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A detailed breakdown of many-body perturbation theory contributions through third order is
presented for the ground-state removal energies of cesium and thallium, with the aim of identifying
which Goldstone diagrams are numerically dominant. A comparison of these diagrams with Feyn-
man graphs is made. A discussion of the issues involved in carrying out ab initio calculations of
properties of these atoms accurate at the few tenths of a percent level is presented.

In a recent paper' we addressed the question of wheth-
er or not calculating the first few orders of many-body
perturbation theory (MBPT) can give accurate results for
valence removal energies of cesium. Specifically, a com-
plete calculation through third order starting with the
V ' Dirac-Fock (DF) potential was carried out, and
was supplemented by the calculation of two fourth-order
terms for the 6s, 7s, and 6p states of neutral cesium.
While the results agreed with experiment at the few
tenths of a percent level, the relatively large contributions
of the fourth-order terms made it obvious that a
thorough investigation of that order should be made. Be-
cause there are a very large number of fourth-order
terms, it would clearly be desirable to establish some cri-
terion to judge which terms are likely to be important,
and which can be safely neglected. Unfortunately, the
nominal order of any given MBPT contribution is always
the same, one atomic unit (a.u. ), and its numerical value
depends on the evaluation of a complicated sum over in-
termediate states and angular momentum channels
weighted with various energy denominators. It is there-
fore difficult to tell with absolute certainty which contri-
butions are most important without doing an explicit cal-
culation.

What we wish to do in this paper is exhibit in detail the
contributions of MBPT through third order so as to iden-
tify what kinds of term are numerically dominant, and in
particular to compare a grouping of terms that arises nat-
urally in time-dependent formulations of MBPT with one
that arises naturally in time-independent MBPT. In our
previous work' we gave only a partial breakdown of the
third-order energy, which we expressed as a sum of 12
terms, where each term includes between two and eight
exchange variants. The grouping together of MBPT
terms that differ in only this way is equivalent to dealing
with Brandow diagrams instead of the Goldstone dia-
grams of MBPT. However, there are other ways of
grouping these diagrams together. An important exam-
ple arises from the use of time-dependent MBPT, which
is expressed in terms of Feynman graphs rather than
Goldstone diagrams. The mathematical expressions for
Feynman graphs involve energy integrations of products
of Green's functions, and appear quite different from
Goldstone diagrams; however, when those integrations
are carried out, any Feynman graph reduces to a set of

Goldstone diagrams. This approach has been used exten-
sively by the Novosibirsk group in their calculations of
properties of cesium. ' In this paper we will show the re-
lationship between the Feynman and Brandow groupings.
While it is possible in both approaches to identify partic-
ularly important groupings, one of our principal results is
that almost all groupings are sufficiently large that they
cannot be neglected if results accurate to a few tenths of a
percent are required. (We will, however, find for cesium
a criterion that orders the size of individual Goldstone di-
agrams, making a limited number of them very small. }
Thus, while our hope was that we could find a small sub-
set of third-order terms which dominated, so that only
the related terms of fourth and higher orders would have
to be treated, we will conclude that much more complete
methods are in fact required for high accuracy calcula-
tions. A discussion of such methods is given in the con-
cluding section of this paper.

Finally, we have extended the calculations on cesium
to thallium. This atom is of considerable interest for two
reasons. Firstly, as is also the case for cesium, a parity-
nonconserving E1 transition matrix element
6p»2~7p»2 has been measured quite precisely, which
has significant implications for unified theories of the
weak and electromagnetic interactions. Thallium is also
of interest because, while nominally similar to cesium in
having one electron outside filled shells, the last filled
shell 6s, &2 is relatively weakly bound and can mix
significantly with the valence 6p»2 state, so that the be-
havior of perturbation theory may be quite different from
that in cesium.

The plan of this paper is the following. In Sec. I, a cal-
culation of the second-order removal energies of the
ground state valence electrons of cesium and thallium
with high numerical accuracy is described. The four
Goldstone diagrams contributing in this order are
grouped together in two different ways, one involving
summing diagrams related by exchange (Brandow), and
the other involving summing diagrams that are different
time orderings of time-dependent MBPT (Feynman). In
Sec. II, a somewhat less accurate calculation of the
eighty-four Goldstone diagrams that enter in the third
order is carried out, and the Brandow and Feynman
groupings are compared. In Sec. III an approximate cal-
culation of certain fourth-order diagrams is carried out,
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and results compared to experiment. In this concluding
section we also present an analysis of what is learned
from the study of low orders of MBPT and a discussion
of the role of all-orders methods in high-accuracy calcu-
lations of the properties of cesium and thallium.

I. SECOND-ORDER CALCULATIONS
FIG. 1. Goldstone diagrams representing Eq. (3).

We carry out our calculations starting with the V'

DF potential. (Note that the entire calculation is relativ-
istic, and that our perturbation theory is sometimes re-
ferred to as RMBPT, for relativistic MBPT.) There are a
number of advantages associated with this potential, in-
cluding a greatly reduced number of diagrams to consid-
er, a clean separation of the core and valence states, and
one set of single-particle states which can be used for cal-
culations of excited states as well as the ground state, giv-
ing important simplifications in calculations of transition
matrix elements. Thus, when considering the total ener-

gy of two different valence states of a one-valence-
electron atom, that energy can be written as

E.=&u+ Ecole

with E„„the same for all valence states v. Such a sepa-
ration could not be made if one used, for example, unre-
stricted DF. Because E„„represents the total energy of
the ion core, c„can be identified as the negative of the
valence removal energy. In the following, because we are
concerned only with the removal energies, we suppress all
contributions to E„„.The lowest-order removal ener-
gies are, however, discrepant with experiment by —11%
for both atoms. (In this and the following a positive per-
centage indicates the magnitude of the theoretical rerno-
val energy is larger than the experimental result, and vice
versa. ) Specifically, the valence 6s state of cesium has en-

ergy —0. 143 10 a.u. , but c.6,
"'=—0. 127 37 a.u. Similar-

ly, the 6p, &2 state of thallium has energy —0.22446 a.u.
compared to c&

"'=—0. 19968 a.u. Because the first-
order correction to valence removal energies vanishes for
a V ' DF potential, the first nonvanishing corrections
are found in second order. The expression for the second
order energy c' ' is

e' '=a, +aq+P, +P2,

states U) m, n, . . . , s; =—e;+a~, and the Coulomb matrix
element g;~kl is defined in terms of the Dirac wave func-

tion/, as

g,,„,=—
, 4;(r}%k(r)4,(r')41(r') .

drdr'
r —r' (4)

The corresponding Goldstone diagrams are shown in Fig.
1. It is possible to group a& and a2, and p, and pz togeth-
er because they have common denominators and one
common factor in the numerator, with the second
differing only by the exchange of two of the subscripts
and a minus sign. Thus by introducing gijkl gijkl gijlk
we can deal with only two objects,

g uamn gmnuaa=
amn ~au ~mn

(5a)

gabm v g m uab

abm ab mu

(5b}

TABLE I. Breakdown of second-energy for (a) Cs and (b) Tl
in a u. and as percentage of total energy. Numbers in

parentheses denote numerical errors.

This grouping together of exchange variants is equivalent
to using Brandow diagrams. It collects together terms
with the same number of sums over core states and excit-
ed states. While the exchange graph has a distinctly
different structure, especially after a radial decomposi-
tion, it is possible to evaluate the two graphs simultane-
ously when writing computer code: this procedure is de-
scribed in an appendix of Ref. 10. However, we wish
here to treat each diagram separately, and thus give in
Tables I(a} and I(b) the individual values for cesium and

where

guamngmnva
a, =

amn au mn

guamn gmnav
rxp-

amn au mn

gabmv gmvab
1

abm ab mu

gabmu gmuba
2

abm ab mu

(3a)

(3b)

(3c}

(3d)

al
a2

Pi
P2

Sum

Pi
Pz

—0.0677
0.0113
0.0307

—0.0096

(b)

Energy

(a)
—0.021 68

0.002 36
0.002 19

—0.000 69

—0.017 82(2)

Percentage of
total energy

15.1%%uo

—1.6%
—1.5%

0.5%

12.5%

30.2%%uo

—5.0%
—13.7%

4.3%
In the above equations core states are denoted
a, b, c, . . . , excited states (which include the valence

Sum —0.0353(2) 15.7%
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(r)% (r') 4.(r)%'. (r')
G(r, r';E)= g . + gF. —s +i5, F. —E, i5—(6)

thallium, respectively. We note first that inclusion of the
second-order energy improves agreement with experi-
ment dramatically for cesium, and somewhat less impres-
sively for thallium, to +1.5% and +4.7%, respectively.
Because of the large size of the second-order effect, it is
clearly important to carry out the calculation with high
numerical accuracy; if an overall accuracy of 0.1% is
sought, the second-order energy must be evaluated to
better than 1%. Far higher numerical accuracy is
achieved in the present calculation for cesium which in-
volves a basis set of 40 wave functions for each of 22 an-
gular momentum states, and sums over nine partial waves
in the angular momentum sums, using the last partial
waves to estimate the remainder of the partial wave ex-
pansion. Thallium was not evaluated as accurately, pri-
marily because only eight partial waves were included,
which made the partial wave extrapolation more uncer-
tain. The numerical errors for the entries in Tables I(a)
and I(b) do not exceed 1 in the last digit. A description of
the basis set used and of how MBPT calculations are car-
ried out with basis sets can be found in Ref. 11.

The formulas for c' ' are frequently derived from
Rayleigh-Schrodinger perturbation theory. If however,
they are derived from a time-dependent formalism, a
different grouping is more natural. In these formalisms, a
central object is the single-particle Green s function,
given by

FIG. 2. Feynman graphs representing Eq. (7).

cates a core state. Were we interested in the effects of
negative energy states, the second term in Eq. (6) would
include those states, but such effects enter in order a a.u.
and can be neglected here. Note that it is convenient, but
not necessary, to treat excited states differently from
states in the core: it is equally possible to treat all posi-
tive energy states together; the final formulas for energy
shifts would be the same, but the details of the derivation
slightly different. In terms of this propagator, the
second-order energy can be written as the sum of two
terms represented by the Feynman graphs of Fig. 2,

(7a)

where, as usual, m indicates an excited state and a indi- where

dao) dcoz dx dr dx' dr'r, =—,„, ,
~

+,(x )G(x', x;s, +~, )y,g„(x)Tr[G(r, r', co, +co&)yoG(r', r;cop)) 0],—2+i —2mi ~x —
r~ ~x —r

den, deox dxdr dx'dr' +~ )VoG(r x s +]+~/)XQG(x x s +~/)rog. (x)—2m.i —2~i ~x —r~
~

x' —r' (7c)

The rules for constructing the integrals represented by
Feynman graphs are recapitulated in the appendix. Car-
rying out the co integrations with Cauchy's theorem then
leads to the identification I |=a&+P, and I z=az+Pz, so
that each Feynman graph reduces to a sum of Goldstone
diagrams.

While at this point the Brandow and Feynman group-
ings give of course identical total energy shifts, it is of in-
terest to compare their detailed breakdown. Starting
with cesium we note that the Brandow organization of di-
agrams gives a, +a& = —0.019 32 a.u. and P, +Pz
=.001 50 a.u. , with the twofold excited state terms (a)
exceeding the single excited-state terms (p) in magnitude
by a factor of 13. The Feynman organization, on the oth-
er hand, gives I &= —0.01949 a.u. and I &=0.00167.
The close similarity between the two methods is caused
by the near equality of a~ and p, , which is coincidental,
as evidenced by their very different values in thallium.
Note that exchange graphs are small and of opposite sign

to direct graphs. The most prominent feature of the
Goldstone diagrams for the cesium calculation is the
dominance of a&, which is ten times larger than az and

p~, and 31 times larger than pz. Even though the latter
term is relatively quite small, it still contributes 0.5% of
the total removal energy, and cannot be neglected for
high-accuracy work.

We can account for the ordering a, »az, p, »p~
empirically by noting there is a suppression factor for di-
agrams in which the valence electron line (the set of lines
starting with the initial valence line continuously con-
nected to the final valence line, excluding loops) bends
downward into a core line, which we will refer to as a
"turn. " This follows from the fact that a Coulomb ma-
trix element g„, or g „,involves the overlap of an
excited state with a core state, and that overlap is
suppressed compared with the overlap of two excited
states or two core states. Note however that this suppres-
sion does not appear to act in loops, even though they
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also have such Coulomb matrix elements, which is why
they are excluded from our definition of the valence line.
This is likely because the suppression from the Coulomb
matrix elements is compensated by relatively large fac-
tors coming from the angular momentum analysis. Dia-
gram a, has no turns, and thus dominates the diagrams
with a single turn a2 and p„which in turn dominate p2,
which has two turns. We will see that this topological
distinction will remain useful in the third-order calcula-
tion.

Counting the number of turns is not meaningful for
Feynman graphs, which do not distinguish core and ex-
cited states. However, Feynman graphs can be categor-
ized by how many closed electron loops are present. The
dominance of I, over I'2 suggests that Feynman graphs
with the largest number of electron loops are numerically
dominant. We will see, however, that this ordering is
only partially successful in third order in accounting for
the magnitudes of graphs.

Turning to thallium, we see very different behavior, as
might be expected from an atom that has a 6s, &2 core
that has significant overlap with the valence orbitals.
The first observation we make is that while a& is still the
largest term, P& is almost half as large as a, rather than
being ten times smaller as in the case of cesium, so that
ordering of magnitudes by the number of turns in a dia-
gram is not particularly useful for this atom. We will en-
counter a similar situation again in the third-order calcu-
lation; it can be understood qualitatively by noting that
diagram a involves a core-valence excitation av~mn,
while P involves a core-core excitation ab ~mv. While in
cesium the noble gas core is tightly bound in comparison
with the valence states, in thallium the 6p &&2 valence elec-
tron interacts relatively strongly with the 6s core shell,
and core-core excitations from this shell make significant
contributions to the second-order ionization energy via
the term p. The situation is a manifestation of the fact
that the V ' DF potential is a physically more ap-
propriate starting point for cesium than for thallium.
Nevertheless, the perturbation series as a whole behaves
reasonably enough for both atoms, and the formal advan-
tages of the V ' DF potential for systematic many-
body calculations make the approach a very attractive
one even for thallium.

As mentioned before, a2 and p, are no longer nearly
equal. A remarkably feature of the second-order energy
calculation for thallium is the near-cancellation between
a2 and P2, which gives I 2

=0.0017 a.u. versus
I = —0.0370 a.u. This contrasts with o, = —0.0564 a.u.
and p=0.0211 a.u. However, we will see that when we
add the next-order corrections to I 2 this cancellation
breaks down, so we attribute the smallness of I 2 to a nu-
rnerical accident. Again, while remarkably small, it is
still a 0.8%%uo effect. It is clear that no approximation
scheme that aims at the 0.1% level can leave out any
graph in second order. We now turn to the third-order
calculation.

II. THIRD-ORDER CALCULATIONS

Even with the elimination of a large set of Goldstone
diagrams made possible by the use of the V ' DF po-

&vbmr&rabn &mnva

.bm. , (&au &mn )(&bu arm )
(Sa)

&canv &nbcm &mvba

.b, . (&ac
—Enu)(Eab &um)—

(Sb)

E( )— gavmn gnbvrgmrab
C +C.C.

abmnr (Sau Smn )(cab arm )
(Sc)

E(3)— gabnv gvcbm gnmac +C.C.
,b,m, (cab Sun )(Eac Emn )

(Sd)

&ausr &rsnm &mnau

, „„,(E„—E „)(E,„—E„, )
(Se)

&cdmu&abcd&mvab

bd ( b )( d
(8

E( )— ~abrv grvmn gmnab +C.C.
abmnr ( cab cur )( cab emn )

(Sg)

&avmn &bcva &mncb

.b,m. (&au
—

&mn )(&bc
—

&mn )
(Sh)

&acmn &ubvc &mnab

ab, m. (Eac &mn )(&a—b &mn )— (8i)

I 3) y &abrn&vrum&mnab

,b „„(s,b —
s)( b

s—e „) (Sj)

&vaum &chan & mncb

abcmn Ea Em Ebc Emn
+C.C. (81')

E( )— guavm gbmnrgrnab +c.c.
„„(e E )(E b E„„)

(81)

While the Brandow form is a compact way of represent-
ing third-order perturbation theory, we now wish to con-
sider each individual exchange diagram. To organize the
presentation, we order the exchange variants of a given
term in a binomial fashion. For example, for a term with
three exchanges variants like E~ ' we order

tential, there are still a large number, 84, of these dia-
grams contributing to the third-order valence removal
energy. Of this number only 52 are independent and
need be explicitly calculated, as 32 graphs are the Hermi-
tian conjugates of other graphs. They can be obtained by
reAection about a horizontal axis, and are numerically
equal. We first present the formulas in the Brandow or-
ganization, which can be written as a sum of 18 terms, 12
of which are independent. Note that our arrangement of
the third-order energy is somewhat different than that
given in Ref. 1, with the ordering of terms different and
the arrangement of the Coulomb matrix elements g sys-
tematized by having the Coulomb interaction occurring
at the top of the Goldstone diagram written first, the one
in the middle second, and the bottom one third:
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~vbmr grabn gmnva gubmrgrabn gmnva gubmr grabn gmnau gvbmr Rranb g) mnua gvbmrgranbgmnav

gubrm ~rabn g mnva +gubrm g rabn gmnau gvbrm granb gmnua

gvbrmgranbgmnau A
1
+ A2 A3 A4+ A5 A6+ A7 A8

A similar scheme is applied to terms with two or one ex-
change variant, giving a set of four or two graphs. We
present the diagrams in Fig. 3. Note that groups C, D, 6,
H, E, and L have associated complex conjugate graphs

I

that we do not explicitly show, and that additionally
A2= A5, A4= A7, B2=B5, and B4=B7. Before dis-
cussing the individual values of these diagrams, we now
introduce the alternative grouping of Feynman graphs.

iij IE

)L

j IE

)L

i IE

jh

AI

)L

)L

~ I

ih

jh

A6

]L
)L,

ii

JIL

)L
]L
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)L

)L

)L
)L

i Ii

ih
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1

)Lii

ii

) IE

i IEii

)L

i IL

FI

JI L

)L

)L
)L

ih
JI L

) IL )L
jh
)L

I

i
~ -I

)L

BI

)L
)Lj Ii

ii
)L

)L jh
i Ii

jh

P P

)L

B6

j IE

B7 B8
i IE

)iLL

ji
i L

I2
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) IE

)L
)L

j IE
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)i
) IL

)L
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i Ii

j IE

)L
)L

j IL

JI L

C5 C6 C7

ii
)L
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j 'E jh
)L
)L

)L
)L

I

) IEii
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ii
j IL

ji
)E
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D K,

)L
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)Eii

)L
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D5

I

)L
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jh
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FIG. 3. Goldstone diagrams representing Eq. (8): note the ordering of exchange variants is as explained just below that equation.
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F, F F5 F6 F7

Fs F(i

FIG. 4. Feynman graphs representing the third-order energy:
see appendix for the rules for constructing the associated formu-
las.

In the DF potential, 14 Feynman graphs, of which 12 are
distinct, must be considered. They are presented in Fig.
4; further details concerning their derivation are given in
the appendix. As in the previous case, each graph is as-
sociated with several energy integrations, that when car-
ried out with Cauchy's theorem lead to six contributions
each, for again a total of 84 terms, which reproduce the
Goldstone diagrams of Fig. 3. The decomposition of the
Feynman graphs in terms of these diagrams is given by

F) A i+Bi+Ci+Ci +D, +D*,

F2—A 3 +B3+C2+ C2 +D2+D2

F3 A5+Bz+Cs+C3 +D3+D5

F4= Aq+B5+C3+C5 +D5+D3

F5 = A7+B4+C6+C4 +D4+D6

F6= A6+B6+C7+C7 +D7+D7

F7= A8+B8+C8+C8 +Ds+D8

F8= A4+B7+C4+C6 +D6+D4

F9=E)+F)+G)+Gj +H)+H)

F]p =E2 +F2 +G2 +G2 +H2 +H2

F)) =I)+J)+K&+E& +L)+L
&

F)2 —I2+J2+K3+E3 +L3+L3

F]3 I3 +J3 +K2 K2 +L2 +L 2

Fj4=I4+J4+K4+E4 +L4+L4

(9a)

(9b)

(9c)

(9d)

(9e)

(9g)

(9h)

(9i)

(9k)

(91)

(9m)

(9n)

Note that F3 =F4, and F5=F8 are complex conjugate
pairs. As in second order, Feynman graphs collect to-
gether different exchange parts of a number of Brandow
diagrams. We note here that, just as it is possible to
evaluate all exchange variants simultaneously in the

TABLE II. Third-order (a) cesium and (b) thallium energies in a.u. and percentage of total energy (totals for terms C, D, G,H, K,
and L are doubled to include complex conjugate terms).

Total

A

B
C
D
E
F
G
H
I
J
K
L

0.005 579
—0.000 344

0.003 362
—0.000 260

0.005 580
—0.000 345
—0.000 372

0.000 184
—0.074 258

0.074 147
—0.000 975

0.001 516

—0.000 227
0.000 080

—0.000 510
0.000 045

—0.000 868
0.000 135
0.000 157

—0.000027
0.000410

—0.000 510
0.000 210

—0.000 306

—0.006 375
0.000 363

—0.000 380
0.000 311

0.018 557
—0.018 519
—0.000 363

0.000 480

0.000 469
—0.000 129

0.000087
—0.000 102

—0.000 119
0.000 155
0.000092

—0.000 132

(a)
—0.000 227

0.000080
—0.000 178

0.000064

0.000 109
—0.000027

0.000039
—0.000018

0.000469
—0.000 129

0.000083
—0.000 105

—0.004 395
0.000 338

—0.000 307
0.000 257

3.2%%uo

—0.2%%uo

—3.1%
—0.3%
—3.3%%uo

0.1%%uo

0.3%
—0.2%
38.7%

—38.6%
1.4%%uo

—2.2%

A

B
C
D
E
F
G
H
I
J
K
L

0.015 535
—0.010662

0.011092
—0.007 690

0.017 882
—0.007 118
—0.008 221

0.000 285
—0.145 235

0.143 914
—0.005 584

0.008 201

—0.000 666
0.002 777

—0.002 378
0.001 682

—0.004 004
0.002 681
0.003 194

—0.000 014
0.004 123

—0.007 413
0.000 828

—0.001 172

—0.015 894
0.008 136

—0.002 474
0.006 636

0.034 611
—0.034 207
—0.002 074

0.002 261

0.001 967
—0.002 737

0.000 880
—0.002 392

—0.001 377
0.002 597
0.000 346

—0.000 258

(b)
—0.000 666

0.002 777
—0.000 830

0.002 340

0.000 823
—0.000 919

0.000 261
—0.000 705

0.001 967
—0.002 737

0.000 641
—0.002 486

—0.013 877
0.007 059

—0.001 542
0.006 480

4.8%
—1.6%%uo

—5.0%
—3.4%%uo

—6.2%
2.0%
4.5%

—0.2%%uo

48.1%
—46.7%

5.8%
—8.0%%uo
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Brandow approach, it is also possible to evaluate the
Feynman diagrams directly if one carries out the energy
integrals numerically instead of with Cauchy*s theorem.
An advantage of this approach, which has been exploited
by the Novosibirsk group, ' is that the important graph
F, can be iterated to all orders relatively easily.

In Tables II and III we present the detailed breakdown
of third-order perturbation theory, firstly in terms of the
Brandow grouping [Tables II(a) and II(b)], and secondly
in terms of the Feynman grouping [Tables III(a) and
III(b)]. Unlike the case of the second-order energy,
where we carried out a calculation with enough partial
waves and a large enough basis set so that numerical er-
ror was under 1%, the complexity of the third-order en-
ergy calculation forces more severe approximations. The
first approximation was to restrict the sum over core
states to the outer, more polarizable states. Specifically,
the 1s, 2s, 2p, 3s, and 3p states were frozen for cesium,
and those states together with the 3d, 4s, 4p, and 4d
states for thallium. This approximation caused less than
a 0.2% shift in the second-order energy. The second was
to limit the sum over angular momentum to six partial
waves for all terms except for graphs E& and E2, which
involve fourfold summations over intermediate states,
and are by far the most computationally demanding part

of the calculation. For these we used five partial waves
for the least strongly bound states and four for the more
deeply bound states. No extrapolation of the tail was
made. This procedure when applied to the second order
energy led to a l~o error for cesium and 2% error for
thallium. Finally, the last ten basis states were not
summed over; this led to a negligible error in the second-
order energy while saving considerable computer time.
We assign an overall numerical error of 3%%uo to the third-
order energies calculated here. The first observation to
make is that the total third-order energy reduces the
theoretical removal energy by a relatively large amount,
contributing —4.0% and —6.2% for cesium and thalli-
um, respectively. Specifically, we find 0.0057 a.u. for
cesium and 0.0140 a.u. for thallium, which actually wor-
sens the agreement with experiment in cesium to from
+1.5% in second order to —2.5% in third order, while
in thallium an improvement from +4.7% in second- or-
der to —1.6% is found. It is obvious that fourth- and
possibly higher-order diagrams must be considered to
achieve the tenth of a percent level; a discussion of higher
orders of MBPT will be given in Sec. III.

A particularly striking feature of the third-order calcu-
lation is the extremely large size of I, and J„I3 and J3,
which however cancel very precisely for cesium and

TABLE III. Third-order Feyman diagram energies in a.u. and percentage of total energy for (a) cesium and (b) thallium. Order-
ings 1-6 as in Eq. (9).

Total

(a)

Fi
F
F3
F4
F
F
F7
Fs
F9
Flo
Fii
F)2
Fl
Fi4

0.005 579
—0.006 375
—0.000 227
—0.000 227

0.000469
0.000 109

—0.004 395
0.000 469
0.005 580

—0.000 868
—0.074 258

0.000 410
0.018 557

—0.000 119

—0.000 344
0.000 363
0.000080
0.000080

—0.000 129
—0.000027

0.000 338
—0.000 129
—0.000 345

0.000 135
0.074 147

—0.000 510
—0.018 519

0.000 155

0.003 362
—0.000510
—0.000178
—0.000380

0.000039
0.000083

—0.000 307
0.000087

—0.000 372
0.000 157

—0.000 975
—0.000 363

0.000 210
0.000092

0.003362
—0.000510
—0.000380
—0.000178

0.000087
0.000083

—0.000 307
0.000039

—0.000 372
0.000 157

—0.000 975
—0.000 363

0.000 210
0.000092

—0.000 260
0.000 045
0.000 311
0.000 064

—0.000 102
—0.000 105

0.000 257
—0.000018

0.000 184
—0.000027

0.001 516
0.000 480

—0.000 306
—0.000 132

—0.000 260
0.000045
0.000 064
0.000 311

—0.000018
—0.000 105

0.000 257
—0.000 102

0.000 184
—0.000 027

0.001 516
0.000480

—0.000 306
—0.000 132

—8.0%%uo

4.9%%uo

0.2%
0.2%

—0.2%
0.0%
2.9%

—0.2%
—3.4%

0.3%%uo

—0.7%
—0.1%

0.1 %%uo

0.0%%uo

F,
F
F3
F4
F,
F6
F7
Fs
F9
Flo
Fii
F12

F14

0.015 535
—0.015 894
—0.000 666
—0.000 666

0.001 967
0.000 823

—0.013 877
0.001 967
0.017 882

—0.004004
—0.145 235

0.004 123
0.034 611

—0.001 377

—0.010662
0.008 136
0.002 777
0.000 277

—0.002 737
—0.000 919

0.007 059
—0.002 737
—0.007 118

0.002 681
0.143 914

—0.007 413
—0.034 207

0.002 597

0.011092
—0.002 378
—0.000 830
—0.002 474

0.000 261
0.000 641

—0.001 542
0.000 880

—0.008 221
0.003 194

—0.005 584
—0.002 074

0.000 828
0.000 346

(b)
0.011092

—0.002 378
—0.002 474
—0.000 830

0.000 880
0.000 641

—0.001 542
0.000 261

—0.008 221
0.003 194

—0.005 584
—0.002 074

0.000 828
0.000 346

—0.007 690
0.001 682
0.006 636
0.002 340

—0.002 392
—0.002 486

0.006 480
—0.000 705

0.000 285
—0.000014

0.008 201
0.002 261

—0.001 172
—0.000 258

—0.007 690
0.001 682
0.002 340
0.006 636

—0.000 705
—0.002 486

0.006480
—0.002 392

0.000 285
—0.000 014

0.008 201
0.002 261

—0.001 172
—0.000 258

—5.2%
4.1%

—3.5%
—3.5%

1.2%
1.7%

—1.4%
1.2%
2.3%

—2.2%
—1.7%

1.3%
0.1%

—0.6%%uo
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somewhat less precisely for thallium. This can be traced
to the Coulomb matrix elements g„b„and g, . When
b =c or r =m, we have the maximum possible overlap of
wave functions, and thus anomalously large matrix ele-
ments. A desirable feature of the use of Feynman dia-
grams is that the cancellation occurs automatically, as I,
and J, are summed in F» [Eq. (9k)] and I3 and J3 in F,3

[Eq. (9m)]. A way of understanding this cancellation is
provided by the following argument, due to the Novosi-
birsk group. ' Starting with terms I, and I3, we note
that the term g„b„reduces after a partial wave expansion
to an angular factor multiplying the radial matrix ele-
ment

Ro(uu, bc) = (b i Vo(vu) ic ), (10)

where Vo(vu) represents the electrostatic potential associ-
ated with the charge density of the valence electron. If
we assume that this potential is a constant (as it is for
r (R if the valence electron charge density can be
modeled by a shell of charge radius R), the summation
over c is eliminated, and the resulting expression is sim-

ply the constant potential multiplying the second-order
core energy. But if we make a similar argument for J&
and J3, the summation over r collapses in the same way,
yielding exactly the same expression with a relative minus
sign, leading to an exact cancellation. Of course, the ac-
tual potential of the valence electron is not exactly con-
stant, so the cancellation is incomplete, as evidenced by
the fact that I +J contributes 0.1% to cesium, and 1.4%
to thallium. Note that similar arguments applied to E„
E2, L„and L2 can explain the relatively small size of
these terms as a result of the vanishing overlaps that
occur in g„,„when the approximation that Vo(uv) is
constant is made.

After the large but canceling terms just discussed, the
largest Goldstone diagrams for cesium are A &, A3 As,
C&, and E, . Note that all these diagrams are perturba-
tions to the dominant second-order Goldstone diagram
a&. From this it is clear that a very important class of
fourth-order diagrams will involve second-order pertur-
bations to a&, a point that will be discussed further in Sec.
III. Note that there is a partial cancellation between E)
and A8. If there were a fundamental reason for this, this
would be extremely important numerically, as by far the
greatest numerical problem in MBPT when finite basis
sets are used is the accurate evaluation of structures like
E&, with the maximum number of excited intermediate
states present. However, it is simple to argue, and we
have explicitly shown by calculation, that this cancella-
tion does not occur in the next order of MBPT, where an
extra "rung" is added to the ladder structure of these dia-
grams. This follows from the sign rules for Goldstone di-
agrams: the factor of (

—1) "",where n„„ is the num-
ber of core lines in the graph, introduces a relative minus
sign between A8, with its two core lines, and E, , with its
single core line. Addition of another rung, however, will
add another core line to A8, but leave E, with a single
core line, leading to an additive rather than cancelling
effect. Thus both diagrams and their higher-order coun-
terparts should not be neglected for high-accuracy work.

Another notable feature of the cesium calculation is
the ordering of the magnitude of diagrams by the number
of "turns" as discussed in Sec. I. The large contributions
explicitly mentioned above have no such turns, and the
terms with two or three turns A 6, 82, 84, 8„86,87, C4,
C6, C7, D4, Ds D6 D7, F2, Gz, H2, I2, I4, J4, K4, and
L4 all contribute at the 0.1% or smaller level with the ex-
ception of I2, which although a 0.3% effect, is almost
completely canceled by J2. Particularly striking is the
very small size of 86 and D6, which involve three turns.
Thus, while empirical, this method of ordering diagrams
in importance by counting how many turns are present
works for both second and third order. It is quite likely
that the only important fourth-order diagrams are those
with zero or one turn.

Table II(a) shows that in the Brandow grouping, there
is no term that does not contribute at least 0.1% of the
experimental removal energy. The situation is only
slightly better for the case of Feynman graphs, presented
in Table III(a). As discussed in Sec. I, the size of these
graphs in second order appeared to be related to the
number of closed electron loops. In this way F, and F~&

would be expected to be most important, followed by the
set F2, F3 =F4, F~, F9, F,2, and F,3, followed by F, =F8,
F&, F~o, and F,~. We see from Table III(a) that the dom-
inant graphs are F, , F2, F7, F9, and F». Thus this or-
dering is only partially successful: while it is true that all
graphs contributing more than 0.5% of the experimental
removal energy have one or two closed electron loops,
there is a wide variation in numerical importance be-
tween graphs with the same number of loops.

At this point we are in a position to make some contact
with the calculation reported in Ref. 5 on energy levels of
cesium. In that work the important graphs F, , F2, F3,
and F4 were treated in all-orders manner. However, the
other graphs calculated here were entirely neglected.
Nevertheless, a final theoretical result in agreement with
experiment at the 0.1% level was obtained. While it is
certainly true that the largest third-order effects are F,
and F2, we see that at the 0.1% level it is necessary to
consider all the other graphs except for F6 and F,4. Par-
ticularly important is the fact that the cancellation be-
tween F7 and F9, which contains the partial cancellation
between A8 and E, discussed previously, is imperfect,
leaving a —0.5% residue. In addition F», which sums
the large I and J terms of opposite signs is again relative-
ly large, —0.7%. This is because while I and J cancel
quite closely, the diagrams K and L, which are also in-
cluded in F», do not. These sum to a —1.2% effect,
which should have seriously spoiled the agreement be-
tween experiment and theory in the approach of Ref. 5.
We thus disagree with the claim of that paper that the
theoretical accuracy of their approach is under 0.3%.
The good agreement obtained is presumably the result of
uncalculated terms of higher-order cancelling the large
third-order terms left out of the calculation.

Turning to thallium, we note that, as was the case in
second order, because of the more significant mixing of
the 6s core state, the argument suppressing turns breaks
down significantly. For example, comparing A

&
and 8, ,
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which are very similar except for B, having a turn, a fac-
tor of 16 suppression of the latter in cesium becomes only
a 1.5 suppression for thallium. Similarly, the Feynman
approach changes so that while F, and F2 are still the
largest effects, almost every other graph contributes on
the order of l%%uo. Therefore there is no substitute with
this atom for the most complete possible calculation.
Nevertheless, while there are no small contributions, nei-
ther are the calculated shifts so large that perturbation
theory could be said to be out of control. What is clear,
however, is that the role of higher orders of perturbation
theory is crucial for accurate calculations of cesium and
thallium, and we now turn to that topic.

(a) (b) (c) (4)

t

I.—~
I

r

III. HIGHER ORDERS OF MBPT

In Ref. 1, the two fourth-order Goldstone diagrams
shown in Figs. 5(a) and 5(b) were calculated. They are
expected to be large, being closely related to the dom-
inant second order diagram a„and having no turns. In
particular, the diagram of Fig. 5(a) is also enhanced by
the presence of the small energy denominator associated
with the line connecting the two self-energy units, which
involves only the energy required to excite the valence
electron. Note that we actually calculate this diagram
along with an infinite set of diagrams with arbitrary num-
bers of self-energy units, which we refer to as "chaining"
of Brueckner orbitals. The contribution of chaining is
denoted by Eao. Figure 5(b) was included as a member
of the "ladder" series, of which a1 is the diagram with
two rungs, E, the diagram with three rungs, and this dia-
gram the member with four rungs. We denote its value
by E~,dd„. The previous results for cesium were
—0.00269 a.u. for Eao and —0.00101(20) for EI,dd„,
which when added to the previous calculations leads to
agreement with experiment at the O. l%%uo level. We have
carried out a similar calculation for thallium with the re-
sult 0.00037 a.u. for Eao and —0.00326(60) a.u. for
E&,dd„, which gives agreement with experiment at the
0.2%%uo level. This is within the 0.3% theoretical error
forced by the very rough calculation of E~,dd«, which re-
stricted the core to 6s, 5d3/2 and 5d~&z, with only three
partial waves included for 6s and two for the 5d states.
The small value of EBO is rather fortuitous, for closer in-
vestigation reveals that it occurs principally because of a
cancellation between the contribution from chaining on
excited lines [as shown in Fig. 5(a)], and the contributions
from chaining on core lines and from associated folded
diagrams. We summarize in Tables IV(a) and IV(b) the
MBPT results calculated in this paper for the ground-
state energies of Cs and Tl.

We would like to stress that inclusion of EBO and
E,',dd«, while successful in getting agreement with experi-
ment at the few tenths of a percent level, in no sense
represents a complete calculation of fourth order. As
with the case of Ref. 5, the good agreement with experi-
ment simply means that the remainder of uncalculated
terms cancel fairly precisely. What is really necessary is
a full ca1culation of higher order terms. We have in the
remaining diagrams of Fig. 5 and in Figs. 6 and 7

FIG. 5. Representative fourth-order Goldstone diagrams
picked up by singles-doubles all-orders methods.

TABLE IV. Behavior of low orders of MBPT for (a) Cs and

(b) T1, in units of a.u. Numbers in parentheses denote numerical
errors.

Order

0th
2nd
3rd
4th {partial)

Energy

(a)
—0.127 37
—0.017 82(2)

0.005 70(17)
—0.003 70( 20)

Accumulated
energy

—0.127 37
—0.145 19(2)
—0.13949{17)
—0.143 19{26)
—0.143 10 (Expt. )

Ot}1

2nd
3rd
4th (partial)

(b)
—0.1997
—0.0353(2)

0.0140(4)
—0.0029(6)

—0.1997
—0.2350(2)
—0.2210(4)
—0.2239{7)
—0.2245 (Expt. )

presented a representative set of Goldstone diagrams that
we consider likely to play an important role in high accu-
racy calculations. As with Figs. 5(a) and 5(b), they are all
perturbations on a, and have no turns. We have already
discussed Fig. 5(c) in Sec. II, and showed that it has the
same sign as Fig. 5(b}, so that the partial cancellation ex-
hibited between their third-order counterparts, A8 and
E, no longer takes place. In fact, for thallium the value
of Fig. 5(c) is —0.0037(5) a.u. , somewhat larger than
E~,dd„. As the inclusion of this diagram leads to
disagreement with experiment at the 1.5%%uo level, we cer-
tainly cannot claim understanding of this atom at the few
tenths of a percent level. In order to reach this level, the
diagrams that cancel this large effect must be identified,
and some method found to justify neglect of uncalculated
diagrams in fourth and higher orders.

The most direct way to approach this problem is to
carry out the procedure of this paper for MBPT through
fourth order. While this is a very large scale task, the in-
creasing algebraic and numerical power of computers
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FIG. 6. Representative fourth-order Goldstone diagrams in-

volving triple excitations.
FIG. 7. Representative fourth-order Goldstone diagrams in-

volving coupled-cluster effects.

make it likely that it can be successfully carried out.
However, the use of all-orders methods provides an alter-
native method of investigation that automatically in-
cludes large classes of fourth-order MBPT, while also

I

summing infinite classes of higher-order terms. As an ex-
ample of such a method, we repeat from Ref. 13 a set of
coupled equations that represent one all-orders method
we refer to as the singles-doubles, or SD method:

( ea em )Pma g Pnbgmban g gbcanpmnbc + X gmbnrpnrab
bn bcn bnr

(ev em +~ u Pmv X Pnagmavn X&abvrpmrab +g gmanrPnrua

(1 la)

(1 lb)
an abr anr

(Eav Emn +~
v )Pmnua gmnua + X gmnrsprsua + X gbcvapmnbc +X Pragnmru + Q Prugmnra

bc

g Pnbgbmav g Pmbgbnua + X gbmrupnrab + g gbnraPmrub
b b br br

(Eab emn Pmnab gmnab+ X gmnrsprsab + g gcdab Pmncd +XPrbgnmra + X Pragmnrb

(1 lc)

rs cd

g Pncg'cmba g Pmcgcnab + g gcmrapnrbc + g gcnrbpmrac (11d)

~EC 2 g gabmnpmnab
abmn

cr cr

u
= X gvamnpmnua + ggabumpmvab + g guaumPma (12)

amn abm ma

These can be obtained fairly directly by applying the Schrodinger equation to the wave function (with the neglect of
the last two terms, which are discussed later),

am abmn amn

I m 1+ —, ~ Pabum«amanaraaabau+ —, Z, P,b,m«ama„a„a, aba,
'

auloC) .
abmnr ahem nr

(13)

By dropping all p terms on the right-hand side of Eq.
(11),a lowest-order expression for p „,b and p „„,can be
obtained, that, when used in Eq. (12) reproduces Eq. (3).
However, when the next iteration is performed, it is
straightforward to show that this method, although it
sums an infinite class of diagrams, misses the complex
conjugate terms in E' ' along with diagrams I and J. On
the other hand, it can also be shown that on the next
iteration, every diagram of Fig. 5 is accounted for by the
SD method. Thus a very complete calculation can be
carried out by solving the above equations, and account-
ing for the missed third-order terms explicitly in pertur-
bation theory.

As is planned to be reported in another publication, '

this very complete calculational method when applied to
cesium still leads to disagreement with experiment by—0.5%. We believe that the graphs of Figs. 6 and 7 are
responsible for this discrepancy. They have to do with
what we call "triples, " and "coupled-cluster" terms, re-
spectively. Figure 6(a} is a self-energy correction to an
internal excited line in the second-order self-energy; be-
cause the second-order self-energy constitutes a relatively
large modification of the DF potential, it is possible that
this effect enters at the several tenths of a percent level.
The reason for the nomenclature "triples" can be seen by
drawing a horizontal line through the middle of the dia-
gram: the associated energy denominator involves the
sum of three excited states. While the SD method cannot
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account for this diagram, it is possible to modify the
method by including the terms in large parentheses in Eq.
(13). When these terms are included, a new equation for
them is obtained, and they enter in addition on the right-
hand sides of the equations for p „and p „„.These
modifications restore the missed third-order terms, and in
fourth order lead to the new contributions shown in Fig.
6. Note that Figs. 6(c) and 6(d) are examples of third-
order diagrams in which a Coulomb interaction has been
replaced by one containing a ring. By analogy with the
efFect on diagram a&, this insertion of rings (to all orders)
may lead to a modification of the strength of the
Coulomb interaction by a factor of about —,', as pointed
out by the Novosibirsk group. In that case, Fig. 6(d)
would enter at over 1%, and Fig. 6(c) at the several
tenths of a percent level. For this reason, if an all-orders
approach is to be used for accurate calculations of cesium
and thallium, we think it essential that triples be account-
ed for in some fashion.

The last diagrams we wish to discuss are the coupled-
cluster diagrams of Fig. 7. These contain quadruple exci-
tations which can be factorized into a product of double
excitations, and can be accounted for by inclusion of non-
linear terms (I/2!) S2, where Sz represents a double exci-
tation. Effects of the nonlinear term S,S2, where S&
represents a single excitation also enter in fourth order:
we expect these terms to enter at the tenth of a percent
level.

The main purpose of this paper has been to exhibit in
detail the workings of MBPT in Brandow and Feynman
form through third order for cesium and thallium. With
regard to the question of just what kind of calculation is
necessary to truly reproduce with high accuracy the spec-
tra of these extremely complex atoms, we consider the
point open. While it is very likely that some sort of all-
orders method will be necessary for this purpose, we be-
lieve that it is of great value to examine as thoroughly as
possible the behavior of MBPT in the first few orders so
as to provide a guide to what an all-orders method picks
up, and what effects it neglects. Regardless of the ap-
parent power or beauty of such a method, if numerically
significant diagrams of low order are missed, any agree-
ment with experiment is clearly fortuitous. It is very like-
ly, however, that any all-orders method that is powerful
enough to account for all the second and third order
terms calculated here, along with the diagrams shown in

I

Figs. 5, 6, and 7, will provide an extremely accurate
method for calculating the properties of these atoms.
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APPENDIX: FEYNMAN DIAGRAM FORMULAS

In this appendix we explain how to derive the formulas
for the energy shifts associated with Fig. 4, and how these
in turn can be related to Goldstone diagrams as done in
Eq. (9). More details can be found in Ref. 4. Consider
the graph F, . Associate a radial variable with each ver-
tex. A photon line connecting points r; and r is associat-
ed with a Coulomb interaction 1/lr, —rj . (Strictly
speaking, we are working in Coulomb gauge and making
the approximation of dropping the transverse part of the
photon propagator: note also we suppress the fine-
structure constant. ) The next step is to assign energies to
each line, conserving energy at each vertex. The initial
electron in our example has energy c,, : we choose to send
off energy co& through the photon line, which leaves the
electron with energy c., —co, . If we choose the radial vari-
ables so that the electron travels from r, to r6 with this
energy, that line is to be associated with the electron
propagator G(r6;r&', s„—co&). While the photon lines car-
ry energy, note that the Coulomb part of their propaga-
tors does not have any dependence on this energy, al-
though the transverse part we are neglecting does. The
photon energy co, is then augmented in our example by
co& carried by one of the electron lines in the first closed
electron loop, which forces the other electron to have en-
ergy co, +co&. The following photon again has energy co„
which is augmented by co3 in the second loop. Each ener-

gy is integrated over with a factor of (
—2m i ) in the

denominator, a factor of yo associated with each vertex, a
factor of (

—1) inserted and a trace taken over each
closed electron loop, and finally all radial variables are to
be integrated over, and the entire expression sandwiched
between g, (r6) and P„(r, ) to get the Feynman integral
for the associated energy shift,

d~, d~2 d~, dr, dr2dr3dr~dr~dr6
F, = . $„(r6)G(r6,r, ;s„—co, )

2n i 2—ni ——2n i .
l r, —

r~ I I r, —r4 I I r, —
r61

~~

X yof, (r) )Tr[G(r~, r4 co/+ co3)yoG(r4, r„co3)yo]Tr[G(r„r~, co, +co2)yoG(r~, r3; co~)yo] . (Al)

The connection with Goldstone diagrams given in Eq.
(9) is obtained either by expressing the Green's functions
using Eq. (6) and directly carrying out the co integrations
with Cauchy's theorem or, more simply, by using a
graphical algorithm in which one generates systematical-
ly all time orderings of a given Feynman diagram. '

Schematically, one associates each photon line of a Feyn-

l

man diagram with a number. One then distorts each dia-
gram thus labeled so that the photon lines are horizontal
and in the 3t=6 possible orderings. The electron lines
will then have a definite orientation, up or down, and the
usual Goldstone rules of associating upward going lines
with excited states and downward with core states can be
applied to give the results of Eq. (9).
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