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We consider the relaxation kinetics for folding intermediate structures in random uncorrelated
RNA chains. Folding patterns correspond to intrachain secondary structures. We make use of a
Monte Carlo simulation that mimics a Markov process to study the refolding dynamics. This is

done to obtain the time-dependent behavior of the activation energies.

We conclude that the

mechanism of relaxation to the equilibrium secondary structure is compatible with the random-
energy model as the thermodynamic limit is approached.

The glassy nature of folded structures in biopolymers
has been emphasized from different perspectives.' ™3
However, an essential ingredient in such views is the
quenched-disorder nature of the interactions' or of the
primary structure itself.>> These assumptions make the
system tractable with tools such as the replica trick, bor-
rowed from the theory of disordered condensed matter.
The two important sources of quenched disorder are (a)
the random distribution of “native” and “non-native”! in-
teractions in polypeptide chains, or (b) the random un-
correlated primary RNA sequence.>® The biological
relevance of such systems is currently subject to intense
scrutiny. Partial theoretical findings for disordered RNA
chains” lead us to the belief that glassy behavior, with a
highly degenerate ground state, holds as the thermo-
dynamic limit is approached. The methods and results on
relaxation kinetics for metastable RNA folding have been
implemented assuming an underlying random uncorrelat-
ed primary sequence. The biological significance of such
an assumption is apparent for biopolymers in gen-
eral.">*3 Recent results by one of us* and by Ptitsyn and
Volkenstein® suggest that naturally occurring biopolymers
might be more “disordered” than one might expect, that
is, the dominance of specific folded forms which are bio-
logically active appears to hold within vast domains in se-
quence space.

The complexity of the RNA backbone allows for the
formation of intrachain secondary structures by means of
Watson-Crick interactions. Most structures relevant to
biological processes such as RNA replication and tran-
scription are metastable or transient.® They are relevant
precisely because their lifetimes are sufficiently long when
compared with the time scales for the enzymatic reactions
involved in their own assembling process. At the same
time, their degree of folding is not maximal, a property
that often renders the structure biologically inert.” An
understanding of the relaxation dynamics for intermediate
folded structures might prove essential to assess the
molecular basis of regulation and control in RNA replica-
tion and transcription.

In this work, we shall make use of a Monte Carlo simu-
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lation that mimics the kinetically governed formation and
dismantling of RNA transient structures.” The tempera-
ture of interest belongs to a neighborhood of the freezing
transition temperature within a “static” random-energy
model (REM).® However, only temperatures above that
leading to the zero entropy phase are considered, since we
are focusing on realistic biological conditions (cf. Ref. 1).
The applicability of the REM will be substantiated in this
paper. The aim of the work is to furnish a thorough char-
acterization of the activation energy landscape, or,
equivalently, of the spectrum of relaxation timescales for
intrachain folding in disordered RNA. Our system consti-
tutes a realization of Sompolinsky’s early scenario con-
cerning the hierarchy of relaxation time scales.’

For the sake of completeness, we shall describe the
Monte Carlo simulation used to obtain the time-depen-
dent probabilities for the transient secondary structures.’
In previous simulations a definite RNA primary sequence
was considered and the refolding events were concomitant
with chain growth due to sequential incorporation of nu-
cleotides. The situation we shall concentrate on in this
work differs in that the primary sequence is randomly gen-
erated, the limit of relatively long chains is explored and
the length of the chain is fixed throughout the simulation.
The simulation mimics a Markov process in which, as new
possibilities for folding arise, previously existing metasta-
ble structures are dismantled to allow for the formation of
the emerging ones. The Markov process is comprised of
two different kinds of elementary events: (a) intrachain
partial helix formation and (b) intrachain helix decay. In
addition, we have incorporated certain features absent in
previous work: the possibility of guanine-thymine (G-T)
and adenine-cytosine (A-C) mispairs and the possibility
of looped-out bases in the process of helix formation. The
transition time for each of the events in the Markov pro-
cess is a Poissonian random variable. If an admissible
helix formation happens to be the event favored, the in-
verse of the mean time for the transition will be given by

t “'=fnexp(—AG0p/RT) , (1)

where f is the kinetic constant for a single base-pair for-
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mation [estimated at 108 s ™!, cf. (Ref. 7)1, n is the num-
ber of base pairs comprising the helix and AGep is the
change in free energy of the set of all loops due to the
folding which leads to the new intrachain stem formation.
The formation of new helices should always be topologi-
cally compatible with the pattern of existing ones in the
sense that no knots can be allowed. This condition has
been given proper combinatorial form, and as such is in-
corporated in the algorithm in a standard manner.

If the chosen elementary event happens to be the intra-
chain helix decay, the inverse mean time is

t “'=fnexp(Gx/RT) , )

where G, is the free energy of the helix.

The entropic contribution of the intrachain loops and
the free-energy terms for partial helices are taken from
the Turner parametrization'® at 37°C. In addition to the
parametrization indicated, we shall impose a realistic
cutoff value in the simulation: the minimum admissible
time span of an intrachain helix is taken to be 5% 10 “ls.
The cutoff adopted is not arbitrary but corresponds to the
minimum lifetime for the most fragile helix which can be
formed involving a G-C pair.

The Markov process is simulated by selecting one of the
two possible elementary events at each stage. The
effective transition time for the chosen elementary event is
a Poissonian random variable with mean k ~! where the
effective rate constant k is given by

F D
k-_Zlkl(i)+ _Zlkz(j). (€))
i=- j=

The subindices 1,2 correspond to events (a) and (b), re-
spectively. The indices i=1,...,F label helices that can
be formed so that they are topologically compatible with
the pattern of existing ones. The latter ones are labeled by
the dummy index j=1,...,D. In order to implement the
simulation, we shall relabel the rate constants as follows:

M
k=Y kp, M=F+D,
m=|]
ki=k Q(1),... kiqi=k(F), 4)

ki+1=k,(1),..., ki+p=k,(D).

This is done in order to find the transition index m at
each stage of the process. Thus, we consider a uniformly
distributed random variable R, 0 < R <k, so that if the
value r of R lies in the interval

m'—1 m'
L km=r= 2 knm, (%)

m=1 m=1
then, the index m' has been chosen. The process has been
repeated 10° times for a random uncorrelated chain of
length N =512, the maximal length considered. The ac-

tual time span for the simulation is 14 min Cray-1S time.

The time-dependent probability U, =U, (¢) for the most
probable secondary structure, n, at time ¢ is readily acces-
sible from our simulations. This is particularly crucial
since the kinetic barriers for interconversion between
metastable secondary structures become also accessible:
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The activation energy for the transition between two
structures is given by

En—=n+1)c|U,*)—Uj+:*)|7%3, 6)

where the prime denotes time derivative and ¢* is the ac-
tual instant when one structure is superseded by another
occurring with a subsequently higher probability. This fit
was found empirically and finds justification in the
statistical-mechanical treatment presented in this work.
The qualitative feature one notices first is that the transi-
tions are initially fast and they slow down as the chain
grows.

In order to prove the existence of an “asymptotically
glassy” behavior, that is, in order to show that the kinetic
barrier between conformational substates presents a spin-
glass-like behavior in the thermodynamic limit, we have
examined the behavior of the logarithm of the “nonergod-
ic” transition time, Thonerg, fOr elementary events which
are either of type (a) or (b), as a function of N4 A
spin-glass-like behavior'! is observed. This is revealed by
the linear plot in Fig. 1, where M =N/ and the preex-
ponential factor is 4 =1.12 s. The minimum transition
time for each chain length, Ty, is the one considered in
the ordinates of Fig. 1. Its logarithm scales with the
length of the chain according to a power law equivalent to
that found in spin glasses for the nonergodic relaxation
times (V being in this case the size of the system). Thus,
for N fixed, the variable T Will be denoted Tronerg.
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FIG. 1. The length dependence of the transition time, Trans
for intrachain helix formation or decay. The variable in the
abscissas is M =N 4, where N is the length of the chain given in
number of nucleotides. The preexponential factor A is fixed at
1.12 s. The straight line is an aid to the eye.
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The scaling law for the lowest possible (nonergodic) ac-
tivation energy is of the form familiar from spin-glass
theory: E, < kg TN /4.

In principle, the relaxation of metastable secondary
structures is completely characterized only if the activa-
tion energy landscape for transitions is fully described.
Thus, the kinetic barrier encountered at any given instant
should be calculated. However, only transitions which
occur within a certain vicinity of the nonergodic time scale
Tnonerg are accessible computationally. That vicinity cor-
responds to the range for the abscissas given in Fig. 2.
Thus, transitions involving vast changes in secondary
structure, with associated time scales of the order of er-
godic times [~ exp(V'?)] are not hitherto accessible.
The time dependence of the (encountered) activation en-
ergies for refolding events is displayed in Fig. 2. The ob-
served dependence of In(T'reiax/A) vs In(t/ Thonerg) may
give some insight into the actual construction of the ener-
gy landscape of an RNA molecule. The most striking
feature is that the plot in Fig. 2 presented in log-log scale
is linear. This gives evidence that activation barriers grow
in the course of folding. This may be explained by assum-
ing that the molecule (or part of it) must first unfold in
the course of the rearrangement in order to refold to a
state with lower energy. Regarding the unfolded state as
a “transition state” enables us to rationalize Fig. 2: The
folding of a structure which is more favorable energetical-
ly (but still intermediate) would require overcoming a
larger energy barrier. The detailed analysis of this mech-
anism of relaxation to equilibrium had been done.® This
activation energy landscape in the range of time scales
considered can be most adequately described in terms of
the REM. Moreover, it had been shown in Ref. 8 that the
energy of a molecule undergoing relaxation to equilibrium
follows the logarithmic law

E(t)=—kpTIn(t/ Tyonerg) - ¢))

This means that under the assumption that the transi-
tion state has the same energy E ™ for transitions between
any two states, the barriers for relaxation E ™ — E will also
follow the logarithmic law as is indeed observed in our nu-

RAPID COMMUNICATIONS

3659

0 1 2

In(t/Tnon"q)

FIG. 2. Logarithmic growth in time of the activation energy
E, for transitions between metastable folded states. The ordi-
nates are equal to E,/ksT. The minimum transition time T'yans
for each given length has been conveniently labeled Tnonerg, to
emphasize the analogy with spin-glass relaxation.

merical study. Thus, the results displayed in Fig. 2 reveal
the validity of REM to treat the relaxation kinetics of
metastable RNA structures.
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