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Matrix elements of potentials in the correlation-function hyperspherical-harmonic method
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Matrix elements of two-body potentials and correlation functions between three- and four-body
hyperspherical states, including their velocity-dependent parts, are calculated analytically for any
value of the total orbital angular momentum. The resulting formulas contain explicitly written
functions of the radial variable, and the Raynal-Revai coefficients. The latter are expressible
through finite sums of 3-j and 9-j symbols. The formulas allow precise and fast evaluation of matrix
elements of the effective potential in the correlation-function hyperspherical-harmonic method for
atomic, molecular, and nuclear three- and four-body problems. The generalization to any number
of particles is straightforward.

I. INTRODUCTION

These functions are generalizations of the usual spherical
functions to the N-body case and are solutions of the La-
place equation on the (3N —3)-dimensional sphere. They
are correspondingly characterized by 3N —4 quantum
numbers A'. After the separation of 3N —4 angular vari-
ables Q the N-body Schrodinger equation reduces to the
matrix equation for the radial functions

1 Ej

p" Gp Gfp

E(K+3N —5)

p

X~)V h" (P)Ni"(P) .

Here n =3N —4 and

W~ ~t (p)= f [P~(Q)]'W(P, Q)P~(Q)dQ (3)

are matrix elements of the potential 8' between hyper-
spherical functions, which are eigenfunctions of the gen-
eralized angular momentum operator A'3Q 3(Q) in the
( 3N —3 )-dimensional space:

(Q3)5'. ( t)Q=K(K+3N —5)P~(Q) .

The set A' contains, together with the quantum number
E, also the eigenvalues of other 3N —5 angular operators
which commute with the Hamiltonian [that is, with
gi 3+ 3( Q ) ] and between themselves.

For systems without additional symmetry the set of

The hyperspherical-harmonic expansion method, intro-
duced in 1935 by Zernike and Brinkman' and reintro-
duced 25 years later in a difFerent form by Delves and
Smith, provides a very general and powerful approach to
the N-body problem. In this method the wave function,
after the separation of the center-of-mass motion, is
presented as a sum of products of radial functions P+(p)
and the so-called hyperspherical harmonic functions
P&(Q) depending on 3N —4 angular variables Q:

%(P,Q) = g $~(p)PIt(Q) .

conserved quantum numbers consists of the total orbital
angular rnomenturn L and its projection M. Although
the other quantum numbers in principle could be chosen
arbitrarily, in practice, due to the fact that most few body
systems contain identical particles, it is convenient to
choose them to be eigenvalues of the commuting set of
operators, corresponding to the group SO(N —l), which
contains a group of permutations of N particles. Conse-
quently, many further works ' were devoted to finding
convenient expressions for these so-called syrnmetrized
hyperspherical harmonic functions realizing irreducible
representations of the permutation group. Unfortunately
the construction of the orthonormalized symmetrized hy-
perspherical harmonic basis turns out to be a very
difficult problem even for the three particle case. '

Simple expressions in closed form were found only for
L =0 and L =1 hyperspherical functions, ""'
while for L ~ 2 the progress was hampered by difficulties
of finding the proper "fifth" operator of the complete set
[containing also %6(Q), L, L„and the generator of
SO(2)] which would have equally spaced, easily calcul-
able, and nonirrational eigenvalues. ' However the fact
that the symmetrized hyperspherical function, once
known, could be expressed through the Wigner 2) func-
tions, ' ' ' enabled analytical calculation of potential
matrix elements. In the beginning analytic expressions
for the matrix elements were found by Whitten' in the
scalar case for the Coulomb, Gaussian, and harmonic os-
cillator potentials. This result was later generalized by
Mandelzweig' and Barnea and Mandelzweig' ' who
have shown that the matrix elements of an arbitrary po-
tential for L =0 and L =1 cases could be expressed
through the sum of products of the Clebsch-Gordan
coefficients and explicitly written functions, defined by a
power series in the radial variable p. The radius of con-
vergence of the series for the matrix elements is proved to
be the same as that of the power series defining the poten-
tial. ' ' ' The power-series form of the expressions for
the matrix elements is especially appealing, since an exact
solution of the coupled equations is given by the power
series whose coefficients are calculated by recurrence re-
lations from the matrix coefficients in the power series for
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the potential matrix.
The analytic expressions for the matrix elements as

well as the power-series method of solution of coupled
equations enabled an enormous saving in the computa-
tional time and extreme precision in the correlation-
function hy per spherical-harmonic (CFHH) method,
developed in the works, which was used for very ac-
curate nonvariational calculations of S states of the heli-
um atom and of the positronium and mesonic-molecular
ions. For example, for the ground state of the helium
atom, this method of direct solution of the three-body
Schrodinger equation yields the wave function and ener-

gy values accurate up to seven and nine significant
figures, ' ' respectively. The numerical computations
of the potential matrix elements and the solution of the
coupled equations with the precision needed for such ac-
curacy would be extremely time consuming, if at all pos-
sible.

The idea of using the hyperspherical expansion togeth-
er with the correlation functions is dating back to the
works in scattering and to works ' in bound-state
nuclear problems. In the CFHH method ' the N-

body bound-state wave function is presented in the prod-
uct form

where

N

X= g X ("")
i (j=2

ri is the distance between particles i and j, and
f, (r, )

y;~(r;~)=e ' " are known Jastrow correlation factors33
which are chosen to take into account the singularities
and clustering properties of the wave function. 4 is the
smooth part of the wave function to be expressed in hy-
persphericals. The resulting Schrodinger equation for 4
has an effective velocity-dependent potential F, depend-
ing on the correlation factors,

no need, however, to use the symmetric basis. The
reason is that even for identical particles the correlation
factors f,j(r,, ) could be diff'erent. For example, in the ex-
cited helium atom the correlation factor for the excited
electron should be different from the one for the electron
in the ground state, since the latter is influenced by the
unscreened nuclear charge while the first is in a screened
field; they also are in different quantum states. The sym-
metrization of the wave function thus should be done on
the product of the correlation function y and of the hy-
perspherical expansion of 4 together and not on each one
of them separately. Therefore in the CFHH method
there is no need to work with the syrnmetrized
hyperspherical-harmonic functions and one can use the
nonsymmetrized ones obtained by the method of
trees ' which form complete orthonormal sets and for
which analytical expressions and properties under the ki-
nematic rotations are very well known for arbitrary total
momenta and for any number of particles. '

In the standard hyperspherical approach such matrix
elements for the Coulomb and some other simple poten-
tials were obtained, for example, in Refs. 46 and 47.

The purpose of this paper is to obtain explicit analyti-
cal expressions for matrix elements of the effective poten-
tial in the CFHH method using the unsymmetrized hy-
perspherical harmonics and thus to generalize the results
of the works' ' ' to arbitrary L. Although the present
method could be used for any number of particles we will
restrict ourselves here to the cases of three- and four-
body problems. The extension to the N-body case is
straightforward.

The paper is organized in the following way. In Sec. II
we shall obtain the matrix elements between nonsym-
metrized hyperspherical harmonics for both the velocity
independent and the velocity dependent parts of the
effective CFHH potential 8' in the three-body problem.
In Sec. III we sha11 do the same for the four-body prob-
lem. Section IV is devoted to the discussion of the re-
sults.

,'V'f ,'(Vf )' —(V—f)V—, ——(7)

where f=g+& z f, (r, ), V is the sum of the interparti-
cle potentials, and

r

V
8 8 8 a

ax„'
' ax'„'ax'„' '

Bxcak

is a (3N —3)-dimensional gradient and
xj'„xk,x&, . . . , xk

' are different sets of mass-weighted
Jacobi coordinates. Note that the gradients in (7)
carry no set index k. This is due to the fact that the sca-
lar product of two gradients does not change under the
transformation from one set to another.

The CFHH matrix elements of 8' in the three-body
problem were obtained earlier' ' ' for L =0 and L =1,
since only in these cases the expressions of the sym-
metrized orthonormal hyperspherical-harmonic functions
through Wigner 2) functions, depending on kinematic
variables (that is, describing particle transformations into
each other and thus connecting different sets of Jacobi
coordinates), are known. In the CFHH method there is

II. THE CFHH MATRIX ELEMENTS
IN THE THREE-BODY CASE

Usually in the hyperspherical-harmonic method the
pair potentials are expanded in terms of the
hyperspherical-harmonic functions and one calculates
overlap integ rais for three hyperspherical functions.
Since all pair potentials are defined by power series in in-

terparticle distances, it is more natural and in fact leads
to simpler results to take the matrix elements of an arbi-
trary power of any interparticle distance and to sum
them with the proper coefficients in order to get the final
expressions for the potential matrix elements in the form
of power series in the hyperspherical radius p, as it was
done before. ' ' ' Such a form of the solution is neces-
sary, as it was mentioned earlier, to obtain the exact
power-series solution of coupled radial equations, since
its coefficients are determined ' ' by recurrence relations
involving matrix coefficients in the power series for the
potential matrix elements.

For the general case of three particles with unequal
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masses we introduce the usual Jacobi coordinates:

1R= (m, r, +m, r +mkrk),
M

1/2
1Xk=

m) m~

m, +m (r; —rj),

2=
Xk =

1/2
m„(m,+m, )

M
m, r, +m r

k
m, +m

Here M =m, +m2+m3, and [i,j,k] are three numbers

forming a cyclic permutation of I1,2, 3I. These equa-
tions define three different equivalent sets which are con-
nected by a linear transformation

coordinates in the form

xk =cosak nk

a, a i. a
V =, =n cosa ——sina

clx Bp p Ba

— a - a & a
V = =n sina + —cosa

Bp p Ba

. n'XI'
l
p cosa

X12
l

p sina

(12)

Xk =S1Ilal Ill

where nk and nk are unit vectors, leads to the following
expression for the gradients [in the next two equations
(12) and (13) we omit the index k]

1'
x, a»

x;2
012

1
Xk

Xl,
2

which produces a simple form for the global angular
momentum operator R (co) in the six-dimensional space:

cosf
sin+

y=m+arctan

Sln+

cos+

Mm

m, mk

1
Xk

2
Xk

' 1/2 (10)

conserving p =(xk) +(xk) which as it is easy to see,
does not depend on the index k. Parametrization of the

I

%' (co)=—
82 8 (1')2

2
+4 cot2a

Ba Ba cos2a

(12)2

sin a
(13)

Here 1'= ix'X—V' and I = —ix XV are operators of
the angular mornenta corresponding to the two
Jacobi coordinates of the given set. The orthonormalized
eigenfunctions which have the eigen values
K (K +4),K =0, 1,2, . . . , are given by the expression

PK (@ok ) =(cok!Klkli, LM ) =NK g (LM)!1km, lkm2)(cosak) (sinak ) P„' (cos2ak)
lk l/, LM

1 2 'k 'k 1 2 lk . Ik (1k+1/2, 1k+1/2j

ml, m2

X Yi, (nk)Yi2 (nk) .
&m& km'

(14)

Here (LM!,lkm, lkm2) is the Clebsch-Gordan coefficient, P„' ~' is a Jacobi polynomial, Yi are the ordinary spherical

harmonic functions, n =(K —
lk

—1„)/2,and EK ' is the normalization constant
1/22(c+2)n!Pn +a +b+2) c —a b—

I (n+a+ —3)f'(n+b+ —,') '
2

(15)

cok =(ak, cok', cok ) denote the five angular coordinates on the six-dimensional hypersphere; 0 ~ ak & m /2 and haik, cok are
solid angles connected with the vectors nk, nk, respectively; and the angular volume element is given by

desk =—„'sin 2al,.dml, desk .

The eigenfunctions are characterized, together with K, by the eigenvalues of the three-body angular momentum I., its
projection M and by the "partial" angular momenta lk, I&.

The transformation properties of the basis set (14) under the kinematic rotation (10),

I I LM
+K (~i ) g ( 1k 1k ~!li li )KL +K (~k )

1 2

are defined with the help of the Raynal-Revai coefficients:

(lklk ~l, '1; )KL —
—,m[C, i,2C, i,~]

k k

kl) A2, A3, A4

I,'

2 2, v+ k! v+ A.~ P, + k.3 Jtl+ A4Xf (A3, A2;1, ) A4 A2 lk . g( —1)"Cz k Ck k a» a22 a, 2 a2,

l,
'

I,
'
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where

C„",= I (2n +r +s +2) E —r —s
I (n + 1)1 (n +r +—', )I (n +s + 3)1 (n +r +s+2) '

2

f(a, b;c) =&(2a +1)(2b +1)(aObOlcO&,
(18)

and the summation is restricted by the following condi-
tion:

K =2n;+l +l; =2nk+lk+lk

where
1/2

m, +m

m, m.

=2@+2v+ A, , + A, 2+ A, 3+A,4 . (19)

Another expression for the Raynal-Revai coefficient is
given in the work ' and the equivalence of both forms is
proven in Ref. 13.

In the case of the total orbital angular momentum L
the hyperspherical expansion of 4 is given by

is the distance between particles i and j. The matrix ele-
ment

(Klkl»LMI VIK'lk 1 L'M'&

could easily be evaluated by using the power expansion
for the potential,

I ' I'LM
q)LM yy—K

( )cy k»
( )

k k
K, lk lk

(20) Vk(y ) y Vk(y )P

p= 2

where cok are the angular coordinates corresponding to
the chosen Jacobi set. For example, for the case of i and

j being identical particles, the set k is usually the most
convenient one since the transformation properties of

ll,. Ik LM
(cpk ) under the exchange of particles i and j, that

is, under xk —xk or ak ~—ak, are then simplest:

V (xk), V~
=

p = 2

p/2m;+m.

m]mj
kV (23)

and tabulated integrals involving the Jacobi polynomials.
We obtain

( Klk 1 LM
I

V" I K'lk 1 L 'M'
&

11(2LM

We have to calculate

(Kl„'1„'LM
I
VIK'1„'1» L'M'

& .

The potential Vis a sum of pair potentials:

V = V'(y; )+ VJ(y ) + V"(y . ),

(21)

(22)

where

bLL'~~M''st 1tI'bt2t2'(Kl V"IK &tlt2 s (24)
kk kk k k

(Klv"IK &. ..,= y v,"(Kl(cosa»)&IK'&. ..,p.
k'k = 2 k k

(25)

We shall express all integrals through the following in-
tegral:

1

C(t;n, a, b;m, r, s)= dx(1 —x)'(1+x) PI' '(x)P'""(x)
—1

2 +'+'I (a —t +n)I (b +n +1)1 (r +m +1)I (t +1)
m!n!I (r + 1)I (a —t)I (b + t + n +2)

X4F3( m, r +s+m +—1, t +1,t —a +1;r +1,b +t +n +2, t —a n+1;1—),
Reb ) —1, Ret ) —1, (26)

where 4F3 is the generalized hypergeometric function defined by the equation

" «i)k«2)k (a, )k x'
F (a, , a~, . . . , a;P, ,P2, . . . ,P;x)= $

k =P (Pl )k(P2 k Pq k

After a change of variable to x = —cos2a we obtain

(Kl( c)osIKa't&, ,=X' ' X' '
( —1)"+"'2 " +' + "+"C(l'+pi2+ ,';n, l'+ —', 1'+ ,'—;n',1'+—', 1'+ ——')

(27)

(28)

where

(K —1' —1 ), (K' —1' —1 )n= n
2

'
2

For the case a& = n' the function (27) —reduces to a polynomial of the order n '. For large z,
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I (z) =&2m.e 'z'

and the expressions of the type I (a +pc)/I"(b +pc) in which power p enters Eq. (28) are of the order of (eep) ' for
large p. The ratio of coefficients &K~(cosa)I'~K') i, i~ and & K~(cosa) +'~K'),

~, ~ for large p therefore tends to 1, which
means that the radius of convergence of the series (25) is the same as that of the series (23) for the potential itself.

Finally we have, using the Raynal-Revai coefficients to calculate the matrix elements of potentials V (y, ) and V (y )

in their respective hyperspherical bases 5'x. '
(co, ) and PIIr ' (coI ),

m =ij,kr&m' m

The evaluation of the term

1V f— 1 1 d 5 d
2 p dp dp p'.

in the effective potential is rather easy since this term, like the potential V itself, in view of (6) also separates into the
sum of terms which depend on one interparticle distance only:

f= gf(y). (30)

Acting with the operator A on the bra, we obtain

&Kl'1'L.M IV'f ~K1'1'L. M )

=SLL.S„„yy &li,'li', ll~l~)~L —
s

p'
m =i,j,k 11 I2 p dp dp

m m

&K f ~K') &1'12 ~1'1 ')
p'

(31)

8=(Vf)V=[(V' f)V' +(V' f)V' ] (32)

where the expression for &K~f ~K'), , I2 is given by Eq.
m m

(25) in which the expansion coefficients V in the power
series for the potential are substituted by the correspond-
ing coefficients f = [(m, +m, ) /( m; m ) ]~~ f in the ex-
pansion of the correlation function.

Let us now evaluate the velocity-dependent part of the
effective potential,

Bf 8 1 df 8

Bp Bp p~ Ba Ba

(1' f ).1' (1'f ) 1'

pcosa psina

(34)

I

In view of (32) and arbitrariness of m there, one can write

df 8 1 Bf 8
Bp Bp p~ Ba Ba

(I I f ).11

p cos a

(I' f ) 12-
psina

(33)

Here m can be equal to any of the indicies i,j,k. The use
of Eq. (12) yields, after a simple calculation,

Bf 8 1 Bf 8

Bp Bp p2 Ba Ba

A straightforward calculation gives

(35)

As f is a scalar function depending only on the inter-
particle distance x ', the last two terms in expression (34)
are zero and we finally have

B(cosa
&Kle K') = X f: &Kl(-"-)'IK') p~ '8 + K

0 8
K

m m m m Bp Ba Ba m m

where

(36)

—~I I
limni

I
( 1) + '2 —(I +I +P/2+3I

X [pl'[2C(l'+p/2 —,';n, l'+ —,', 1 +—~;n',1'+ —,', 1 + —,')
—C(l'+p/2+ —,';n, 1'+—,', 1 + —,';n', 1'+ —,', 1 + —,

' )]
—pl2C'(l'+p/2+ ,';n, l'+ —,', 1 —+,';n', 1'+ —,', 1 + —,')—
—p(1'+l~+n'+2)P(1 +p/2+ —,';n, l'+ —,', 1 + —,';n' —l, l'+ —,', 1 + —,')I (37)
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The expression for the matrix elements of the operator e is therefore given by

y &I'I2II'I' & &I~IB Il('&, ,
&I'I2 II('I2'&

m =i j,k l2m' m

(38)

The matrix elements of the remaining part of the
effective potential ((7f ) =Bf could be calculated analyti-
cally by inserting the completeness condition

g~ R & (%'I = 1 after the operator B and thus presenting
the matrix elements of Bf as a sum of products of the
matrix elements of B and f. This sum, however, is
infinite, and has a power-law-type convergence in E. The
precise evaluation of the matrix elements of Bf could
therefore involve many terms. %e have verified, for ex-
ample, that in the case L =0 the evaluation of the Bf
matrix elements for the linear correlation function
f =g; & (2; r; in the helium atom ground state calcula-
tion with the precision of seven digits demands a sum on
K up to K =400, which due to additional quantum num-
bers (restricted by K) leads to a summation over about
10000 intermediate states. Therefore in the case of the
operator Bf, as well as in the cases when a three-body
potential is present, the numerical evaluation of matrix
elements of this part of the effective potential should be
considered.

cit form of the transformation (40) for the set (39} in the
case of permutations of the four particles is given in Ref.
45.

Following the work, we introduce the notations

x' =p(cosa)(sinP)n',

x =p(sina)(sinP)n

x'=p(cosg)n', 0 a, P

(41)

From here on we omit the indices k, I in most equations
and retain them only if necessary for definiteness. The
eight angular coordinates on the nine-dimensional hyper-
sphere are a,P and the solid angles co', co, co correspond-
ing to the unit vectors n', n, n . The angular part of the
volume element is d Q =sin P cos P d P d cu d co, where d co

was defined in Sec. II.
The square of the generalized angular momentum

operator on the nine-dimensional sphere 6 (Q)=%9(Q)
is now given by

III. THE CFHH MATRIX ELEMENTS
IN THE FOUR-BODY CASE

26 (Q)= R (co)—
sin f3 Qp2

7cos P—2 (} (I )+
sinP cosP (}P cos2p

(42)

1
xkl

m, mj

m, +m. (r, —r, ),

2 =xkl

' 1/2
(m, +m )(mk+mI)

(39)

The generalization to the four-body case is straightfor-
ward, albeit tedious. One can introduce, for example, the
following set of Jacobi coordinates:

1R= (m, r, +m, r, +mI, rk+m(rI ),
1/2

where R (co}=%'6(m) is, as before, the square of the gen-
eralized six-dimensional angular momentum operator,
given by Eq. (13}, and I', l, l are the usual three-
dimensional orbital angular momentum operators, relat-
ed to the Jacobi coordinates x', x,x . The orthonormal-
ized set of the hyperspherical-harmonic functions, corre-
sponding to the eigenvalues Q(Q+7) of 6 (Q) and
I('(K+4) of% (co), is given by

Z' ' " M(Q}=(QIQI(.'I'I II3LM &

mk rk +mlr l

mk+ml

m;r;+m r

m, +m m, m

(LMII m Im &NI 'K+3/2(cosP)I

3 =xkl
mkml

mk+ml

1/2

(rk —rI ),
X ( sjnP)KP(K +2, I + (/2)( cos2P)q

X Y,3 3(n )P' ' ' (co) (43)

where M =m(+m2+m3+m4 and Ii j,k, l I are four
numbers forming a permutation of I 1,2, 3,4).

All other possible sets of Jacobi coordinates could be
obtained with the help of orthogonal kinematic rota-
tions

l' K+3/2 .
Here q =(Q E —I )/2 and N—

&+3&&
~ is given by Eq.

(15).
The Raynal-Revai coefficients, connecting the different

basis sets through the formula

1
I

X a1, a, 2
I

X = a 21 a 22

Q13 1

2
Q23 X (40)

ZI I II LM(Q)—
QK

l', l', l', l, K

(I'I I'I lt'II'I ll It &gL

X Q q1 Q32
3

a33 X Z I I I I LM( Qi )QK'

conserving the length of the radius vector p, p =(x')
+(x ) +(x ) in the nine-dimensional space. The expli-

were calculated for the four-particle case by Jibuti, Kru-
pennikova, and Shubitidze:
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(I'I I'I K'il'I ll K)(3 = „',—n. G. . ., G. ..,,I ' I' I'

A]7AQ7A3yA4yA5pA6yA7yAsyk97

]Py A45y A 78' A ]4y kP5y A 36

X3+A6.k3+2.6+2.7+kg+K —K'
l

f ()( 1~2&~12)f(~12~3~1')f (ll 4~s~ ~4s)f (l(4s4~ I )f(~7~8» ~78)f(~78~9~1

Xf(k, )14,'k, 4)f ()1.,4k~;I' )f(X2ks, k2s)f(k2sks, I )f(A3A6, A36)f (A36A9, l )&(21'+1)(21+1)

k4 Ar5 X45

~25

A3

11 I2

~78

~36

I' I L

T), Tg, T3y 41 5P 6y T7, T8, T9

T +T +T +T
( 1) g 7 „!r(X„+'r„+-, )

k=1

,21+2x1, , il
&
+2v&, ,23+ 2rs 24+ 2' 2&+ 2&

&
k&+ 2~& )i&+2r7 2&+ 2r8(a») ' '(a2, )

' '(a») ' ' a12) ' '(a22) ' '(a32) ' '(a, 3) ' '(a23)

X (a33)
' 'B(pl2+ '„ol2+ —', )B—(p'l2+ ,', cr'/2+ '

,)——
X 3F2 ( n, I '+ I +—n +2,p/2+ —,', I +—'„(p+o ) /2+ 3; 1 )

X3F2( n', I'+I +n'+2—,p'l2+ —'„I+ —,', (p'+o')l2+3;1), (45)

where B (x,y) = I (x)1 (y)/I (x +y) is the p function, 3F2 is given by Eq. (27), and

6,'i(~, 3
=qK

1(q+I +—,')I (q+K+3)
+—,

'
I'(n+I +—')

I (n+1)I (I +—', )
(46)

The summation is restricted by

9

Q = g (Ak+2~q) )

k=1
(47)

NK is given by Eq. (15), q =(Q —K —I )/2 as defined after Eq. (43), n =(K —I ' I )/2, and—
0 =I +A &+2K&+A2+272+k3+2T3& 0' =I +A, ~+27 &+A4+274+A7+2vP

p=l +A,4+2~4+A, 5+2~5+A6+2~6, p'=I +k2+2~2+A, s+2~~+A, ~+2r8 .
(48)

The 24-j symbols can be expressed through a sum of products of four 9-j symbols as follows:
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1 ~2 ~12

~4 A5 A,45

~25

~3 ~6

l1 12

~78

I'

I

~36

I

13

A12 A3 I' A.
1

A.2 ~12 A A36 I A, 14 A, 25

—g (2((.+ 1) A4~ A, 6 I ~ A4 A, , A4q A, 7s A9 I ' ' A7 ((,s A, 7s

I k14 ~25 ~ I' I L I I I

I' I' L.

(49)

Let us choose now the set Qkl of the hyperspherica1 an-
gles and the set of hyperspherical states

I QK„(lk(lk(ll,(lk(LM )

as the expansion basis for the wave function

proceeds as in the three-body case. The matrix element
of V nfirstreducesto

&QKI'I 11'LMI V "lg'K'I' I I'I L'M')

13LL'~MM'~KK'5(I'~(I(( 17(2(2 ~(3(3 & Q V
I Q

q)LM y yQK ( )Z'I I II LM(f) )

g, X, l', l', l, l'
(50)

(52)

The indices k, I, marking the quantum numbers
E, I ', I,I, I and the hyperspherical angles, are omitted.

The calculation of the matrix element of the potential

where, as before, the indices m, n marking I(, l', I,I, I
and E', I ',I,l', 1 are not displayed. The reduced ma-
trix element on the right-hand side of Eq. (52) is

&QIV "Ig'&K,3= g V, "&Ql(cosP)pig'&K(3p',
p = 2

m (n =i,g, k, l

V "(y „),y „=
' 1/2

m +m„
mmmn

3
"mn

y'm n

P

m +m„
' p/2

mmmn
Vmn

p

(53)

(51) where as in Eq. (28),

& Q I(cosf3)pig ) 3
Itl(,K+3/2~—(,K+3/2( 1)q+q'2 —(K+ I +p/2+9/2(p(13+1(/2+ (.

II 13+ i K +2.(I 13+ (

Finally,

& QKk(l(, (lk(l(, (lk(LMI VI Q K„(1„(l„,l„,lk(L 'M' )

(54)

~LL'~MM'
m & n =Ij,k, 1 l 1

mn' mn' mn' mn' mn

& Ik(lk(lk(lk(Kk(II'. I'„„I'„K„&~L& Q I V "Ig &,
mn mn

x & I.'„I.'„I„1.'.K..l 4(4(4(4,K„)~ L (55)

The matrix elements of V f evaluated similarly as in
the three-body case have the form of Eq. (55) with
&Ql v "lg') (3 changed to

mn mn

8 d Q(Q+7) &Qlfmnlg~)
p'dp 'dp p' mn mn

(56)

where the matrix elements of the correlation function be-
tween particles m and n are given by Eq. (53) in which
the expansion coefficients V "in the power series of the
potential are exchanged for the expansion coefficient fpof the correlation function.

We now turn to the matrix elements of the velocity-
dependent part of the effective potential, which according
to the same arguments as were used in the three-body
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case, could be written in the form

emn

m (n =i j,k, l

(57)

af-" a 1 af-" a

ap ap p2 ap „ap
„

mn

+
2sin2p „aa„aa

„

(58}

e " for a scalar two-particle correlation function f "has
the following expression:

The evaluation of the matrix elements in the Jacobi coor-
dinate set m, n gives

, a a(cosp.„}
&Qle "IQ'&x /3

= g l;" &Ql(cosp „}/'IQ'&K /3 pp/' ' + Q
mn mn mn mn Bp mn mn

(59)

where

Q
a("'P)' a "' =N/''K'3/2N/''K'3/2( 1)q+—q''2 (/x+I/'+P/2 9/

ap ap
Q K/3 g + 3/2 g'+ 3/2

X (pl [2C(l +p/2 —
—,';q, l + ,', K+2;—q',I + ,',K+2)—

—C(I +p/2+ —,';q, l + —,',K+2;q', I + —,',K+2)j

pKC(I +p—/2+ —,';q, l + —,',K +2;q', I + —,', K+2)

p(K+I + ——', +q'+2)C(l +p/2+ —,';q, l + —,', K+2;q' —l, l +—'„K+3)).
The matrix element of e is thus given by

& QK/, /I/, '/Ik/I«I/', /I M
I
e

I Q Kk/4/Ik/Ik/I/c/I

(60)

~LL'~MM'
m (n =i,j,k, l

mn' mn' mn' mn' mn

&Ik/IAI«Ik/K«II'. I'. I .I'.K .&«&QIe "IQ &K
mn mn

X &I'„I„I„I„K„I4/4/lk/lk/Kk/&g'I, (61)

IV. CONCLUSION

We have derived explicit analytic formulas for the
evaluation of the matrix elements of the effective poten-
tial in the correlation-function hyperspherical-harmonic
(CFHH} method for the three- and four-body problem.
These formulas express the coefficients in the power-
series expansions of the matrix elements in the variable p
through the known coefficients of the power series in the
interparticle distances, defining the two-body potentials
and correlation functions. They allow very fast and pre-
cise evaluation of these coefficients, which in turn serve
as input to the matrix recursion relations, determining
the coefficients of the power series solution ' ' of the ma-
trix equation (2) and thus the bound-state energy and
wave function. Indeed, although the final expressions for
the matrix elements look rather cumbersome, they con-
tain only finite sums of 3-j and 9-j symbols and of the hy-
pergeometric functions (which in our case are reduced to
polynomials), and are easily implemented on the comput-
er. The precision of the evaluation of the potential ma-
trix coefficients with the help of similar formulas ob-
tained in the L =0 case in the symrnetrized hyperspheri-
cal basis, and the precision of the power-series coefficients
of the solution of the coupled equations (2) obtained with

I

the recurrence relations, depends only on the length of
the computer word. It is by many orders of magnitude
higher than the error introduced by the truncation of the
system (2) to a finite dimension. The time spent on their
calculation was a small part of the total computational
time in the calculations. The accuracy of these cal-
culations was up to nine significant digits for the energy
and seven digits for the wave function. The use of the
current formulas will allow the extension of the CFHH
method to any value of the total angular momentum and
to the four-particle atomic, molecular and nuclear
bound-state problems. The extension of the given expres-
sions to more particles can be performed in an analogous
manner.
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