside-down" harmonic oscillator (Q0 imaginary).
They solve the equations of motion for the operators t)}, q,
and p (p is the momentum conjugate to q), and assume
that the initial density operator of the system is factor-
able into the tensor product of density operators for the
subsystems. The field is assumed to be in thermal equilib-
rium at a temperature T. They obtain the propagator for
the reduced density operator of the system of interest by
transforming from the Heisenberg picture to the
Schrodinger picture, and then taking a partial trace over
the field degrees of freedom. The operator representation
for the (Schrodinger picture} master equation is
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(1.7)

which makes a good approximation for times greater
than the dynamical time scale y

' when
I /'Qo((exp(kbTIAy). Again the master equation in-

cludes the usual Hamiltonian dynamics plus environment
effects [localization is provided by the third term of Eqs.
(1.6) and (1.7)]. We expect that only the first and third
terms will be relevant for macroscopic systems, for the
same reasons that we gave for ignoring the second term
in Eq. (1.2): the additional terms in Eqs. (1.6) and (1.7)
which correspond to momentum transfer between system
and environment are assumed to be negligible for time
scales much shorter than the relaxation time scale of the

system of interest.
In QMSL, the evolution of the density matrix is given

by

Bp(x, x')
at

&x ([H,p](x')

g( 1
—(0/4)(x —x')

) (x x ~

) (1.8)

The factor corresponding to the localization has the short
length-scale behavior

Bp(x,x') )(a
Bt 4

and approaches

Bp(x,x') = —kp(x, x')
at

for long length scales.
We contrast this with the environmental localization

rnechanisrns which have the form:

Bp(x, x ')
~(x —x') p(x, x') .

at

A disturbing feature of this form is that the

where y=e /4, and where the time dependence of the
coefficients h and f depend upon the temperature and a
cutoff frequency I introduced to avoid divergences in the
calculations. In general, h and f asymptote to constant
values after initial transient behavior. For finite tempera-
tures, the asymptotic value of h is kB T, and f is inversely
proportional to the cutoff frequency I . For zero temper-
ature, the behavior of h and f depends on the cutoff fre-
quency and asymptotes to functions of I, except for the
case of the upside-down harmonic oscillator, where h and

f diverge. We have reintroduced the particle mass and
Planck's constant to illustrate the similarity between this
master equation and others discussed in this section. In
the high-temperature limit kt) T))))lI & A'y, )h'Qo Eq. (1.6)
becomes

4ymkq T
&, =,.

&
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&
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environment's ability to destroy the off-diagonal coher-
ence in the density matrix can grow without bound. To
see why this might not be physical for an environmental
model, we imagine a reversible Stern-Gerlach experiment
with a two-state system, prepared in a spin-up state and
split into two beams with the spin axis orthogonal to the
original spin axis. The decoherence which would occur
between the two beams depends upon the distance be-
tween the beams and results in a mixture of spin-up and
spin-down states when the beam is recombined and ana-
lyzed. If the localization is indeed simply quadratic, as
the models suggest, then the environment can somehow
"sense" the separation of the beams, be it microns, me-
ters, or kilometers. But if localization is to be interpreted
as being the result of correlations developing between en-
vironrnent degrees of freedom and the system of in-
terest, ' conflict arises between the unbounded increase
(with increasing spatial separations) of the decay rate of
off-diagona1 elements of the density operator and the
physical nature of the environment and its coupling to
the system of interest. First, the environment is generally
correlated with itself only over finite length scales.
Second, the interaction between system and environment
degrees of freedom is of finite range (indeed, they are lo-
cal when reduced to fundamental interactions). The un-
bounded increase in the decay rate is at least suggestive
of causality violation. We will return to this characteri-
zation of the environment in Sec. IV.

The open systems calculations mentioned above share
the quadratic dependence on spatial separations. This
turns out to be effectively due to short length-scale ap-
proximations inherent in the models and infinite-range in-
teraction between the system of interest and environmen-
tal degrees of freedom, and is, in part, our motivation for
extending the applicability of Joos and Zeh's calculation.
In the Hamiltonian of CL, the coupling term is linear in
the position operator of the system, and so the qualitative
nature of the oscillator-particle interaction is the same
for all oscillators. In a sense, all the oscillators in the
bath exist at the same position, with a nonlocal coupling
between system and oscillators. If the coupling
coefficients were made to depend appropriately upon the
position of the particle, the local nature of the interaction
between the environment and the system might be
recovered. Unfortunately, it is the linear nature of the
coupling that allows much of the calculations to proceed.
In the model of UZ, the coupling of the particle to the
field is at a single point in the field's configurations space.
In both models, the interaction potential is linear in the
position of the system of interest, resulting in infinite-
range interactions, and so the system-environment in-
teractions are not sensitive to spatial separations of
different components of the environment. The result is
that these models cannot be sensitive to the finite correla-
tion length of the environment.

However, when we extend Joos and Zeh's work, we
find the qualitative behavior we expect, and we explore
the similarity with the mathematical behavior of the
QMSL mechanism. We are then provided with the addi-
tional motivation of having various results of calculations
performed for QMSL immediately available in our model
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of environmental localization, including possible effects
at large length scales.

In Sec. II, we calculate the effect of an environment
which scatters weakly from the system of interest. The
environmental mechanism is compared with the QMSL
model so that results obtained for the model can be readi-

ly applied to the environmental mechanism with a suit-
able choice of parameters. We examine in detail the par-
ticular case in which the environment is composed of
thermal photons. In Sec. III the implications of dissipa-
tive evolution of the form of Eq. (1.8) in various experi-
mental tests of quantum mechanics are discussed. Final-

ly, in Sec. IV, we draw our conclusions and discuss addi-
tional topics in quantum theory.

II. ENVIRONMENTALLY INDUCED DECORRELATION

It has been suggested that an effective "localizing""'"
mechanism for macroscopic objects is their interaction
with their environment. It has also been observed that
one can obtain a strong localization for the position of
the center of mass of a macroscopic object if there is a
weak localization for the position of the constituent mi-
croscopic systems. ' '" We begin this section by examin-
ing a scattering model of the interaction between a parti-
cle and the environment to obtain an evolution of the
density operator in the manner, somewhat elaborated, of
Joos and Zeh. '

The scattering event will be examined in the context of
the ~x, ) y, ) representation, where ~x, ) is the position
eigenstate of the system, and ~g, ) is a member of some
convenient complete sets of states for the environment
constituent which is being scattered. If the system and
environment are initially uncorrelated, then the initial
density operator can be factored into the tensor product
of the system state and the environment state:

p pspr: .

The components of the initial environment density opera-
tor are given by

The effect of a single-scattering event on the combined
system-environment density matrix can be written

where P is the momentum operator of the system of in-
terest, and k is the wave-number operator for the envi-
ronment constituent, one can then write

Slx, &8 y, ) =Se "'(IO&e 'ly; &), (2.2)

where ~0) represents the system located at the origin. If
we assume the interaction is translationally invariant,
then

[S,e ']=0,
and Eq. (2.2l becomes

S~x, )g ~, )=e 'S(~0)e' "'~y, &). (2.3}

A critical assumption is now imposed: the system is
not significantly disturbed by the scattering of the envi-
ronment. Physically, one can consider this equivalent to
a massive system which is not disturbed when a much
lighter particle is scattered by it, and the interaction po-
tential is negligible compared to the kinetic and potential
energy of the system of interest. This allows the environ-
ment to become correlated with the system without
significantly disturbing the system. Zurek characterized
the necessary conditions for environment-induced super-
selection of an observable 0 by the commutator
[HEs, O]=0, where HEs is the interaction Hamiltonian.
Of course, HEs must depend upon 0, or the necessary
correlations between environment and system cannot de-
velop. Since environmental localization is environment-
induced superselection of position, the analogous com-
mutator should hold for our model. The conditions of
translational invariance and the commutator of a projec-
tion operator located at the origin,

[H„,~0& & o~]=0,

form a slightly stronger condition but imply Zurek's con-
dition.

The scattering of the environment constituent by the
system located at the origin now can be written

slo&lq, &=lo&as, lq, &,

where So is the scattering matrix for the scattering of the
environment by the system at the origin. The more gen-
eral case can then be written

p SPS (2.1)

Since

K= —+kP
fi

is the generator of translations for the composite system,

S~x, ) ~y, ) =Se '(~0)e '~y, ))

=e '
"(~0&eS,e' "

~q, &l

=Ix, )toe
' "'(S e' "'(g, )i . (2.4)

For the reduced density matrix of the system, the scattering event has the effect

p, (x, x'l —p, (x, x')gp, , &y, e '""Soe'""e '""Soe'""~y, ) . (2.5l

It is clear that the diagonal terms (those with x=x') corresponding to the probability density of position for the system
are unaffected by the scattering event. In order to proceed with the calculation, it is assumed that the density matrix
for the environment constituent is diagonal in the momentum basis, which in turn requires the use of box normalization
for the environment constituent. This assumption is compatible with an isotropic thermal environment, such as a bath
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of thermal photons, for which we will use the Planck radiation law later in this chapter. Then the natural choice for the
environment basis ly, & is the momentum states Iq &. In terms of a single-scattering event (one photon, e.g.), one finds

p, (x,x') p, (x, x') & qle '" "S0e'"'"e '" "S0e'"'"Iq
& .

We now address the perturbative nature of the interaction. To second order, one can write

S=S"'+S'"+S"'.
By convention, S' '= 1. Formally, unitarity is required to every order in the perturbation, so that

SS =I.
This yields the following set of conditions:

S(0)(S(0) )(' —I
S(1)+(S(1))(' —()

S(1)(S(1))i+S(2)+ (S(2) )( 0

(2.6)

(2.7)

Using these conditions, Eq. (2.1) becomes

SpS(S(0)+S(1)+S(2))p[(S(0))+(S(1))+(S(2))]
+S(1) + (S(1)) +S(1) (S(1)) +S(2) + (S(2)) (2.8)

where terms to second order have been kept.
The perturbation expansion is used to evaluate the matrix element in Eq. (2.6) to obtain

—ik x Srk x'' —ik xS rk xlq &
—

& ql 1+ —ik x'(S(1)
)

rk x'e —rk xS(1) rk x (S(1) ) Sl 1 )

Iq & (2.9)

where the consistency conditions of perturbation theory as well as the c-number evaluation of momentum in the ex-
ponentials were used to simplify the matrix element. It is this c-number evaluation and the consistency requirements of
the perturbation calculation which allow us to proceed with the calculation, explicitly using only the first-order terms in
the scattering matrix in a calculation which is implicitly second order. However, for an environment that is only weak-
ly coupled to the system of interest, the higher-order effects should not have a significant effect. Inserting a complete
set of states, one obtains for the change in the density operator

bp, (x, x')=p, (x, x')g (e'q q"" " —1)&ql(S0 ') Iq'&&q'IS," Iq& .
q'

Converting the sum to an integral using box normalization in a volume V yields

hp, (x, x')=p, (x, x') fd'q' (e'q-" "-"'—l)l &q'IS', "Iq& I'3 r (2~) r( — ') (x —x')

{2 )'
=p, (x, x') f d q' (e'" q"" "'—1)(2ttq) If(q, q')I 6(q —q')V' ',

(2.10)

(2. 1 1)

where the standard representation for the scattering matrix

&q'ISO" Iq&=
' f(q q'@(q —q')

277q

was used, and 5 (q —q') =5(q —q') V'i' with the box normalization. We now average over a uniform distribution in
the direction of the incident momentum, and evaluate the integral of the 6 function to obtain

&p, ( , x)x=p, ( , x)xf », (e"' "" "'—1)lf(q, q')I',d Ad 0,', ( ).(„„) {2.12)

with q =q, which is assumed in the remainder of the paper. The flux of particles with wave number q passing through
the volume V in an interval At is V i v(q)n(q)ht, where n(q) is the number density, and v(q) is the speed. Adding up
the contribution over all wave numbers, the change in the density matrix becomes

2)(p, (x,x')= —p, (x, x') f dq n(q)v(q) f (1 —e"q q "" "')If(q, q')I btd Qd0',
( ).(„„) {2.13a)

bp, (x,x') d Qd A';( j.(„„)= —p. (x, x') f dq n(q)v(q) f (1—e" q "" " ')If(q, q)l' . (2.13b)
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We have found the contribution of the environment to
the equations of motion of the reduced density matrix.
We write this then as

c)p, (x, x')

at
(xi[0 p]Ix'~ F(x —x')p, (x, x'),

1

(2.14a)

where

F(r)= f dq n(q)u(q)
I

x f (1—' ' '"")if(,q') i-' .
2

(2.14b)

x if (q, q') i'- . (2. 15)

The limiting behavior of the localization mechanism
can now be readily evaluated. We obtain for small r, by
expanding the cosine in powers of r and keeping the
lowest contributing order, the familiar result of Joos and
Zeh:

F(r)=r'f dq n(q))u(q) f (q, —q,')' if(q, q')l
dO, d0, '

We take the scattering process to be independent of the
orientation of the scattering center. and hence, of the
coordinate system. This is a reasonable assumption since
the scattering center can be taken to be symmetric by na-
ture or by averaging over random orientations. By tak-
ing the direction of r as the z-coordinate axis, we have

F(r)=F(r)= f dq n(q)u(q)

X f [1—cos[(q, —
q,')r]]

dAdQ, '

and to match the asymptotic behavior at large r,
k=F( ~ ).

We will now consider some specific examples, using a
background of thermal photons (with the Planck distri-
bution), and take the specific form of the differential cross
section to be

I

lf(q, q') '=gq'" —1+
2 q

(2.18)

with the exponent m varying in the examples. This form
occurs often enough in relevant situations so as to be of
interest. For Thompson scattering we have m =0, and g
is the square of the classical electron radius, while for
Rayleigh scattering m =4, g =a" (e—1)/(@+1)i, where
a is the scatterer's radius and e is the dielectric constant.
The angular integrals of Eq. (2.15) can now be evaluated
to obtain

in

F(r) = f dq ——— ( =' —3 i [I,(q~)]'+ [I,(qr )]'
i

+ 2I
&
(qr)I2(qr) }, (2.19a)

the coherence length of the environment. For a thermal
bath, the wave-number distribution has a width on the
order of the inverse of the thermal wavelength, so that we
can easily determine the appropriate length scales of
thermal environments.

To model the environment with a master equation of
the form of the QMSL master equation, we wish to re-

place F(r) with A(1 —e ' '" ). The choice of parame-
ters is by now obvious. To match the short length-scale
behavior with Eq. {2,16), we take

= f dq n(q)u(q) f dAdA' ,'(q. ——q,') lf(q q')l

(2 16)

The small length-scale approximation actually takes
place earlier in the calculation of Joos and Zeh, where it
is assumed that rq (&1, for typical wave numbers of the
environment. For large r, the cosine in the integral un-

dergoes rapid oscillations, and hence does not contribute
to the integral, as a consequence of the smooth behavior
of the other functions in the integrand. In this region,
then,

F(r)= f dq n(q)u(q) f f(q, q')i-'d Ad 0, '

= f dq n(q)u(q)2mo(q)= F( ~ ), —(2.17)

where cr(q) is the total cross section. Thus the localiza-
tion rate does not increase without bound for arbitrarily
large separations, but approaches a constant for large r.
The appropriate length scale for determining what consti-
tutes large r is determined physically by the coherence
length of the environment, as discussed in Sec. I. Since
wave number and position are Fourier transform pairs,
the width of the autocorrelation function is the inverse of
the width of the wave-number distribution. It is the
width of the autocorrelation function that characterizes

sin(s)
s

I~(s) =s '[4s cos(s)+2(s- —2)sin(s)] .
(2.19b)

We factor the asymptotic behavior using Eq. (2.17) and
write this as

F{r) 3
dt ——I tF(~ ) 321 (m +3)g(m +3) o c' —1 pfic

where

I(s) = —",- —3[(Ii ) +(I~) ]+2IiI~ .

It is convenient to note that for s ))1,

I(s) = ='

(2.20a)

(2.20b)

By making these approximations the limiting behavior,
both long range and short range, can be readily evalu-

and that for s &(1, when we expand I(s) in a Taylor
series, we obtain

I( )= =",
- — ~ 4+ e+0( s)
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FIG. 1. The rahe fraction of the asymptotic value of the decorrelation factor is plotted vs z =r/(Pfic). The solid line is for Thompson
scattering, and the short-dashed line is the closest fitting QMSL-like curve. The long-dashed line is for Rayleigh scattering and the
alternating dashed line is the closest fitting QMSL-like curve. The closest fit was defined by matching the small-z behavior and the
asymptotic behavior at large z.

ated. The departure from the quadratic behavior of the
localization factor at short length scales can be examined
by keeping any terms of higher order than the quadratic
in the expansion of I(s).

We have evaluated Eq. (2.20) numerically for the two
cases described above, the results of which are shown in

Fig. 1. The environmental calculations have been plotted
on a dimensionless length scale in terms of the thermal
wavelength. The localization rate does asymptote above
this length scale, as expected. At small enough length
scales, the quadratic behavior does hold. What deter-
mines small enough depends upon the relative sizes of the
terms in an expansion of the integrand in Eq. (2.15)
above, which in turn would depend upon the distribution
of particles (the Planck distribution, in our examples) and
the nature of the coupling, which is illustrated by the
different behavior in our two examples as seen in Fig. 1.

III. EXPERIMENTAL CONSIDERATIONS

In this section, we explore possible experimental impli-
cations of modifications to the Schrodinger equation such
as that given by Eq. (1.4). Because the eft'ect of interest
provided by these mechanisms is the destruction of quan-
tum interference, the obvious place to begin is with a sim-
ple interference experiment. We note that, for the values
of the parameters selected by GRW for QMSL, the neu-

tron interference experiments we will be initially discuss-
ing will be insensitive to the presence of spontaneous lo-
calization. However, since we are interested in any devia-
tions from the Schrodinger equation, we will pursue this
avenue for a short while.

Neutron diffraction experiments have already been ex-
amined in the context of violations of unitary evolution
by Ellis et at. ' Their analysis of the violation is forrnu-
lated in terms of a super Hamiltonian, which generates
Hawking's superscattering matrix. ' For dynamics of the
form of Eq. (1.4), the nonunitary part of the super-
Hamiltonian is given by

The limit set by neutron interferometry by Ellis is
6H 2X10 ' eV. This limit is obtained by observing
that double-slit interference of neutrons can be observed
for a time of Aight of 1/3000 s. It is possible to improve
upon this limit a couple of orders of magnitude with
more recent experiments using cold neutrons. ' For these
experiments, the double-slit interference pattern of 20-A
neutrons with a slit to observation plane distance of 5 m
was performed. The limit on the nonunitary portion of
the super-Hamiltonian becomes 6H ~ 2.6 X 10 ' eV.
We note that, for GRW's choice of parameters
6H ~ 7X 10 ' eV, so that it becomes evident that sorne-
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thing other than an improved neutron experiment would
be required to experimentally test QMSL.

In order to extract better limits from the neutron ex-
periments, we now examine the double-slit experiment in
increasing detail. By taking the simultaneous limit

y —+O, T—+ oo,
2mykz T Aa

g2 4
(3.2)

P(r)=1+e "cos[r (k2 —k))], (3.3a)

Eq. (1.2a), the effective master equation of Caldeira and
Leggett becomes the short length-scale limit of (1.4). We
can now immediately employ the results of Savage and
Walls' to analyze the effect of localization in an ideal
double-slit experiment. The initial state of the system is
given by a superposition of two plane waves, which corre-
spond to the momenta directed from two point sources in
the double slit experiment. The magnitudes of the mo-
menta k& and k2 are the same, the directions determined
by the relative geometry of the respective slit to the
relevant point on the observation plane. The intensity at
the observation plane is then given by

(X. eik(r +s)dS e
—ik(r'+s')dS'e —D(

oe oe (3.7)

The loss of coherence between the two interfering paths
is given by the last factor. For our simple situation, the
different paths can be denoted simply by the point by
which they pass through the object (y and y'). D(y, y')
represents the integrated loss of coherence as the paths
are simultaneously traversed.

We know that the dissipative part of the evolution of
the density matrix is given by

where r is the distance from the point source to the point
in the object plane, and s is the distance from the point in
the object plane to the observation point. To find the in-
terference pattern, one would then add up the contribu-
tions over the entire object plane, then square the result-
ing amplitude to determine the observed intensity. Now,
the mechanisms we have been discussing have the effect
of destroying the interference between different paths.
We then write the incremental contribution to the inten-
sity due to two paths (not necessarily different) as

dI(z) = du (z) [dQ '(z) ]'

where (}P g( 1
—(a/4)(x —x')

) (3.8)

& Ik, —k)l
A,a A 3 2

3m' (3.3b)

The origin has been chosen to be exactly between the two
slits. The geometry is essentially two dimensional: we let
R be the distance from the slits to the observation plane,
and z be the transverse distance along the observation
plane (parallel to the slit separation). The value of t is
determined by the time of flight from the slits to the ob-
servation plane. With a slit separation of d, and srnall-
angle approximations, the interference pattern becomes

T

P(z) = 1+e "cos dkz
R

(3.4a)

where

Aad Rm
124k (3.4b)

If, on the other hand, the transverse length scales are
large, then the interference pattern will be given by

P( ) 1+ ) (Rm/fik )cos dkz
R

(3.5)

dQ(z} =e'"'"+'dS (3.6)

We now show how to extend these concepts to a more
detailed analysis of the neutron experiments for finite slit
widths. To this end, we turn to the numerical analysis of
Zeilinger et al. ,

' and examine the departure from their
analysis that the dissipative evolution would introduce.
We do this for an elementary system composed of a point
source and a double-slit object. The problem is treated as
strictly two dimensional. The contribution to the ampli-
tude of a ray passing through a portion of width dSo of
the aperture in the object plane So is given schematically
by

If we let bx(r) be the transverse distance between the
paths, as a function of the longitudinal displacement from
the point source, and note that dr =vdt =(haik/'m )dt, we
find that

D(y, y'}= dr )(,( I —e ' '( "'" } )
o Ak

(3.9)

Since the straight-line paths are determined by their com-
mon origin, their respective points of contact with the ob-
ject plane and the observation point, the transverse dis-
tance between the paths is essentially only a function of y
and y', so that we are justified in our simple parametriza-
tion of D. For identical paths (y =y'), it should be obvi-
ous that D(y, y)=0. For those paths whose transverse
distance is large through most of their time of flight, we
find

D(y, y') =X mR
(3.10)

For those paths whose transverse distance remains small
throughout the time of flight, we could again make the
quadratic approximation for the integrand of Eq. (3.9}.

The total intensity for our system is then

) ~ f f d d Ik(r+s) —sk(r'+s') —D(y, y')

So
(3.11)

We could then perform a statistical fit for possible values
of the parameters n and A. with this more sophisticated
model of the interference pattern. Bounds on nonunitary
evolution could be improved by perhaps a few orders of
magnitude.

We now turn to a more speculative experiment, and ex-
amine the possible ramifications of QMSL in a macro-
scopic tunneling experiment with a superconducting
quantum interference device (SQUID). ' ' For simplici-
ty, we ignore the possible presence of dissipation in any
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conventional sense, so that the Hamiltonian for a SQUID
is given by

~PJ,J
at

=2N, XPJ (3.15)

1 .
2 1 J,+o0=—C4 + (4—4 )

— cos(2~4/&0 ),
2 2L ext 0

(3.12)

J,+oH= —CL J, +—J, — cos 2~
2 ' 2 ' 2'

LJ,. —4„„,

where 4 is the flux through the loop, C is the capacitance
of the junction, L is the self-inductance of the loop, 4„,
is the external flux, and 4O is the flux quanta h /2e. We
wish to recast this in terms of the supercurrent, where
4=LJ, +4„„and hold the external flux constant so that
the Hamiltonian becomes

(3.16)

The evolution equations for the "polarization" of the
density matrix is essentially that for harmonic oscillation
with dampening. If the state is initially polarized, that is,
if initially it will be found in the +z state with certainty,
then the polarization [probability of (+z) minus the
probability of (

—z)] becomes

P, (t) = cos( cot )e '+ —sin(cot )
CO

for the underdamped case, and

(3.17a)

The evolution of our simple system, in terms of the Pauli
matrices, becomes

We see the familiar washboard potential in terms of the
supercurrent. Tunneling between wells in the washboard
corresponds to tunneling between different current states.
The connection between the supercurrent and the micro-
scopic degrees of freedom is given by

J, =o.2en„v, ,

P, (t)= —e +
V, V v+ v

for the overdamped case, where

N, k

2

(3.17b)

"=2m Z(I —e-('""""l)
Bt

PJJ' ~ (3.14)

where Ns is the total number of superconducting pairs.
We have taken advantage of the additive property for lo-
calization of macrosystems composed of weakly localized
microsystems discussed by GRW in Ref. 7. With the
proper choice of system parameters, one should expect a
demonstrable effect on the tunneling time of the junction.

To illustrate the effect on tunneling time, we examine
the implications for quantum tunneling when the two-
state system of Leggett et al. is appropriate. For sirn-
plicity, we ignore normal dissipative effects (due to the
environment) and take the value of the detuning parame-
ter to be zero. We take Ax to become large {in the locali-
zation mechanism's length scale) very quickly, so that the
dissipative part of QMSL can be approximated by

where o. is the area of the junction, n, is the number den-

sity of superconducting pairs, and v, is the velocity of the
charge carriers. Since o. and n, are usually taken to be
constant, the different current states {on the macroscopic
level) correspond to different velocity states on the micro-
scopic level.

We are now going to discuss how the localization
mechanism comes into play in a tunneling experiment us-

ing a SQUID. We imagine that the system is initially in a
state corresponding to one of the wells in the washboard
potential. After a finite amount of time, the system has
evolved, via the tunneling rnechanisrn, to a superposition
of two current states, corresponding to adjacent wells.
Then, on the microscopic level, we have a pair state
which is in a superposition of two velocity states. If we
take the separation between the states to be Ax =Av, t,
then the rate of "localization, " or loss of coherence, will
be

co = ( b, (~)
—A )

' (3.17c)

The effect of QMSL would then be characterized by a de-
crease in the tunneling frequency co.

IV. CONCLUSIONS AND COMMENTS

In Sec. II, we obtained an extension of Joos and Zeh's
localization calculation. One appealing result is the satu-
ration of the localization rate at large length scales. In-
tuitively, one would not expect an environment to be able
to "distinguish" different separations with increasing sen-
sitivity when those separations are already larger than
the coherence length of the environment (=—A'cP for
thermal photons) when the interaction between the sys-
tem of interest and the environment is local. The effect of
finite-range interactions complicates the interpretation,
but one can generally determine an effective correlation
length to determine at what length scales the localization
will saturate.

To obtain the appropriate characteristic length, we
first consider two extreme cases. First, if the correlation
length of the environment is much longer than the range
of the interaction, then the interaction is effectively a lo-
cal one on the scale of the environment correlation
length. In this case we have the situation encountered in
Sec. II, and the characteristic length is simply the corre-
lation length of the environment. Second, if the correla-
tion length of the environment is much shorter than the
range of the interaction, then the environment degrees of
freedom are completely uncorrelated on the length scale
of the interaction. In this case the appropriate charac-
teristic length is the range of the interaction. In the re-
gime between the two extremes, the shape of the interac-
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tion, as a function of separation between the environment
degree of freedom and the system of interest's coordinate,
serves as an instrument function. To obtain the appropri-
ate characterization of the environment-system interac-
tion, one could convolute a function with the spatial form
of the interaction with the (spatial) autocorrelation func-
tion of the environment. The width of the resulting func-
tion is the characteristic length we seek. This charac-
teristic length might be interpreted as the correlation
length of the effective forces to which the environment is
subjected; however, caution is in order: it has already
been observed that the localization effect of the environ-
ment can be quite strong even when the dissipative effect
of the random forces are negligible.

Previous calculations have not been sensitive to these
aspects of real environments, due to limitations of envi-
ronment models. In the model of CL, which is also used
by Hakim and Ambegoakar, the environment consists of
oscillators, each with linear coupling to the system of in-
terest. The model does not contain any explicit informa-
tion about the spatial distribution of the oscillators, and
the identical nature of the coupling suggests that the os-
cillators all exist at the same position, in terms of the
coordinates of the system of interest. In the model of
UZ, the system of interest is coupled to a massive scalar
field which is spatially extended, but only at a point in the
field's configuration space, which prohibits any depen-
dence on the effective equations of motion of the coupled
system on the spatial correlations of the environment. If
5(x) in Eq. (1.3) is with 5(x —q), and if the coupling con-
stants in Eq. (1.2b) were made to depend upon x, the spa-
tial character of the environment and the local coupling
between system and environment might be recovered.
Unfortunately, this destroys the linear nature of the cou-
pling which allows much of the calculations to proceed.

All these models share an environment-system interac-
tion which is linear in the coordinate of the system of in-
terest. The range of the interaction is therefore infinite,
which will not allow any reflection of the spatial correla-
tion functions of the environment in the effective dynarn-
ic of the system of interest. To the extent that this is an
appropriate approximation of the physical system of in-
terest, we ~ould not expect to see the saturating effect in
the localization of the system of interest, but the quadra-
tic result for these models should not be construed as
universal.

Another major difference between our results and the
models interactions of UZ and CL is that we have explic-
itly assumed momentum transfer to the system of interest
is negligible. The additional terms in the master equa-
tions of UZ and CL correspond to the effects of momen-
tum transfer. It is relatively easy to determine the legi-
timacy of these approximations. When considering local-
ization by photons, negligible momentum transfer can be
reduced to the assumption that the energy of the photons
is much less than the rest mass energy of the system of in-
terest. When considering localization by dust particles,
as discussed by Joos and Zeh, the assumption is that the
mass of the dust particles is much less than the mass of
the system of interest. If the approximations are to be
reasonable and localization is to be effective, the time

scales of interest should be much less than the relaxation
time scale of the system of interest, but longer than the
mean time between scattering events with the environ-
ment degrees of freedom.

One final difference between our calculation and the
models of CL and UZ is that they consider coupling to a
nontrivial vacuum. By this we mean that they consider
effects at zero temperature, when the environment is in
its ground state. When the localization is by photons or
by dust particles, the zero-temperature or vacuum state
would not affect the evolution of the system of interest,
and unitary evolution would be recovered, so that the
models of CL and UZ are not an appropriate description
of these systems. The zero-temperature effects, including
strong localization effects, may be appropriate in the con-
text of electrons in a solid, but not universally so: the ex-
perimental observation of interference effects, such as
Aharonov-Bohm oscillations in magnetoresistance mea-
surements, ' suggests that the localization of electrons by
electron-phonon interaction is at least significantly re-
duced at low temperatures. Persistent currents in super-
conductors provide an example of the disappearance of
dissipative effects at low temperatures.

Of course, this flattening of the localization rate may
not always be significant. In order for the asymptotic be-
havior to be important, the system must be driven to su-
perpositions of positions on length scales comparable to
the characteristic length of the environment on time
scales shorter than the lifetimes of the off-diagonal ele-
ments of the system of interest. All of the environmental
models discussed suggest that these lifetimes should be
very short for macroscopic systems, and so the system
would be likely to be localized before reaching the
characteristic length scale of the environment. On the
other hand, if microscopic systems are tested for the pres-
ence of these localization mechanisms by the type of in-
terference experiment discussed in Sec. III, for example,
then a deep understanding of the environmental localiza-
tion mechanism on all length scales would be essential to
interpret the results. It is possible that by taking advan-
tage of the saturation of the localization rate, one can
overcome a difficulty in experimental observation of envi-
ronmental localization discussed by UZ and CL.

For the dissipative two-state system, as applied to a
SQUID, the interference is between two current states.
The picture is of spatially extended supercurrent states,
all occupying the same physical volume, and interacting
with the same portions of the environment. In this case
the spatial characterization of the environment is prob-
ably not relevant. We will return to this characterization
of the pair states in the SQUID and its relevance to the
proposed QMSL experiment shortly.

Having obtained the mathematical form for environ-
mental localization, we see that it is qualitatively the
same as that for QMSL, so that with the appropriate
selection of parameters described in Sec. II, we have a
variety of results obtained for QMSL which can be im-
mediately applied to an environmental model. Two im-
portant results include a free particle propagator, a lo-
calized harmonic oscillator, ' and a simple measurement
model. '
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In Sec. III, we discussed two experiments for the detec-
tion of a dissipative term in the evolution of the density
matrix of the form employed by QMSL. The first experi-
ment uses neutron interference experiments as a precision
test of quantum coherence. We determined the effect of
the nonunitary evolution on the neutron interference pat-
tern. A statistical fit on existing and future data could be
used to set bounds upon the parameters o. and A, . Al-
though the neutron experiments are not and will not like-
ly become sensitive to the choice of parameters made for
QMSL, the form of the dissipation is fairly general, leav-
ing neutron experiments as a viable test of unitarity in
quantum mechanics.

Because QMSL has received a great deal of recent at-
tention, there would be great interest in an experimental
test. To this end, we have introduced the decorrelating
effect of QMSL on a SQUID, by examining the implica-
tions of a superposition of quantum states with different
superconducting currents. Distinct values for the current
on the macroscopic level corresponds to different velocity
states for the electron pair state on the microscopic level.
The superposition of different currents then leads to a su-
perposition of spatially separated wave packets for the
pair state when the system is given time to evolve. The
presence of QMSL in a SQUID would manifest itself as a
decrease in the tunneling frequency.

There is a potential inconsistency within our picture of
the tunneling experiment, which brings to light a
difficulty with the "universal" nature of QMSL. In deter-
mining how localization would effect the superconduct-
ing pair states, we assumed that the wave packets were of
(relatively) small extent. It has already been noted that
localization is not effective in destroying coherence be-
tween momentum states, " so that an assumption such as
this must be made if QMSL is to be effective in destroying

the macroscopic coherence. The conflict arises between
this picture of pair states, and the usual description of the
wave function in a SQUID, which is considered to be of
constant amplitude and varying phase throughout the de-
vice. If localization does not appear in a manner at least
similar to our description, it seems unlikely that there be
another possibility for the spatially separated wave func-
tions required by QMSL to manifest themselves. It is
then quite possible that even if QMSL exits, there may be
macroscopic systems for which the quantum coherence
between macroscopically distinct states is not affected by
QMSL. The difficulty with QMSL is that it performs its
desired function only if macroscopic superpositions are
invariably superpositions of spatially separated states. It
might be argued that in the context of measurement, the
superposition of spatially separated states is indeed al-
ways a part of the process at some part of the transfer of
information to the observer. The debate as to the satis-
factory nature of this solution is certain to persist.

The existence of effective nonunitary evolution of a re-
duced density operator due to interaction with an envi-
ronment has long been known. The possibility of funda-
mental nonunitary evolution ' ' ' ' ' brings with
it a multitude of interesting considerations. Implementa-
tion of second quantization, special relativity, ' su-
perselection principles, and conservation law are just a
few difficulties facing any generalization of a fundamental
modification of quantum mechanics such as QMSL.
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