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Heat transport in high-Rayleigh-number convection
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The heat flux (Nusselt number) as a function of Rayleigh number, Nu =0.3Ra't', is deduced

from the presence of a mean flow and the nesting of the thermal boundary layer within the

viscous one. The numerical coe%cients are obtained from those known empirically for turbulent

boundary layers. The consistency of our assumptions as a function of Prandtl number limits this

regime to (10'-10 )Pr' '&Ra((10"—10")Pr'. The Bolgiano-Obukhov k 't' spectrum for the

temperature fluctuations is inconsistent with a simple scaling treatment of the equations.

Recent experiments' on convection in helium of un-

paralleled precision and parameter range have revealed a
new scaling regime with exponents distinct from those ob-
tained from the hypothesis of a marginally stable thermal
boundary layer by Malkus and Howard. Convectively
driven turbulence is sufficiently complex that dimensional
reasoning need not lead to a unique answer and, on the
other hand, the same conclusion can follow from a variety
of assumptions. Thus even though the new Rayleigh num-
ber exponents have already been derived, ' we obtain a
more detailed picture of the flow and additional testable
predictions by making the hypothesis that the heat trans-
port is controlled by a thermal boundary layer itself creat-
ed by the shear flow near the walls. Our analysis is valid
when the entire temperature drop occurs within the
viscous sublayer of the turbulent boundary layer. The
latter is well characterized experimentally, ' and the
desired ratio of viscous to thermal lengths can easily be
achieved by adjusting the Prandtl number; so to observe
the crossover point becomes an interesting experiment.
For the spectra, we find that a buoyancy-dominated re-
gime with exponents different from Kolmogorov's k
cannot be consistently obtained within a simple scaling
analysis for a meaningful range of scales.

The asymptotic properties of the Boussinesq equations
are best extracted by nondimensionalizing with the
thermal diffusivity and cell height, viz. ,

[tl, v+v (Vv) —Vp]/Pr =V v+Ra8z, (la)

a,8+v V8=V'8, (lb)

where Pr is the Prandtl number, Ra the Rayleigh number,
and the scaled temperature 8 equals +' —,

'
on the bottom

and top plates. In these units, the Reynolds number Re is
just the large-scale velocity divided by Pr, or
(U &t -(RePr) . We denote averages over a plane
z =const or the entire volume as & &A v, respectively, and
we assume them to be stationary; if not, an additional
time average can be done.

Several exact relations then follow. By averaging the
heat equation and assuming insulating lateral boundaries
we find that the vertical heat flux or Nusselt number Nu,
is independent of z and is related to the thermal dissipa-

tion

Nu-=&v, 8&„—a, &8&, =&(V8)'&, ,

where the second equality comes from the 8|),8 equation.
Because the flow is entirely buoyancy driven, averaging
the equation for the total energy (v /2 —z8Ra Pr) yields

&(V.)') =(Nu —1)Ra. (3)

It should be emphasized that the physical velocity and
temperature boundary conditions are used and nothing is
assumed about a mean flow that may be present in spite of
the averaging.

The logic of our argument below is to relate the heat
flux to the rate of shear in the viscous boundary layer, i.e.,
Nu(Re), and then use standard turbulent boundary layer
theory in conjunction with the dissipation equation (3) to
yield Re(Ra) and Nu(Ra).

An important aspect of the high-Ra experiments of
Refs. 1 and 2 was a persistent mean flow, which
sufficiently close to the horizontal plates can be approxi-
mated by a linear profile u„=z/z with 0~z((1 and

u, -o(zu„).s's If the entire temperature drop occurs
within this range, which will always be true for large
enough Pr, (lb) becomes

(z/r)a„8 =a.'8 (4a)

0.269I(z/(rx)' ), with I the integral of
exp( —

g /9) and 1(0)=0. As a practical matter, we
define the thermal boundary thickness z,h to be whene-0.02 —0.05 or when the argument of I is 2.5 —2 for
x-1. Then computing the Nusselt number and assuming
an aspect ratio 1 cell,

&v~& =u, [2.51n(z/z, )+6.0] (Sa)

with z+ =Pr/u+, and where the characteristic velocity u+

Nu-1. 0/z, h- r

Observations also indicate that the flow in the cell is
turbulent so we find r by matching to the empirically
verified scaling relations for a turbulent boundary layer.
The mean velocity is given by
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is related to the large-scale Reynolds number by

u» Pr Re/[2. 5 ln(Re) +6.0] . (5b)

The logarithmic velocity profile matches onto the viscous-
buffer sublayer, 0 (z (z,„

&v)g =u, z/z» (5c)

at z = z,, - (7-12)z,.
Since we already have Nu(Re), to find the Rayleigh

number dependence we will exploit (3) by inserting the
kinetic-energy dissipation estimated as in turbulent shear
flow in pipes or channels

Pr((Vv) ') —100u ' . (6)

The numerical coefficient in (6) is somewhat arbitrarily
taken to be marginally larger than the contribution for the
viscous layer (Sc) alone, -z,, u»/z», times 6 walls. We
combine (3) and (6) to obtain NuRa-100u»3/Pr and

then eliminate u» using (4b), Nu- (u»z/Pr) 'i, to yield

Nu-0. 27Pr ' 'Ra' ' (7a)

Re -0.14Pr Ra [2.5 ln(Re) +6.0] . (7b)

The leading Ra dependence in (7a) and (7b) was pro-

posed in Ref. 1 on the basis of purely dimensional argu-

ments that did not take specific account of the mean flow.

While experiment seems to rule out logarithms in Nu as in

(7a), the fit, Re-0.31 Ra involves an exponent

larger than 7 which is plausibly accounted for by the log-

arithms in (7b). Our numerical prefactors are also

reasonable (N.B. Nu 0.25Ra i from Ref. 1). The con-

tainer shape enters the energy balance equation as a nu-

merical factor which has a nonzero limit for large aspect
ratios L, whereas Nu(Re)-L 'i. For L»1, 7(a) and

7(b) acquire factors of L i, L 'i, respectively.
Note that a correction has to be made following (Sa) to

the experimental Reynolds number since it is defined us-

ing the velocity close to the wall rather than the maximum
velocity which is assumed to occur at z-I in (Sa)-(5c).
In the numerical estimates below we use the experimental
values of Nu(Ra) and Re(Ra).

The upper limit to the validity of (7) follows from the
condition that the thermal boundary layer equals the
viscous one, namely, z, q = Nu ' = (7-12)z». A solution
must occur with increasing Ra since z~ decreases more
rapidly than z, q at fixed Pr. The lower limit of validity is

just the condition that Re & 2 x 10 to create sufficient tur-
bulence. We therefore have

5x10 Pr (Ra & (10' -5x10' )Pr (8)
The quoted spread in the upper limit is large because
z,q/z» -Ra' and came solely from the ambiguity in

defining the viscous layer. It should be further increased
by the uncertainty in ztpNu.

Within the "logarithmic region" (5c), the mean tem-
perature follows a similar law, (8)~ —(Nu/u» )
x in(z/z» ), suggestiny a bulk temperature scale of
Nuln(u»)/u»-Ra ' ln(Ra). This accords well with

an estimate based on factoring the expression (v, e)~ for
Nu and assuming (v )'i -RePr as done in Ref. 1.
Therefore, the temperature drop across each boundary is

bv (r)-./3r ii',

be(r) -s,'"s, '"r '",
where the kinetic-energy dissipation ex-u» in our units
and the temperature dissipation ae in the interior is
bounded accordin to (2) by Nu. For r-l, (9) predicts
b8&(Nu/RePr)' which is marginally larger than the
be correlated with v, which we estimated above as
Nu/RePr. We prefer to use Nu/RePr for be(r-1)
which we can reconcile with (2) by the assumption that
((Ve)'), is mostly accounted for by the thermal bound-

ary layer. We, therefore, readjust ae downward to
Nu /RePr). Finally, we have r '(b'v) /(RaPrb8)-r i ) I justifying our neglect of buoyancy on all but
the largest scale. [Using (2) for ae would add a factor of
Ra' ' to the left-hand side of this inequality which com-
bined perhaps with logarithms and numerical factors
could open up a small range of scales where buoyancy is

dominant. ]
Motivated by experiment, an alternative scaling for

bv, be has been proposed"' that we will now show is in-

consistent with the Boussinesq equations within the
confines of a theory that allows only a single velocity and
temperature scale. Imagine balancing (la) and (Ib) in

such a way that the buoyancy is always important and 6
cascades,

bv (r)/r —be(r)RaPr, (loa)

bv (r)be'(r)/r —~, (10b)

—,
' —0(Ra 'i ), verifying an earlier assumption made in

deriving (4b).
Since our thermal boundary is thicker than the Malkus-

Howard limit, its stability must be considered. As first
noted in Ref. 1, shear should suppress rolls perpendicular
to itself but we disagree with the estimates given there.
Specifically, one should perturb around solutions to (4a)
not 8= —z. By scaling the boundary layer equations
with z, one finds an effective Rayleigh number
Ra& ~ Ra-10 Pr Ra ((10 where we set Re
-0.5x10 in the ln terms of (Sa) and took Re(Ra) from
(7). If the mean flow were absolutely steady, which is
probably untrue, then Gorter-like vortices could form
parallel to the shear when RaN-z~qRa-Ra'i exceeds
10 .

The reader may note that no specific reference to
thermal plumes was made in deriving (7a) and (7b) and
none is necessary. ' The heat flux was calculated from
the diffusive term very close to the wall where buoyancy is
immaterial, and we never had to inquire how the tempera-
ture is transported in the bulk. Buoyancy clearly drives
the mean flow but should not alter Eqs. (4)-(6) as we dis-
cuss in more detail below.

For buoyancy-driven turbulence it is instructive to ex-
plicitly evaluate the constants in the Kolmogorov k
spectrum for the velocity and the analogous spectra for
the temperature, assumed passive. 5's One will then find
consistency in that the Rae term in (la) equals
(v Vv)/Pr only on the largest scales. Specifically if typi-
cal isotropic fluctuations over a scale r are denoted by b,
then
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which imply'3

bv —( RaPr)' r

b8-[88/(RaPr)]' r'

provided r is larger than a diffusive cutoff,

rb —(Ra Pr se)

(1 ia)

(1 1c)

where 8 variance is destroyed by diffusion at a rate of ae.
The kinetic-energy dissipation from (1 la) is just
&(Vv) )i -RaPr~~ which is inconsistent with (3) (for
reasonable Pr), hence (10) forces the velocity to fall ofl'

too rapidly to dissipate sufficient energy in the bulk.
If one assumes (10a) is violated for r (ri, and bv -r '

so as to allow for sufficient dissipation, then the incon-
sistency of (1) and (1 la) can be demonstrated directly for
r) rb by following the von Karman-Howarth analysis.
Using only homogeneity and stationarity one finds from
(i),

Ra Pr&v, (r)8(0))v+Pr&V v; (r) v; (0))v.

Bv (r)-RaPrNur, (i3)

which agrees with (9) and not (1 la). Actually, to achieve
homogeneity we should only average (12) in the center of
the cell, but the lateral boundary layers carry a heat flux
-u+z~ &&Nu. If the mean flow is included, it mixes with
v in (12) only as a strain rate which is small compared
with bv/r.

One could imagine an anisotropic scaling with
bv, -r~f(z/r&), a & 1, J x,y, and similar equations
for Bv& and 88. One can satisfy (10b) and (13) with z
replacing r, and incompressibility, but (12) has to be
resolved into J and z components. A pressure term then
appears which forces isotropy. Kolmo~orov scaling pre-
dicts a correction exponent Err -aj k ~ [1+0(S/
sg k ~ )] due to a large scale strain S but no new leading
exponents.

Experiments " have revealed a ro ~ regime in the
scalar spectrum [i.e., (lib) if k-co], beginning at the
largest scales and extending a factor of -30 in scale size
irrespective of Ra. Although advection by the large scales
is always the dominant frequency for a given k, in the ab-
sence of a large mean flow the two are not proportional

(i2)

Isotropy implies that the left-hand side can be expressed
as the r derivative of &[r" [v(r) —v(0)]] i) and thus
bv tr)//r within our scaling theory. The v, -8 correlation
on the right is just Nu for r 0 and only deviates from Nu
for r-O(1) since under all estimates the heat is carried
predominantly by the largest scales. Where the last term
balances the second, defines the dissipation scale, and thus
for larger r

since the integral of the energy spectrum up to k serves as
the eff'ective advection velocity. The actual wave-number
spectrum will, therefore, be steeper than the measured
frequency spectrum.

Another possible aspect of these experiments and a long
outstanding violation of Kolmogorov scaling for a passive
scalar is the nonzero skewness seen in shear flows right
down to dissipative scales (Fig. 25, Ref. 14). Interestingly
enough, the longitudinal structure functions for the tem-
perature (Fig. 18, Ref. 14) exhibits a limited regime of
scaling with a —1.5 exponent followed by something
steeper not unlike those of Refs. 2 and 11. Presumably
both the skewness and discrepancy with (9) are due to the
ejection of large temperature gradients from the boundary
layer by the turbulent bursts. Cleary buoyancy can only
enhance the ejection of scalar variance, but once outside
of the boundary layers, the spectrum in Refs. 2 and 11
seems insensitive to the distance from the walls. There-
fore, while we reject the arguments leading to (1 lb) the
alternatives need to be quantified.

It remains a significant open problem to show directly
from (la) and (lb) that a mean flow exists. " An analogy
might be drawn with the Pr ~ limit, where zih&& a
viscous length as here, and there is a single velocity
mode. One could also envisage calculating a laminar
large scale flow from the Boussinesq equations with a tur-
bulent eddy dampiny -z Re and a virtual bulk tempera-
ture drop -Ra '~. The effective Rayleigh number is
RaT-RaRa ' '/Re'-O(1) suggesting that a single
mode might be consistent. The turbulent "medium" could
also be likened to convection between insulating plates
where the heat flux but not the temperature is prescribed
and convection occurs at onset in a single large cell.

When the boundary layers cross around the maximum
Ra in (8), the bulk temperature drop becomes
1 —O(lnRe) '

by virtue of the mixing length expres-
sions &8&~ —

2
—(Nu/ug)ln(z/zg) and zih/zg-O(l)

written with respect to the bottom plate. Even if the mean
flow disappears, large eddies will generate a shear and es-
timating Nu(Re)-M~/~lnz~) from &8)~(z —1)-0 and
using (3), one finds Nu-Ra'~ Pr'~/(InRe)'. Although
we have assumed a passive scalar, buoyancy should not
decrease Nu, and there is a rigorous numerical upper
bound' on Nu/Ra' suggesting that buoyancy acts like a
generic large scale force.

Finally, note that the strong Pr dependence in (8)
should facilitate experimental verification of our predic-
tions. In particular the Rayleigh number range of the —',
regime will be much reduced in mercury.
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