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A problem with the quasistatic mean-field equations for branchless difusion-limited aggregation,
which were given and solved by Cates [Phys. Rev. A 34, 5007 (1986)], is pointed out and resolved.
In particular, it is shown that the exponent y describing the time dependence of the growing aggre-
gate (which was set infinite by Cates) equals

2
on the mean-field level. An approximate analytical

solution to the full mean-field equations is presented and compared with its numerically exact coun-
terpart. Properties of the aggregate boundary as described by the exact solution are derived analyti-
cally. It is shown that scaling of the aggregate density at all times implies that the random-walker
density cannot satisfy simple constant (nonzero) density or Aux boundary conditions at infinity.

Since the invention of the Witten-Sander model' for
diffusion-limited aggregation (DLA) it has become clear
that, despite their simplicity in conception, nontrivial
analytical statements about growth models of this kind
are not easily obtained. To supplement the few available
rigorous or "almost" exact results with further informa-
tion, one has to have recourse to rather strong approxi-
mations, such as mean-field equations for continuous den-
sity versions of the model, " shape hypotheses, ' or
simplifications of the model itself. '

One of these simplifications is branchless DLA, where
growth proceeds by aggregation of diffusing particles at
the tips of existing clusters only. Thus the ensuing aggre-
gate is a forest of growing needles. The model neglects
one of the aspects leading to the tenuous structure of
DLA —branching —but exhibits in detail another —the
competition of growing "trees" for the incoming random
walkers and the accompanying growth instability. Non-
trivial scaling was found in numerical simulations. '

Recently, an exact solution to the quasistatic version of
the mean-field equations for branchless DLA on a Hat

substrate was reported by Cates. ' The purpose of this
Comment is to point out and remedy a deficiency of this
approach. In the course, the arbitrariness regarding the
definition of time that is implicit in Cates s analysis and

kept one of the scaling exponents indeterminate will be
removed, allowing its calculation. An approximate solu-
tion preserving some features of the one presented by
Cates and an exact scaling solution are given. These two
solutions essentially exhaust the generic behavior of all

physical solutions exhibiting a scaling aggregate density,
which allows certain conclusions regarding the boundary
conditions needed to obtain scaling.

The equations to be discussed are
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u(r, t)=ls[2r —((t)], r ~g(t)
where g(t) =e"'lA. . p ( )0) is fixed by the boundary con-
dition at infinity [p= —,'(Bu/t)r)~„„], A, by the value of
g(0).

Let us now calculate Bp jdt and Bu /Bt at the maximum
needle height g(t)( —0). Froin the result
dp/dt =2pg '(t), t)u IBt = —p g(t) we conclude that
(c)p/t)t( « )t)u /dt

~
after times larger than

t ' = ln(2A, Ip ) /2p. Therefore t)u /t)t is not generally
negligible in (lb). Even if the time t, up to which it can

Herein, the density p(r, t) of the aggregate is proportional
to the number of needles having heights greater than r at
time t. u (r, t) is the density of random walkers. Time t
and coordinate r have been appropriately rescaled so as
to make the absorption rate factor in (la) as well as the
diffusion constant in (lb) equal to 1. Equation (la) be-
comes obvious as soon as one realizes that the density of
absorbing needle tips p„ is given by' p„„= t)p/t)r-
Equation (lbI is just the continuity equation. As usual,
Cates neglects t)u /dt, thus introducing a quasistatic lim-
it. ' He then derives a piecewise exact solution of these
equations via a scaling ansatz p(r, t)=r 'f(r/e"') with
o', =1:
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be neglected for r ~ g(t), is large (because )Lt is small or A,

large), Bu/Bt should not be considered negligible at all
for r &g(t), where Bp/Bt =0. In short, the quasistatic
limit becomes inaccurate in that region.

Consider now the (generalized) scaling ansatz
p(r, t)=po+r f (rlt«). Denoting the scaling variable
r/t«by x, we have Bp/Bt =r ' «f, (x),
"dplBr =r fz(x), which together with (la) implies

u=r' '"-g(x), au/at=r' 2«g, (x),
d'u/dr'=r ' '"g, (x) .

Insertion into (lb) leads to

1F(x)=a exp J dz
26(z) —z

(7a)

G (x)= b exp[ —~ (x' —x', )]

+ I"d. -p[ —,'(—x —z )][c ,'z—F—(z)], (7b)

where a, 6, and c are constants of integration.
Since F(x)=0 solves the first of these equations, the

second provides an explicit solution in this case. Impos-
ing continuity and difFerentiability at x =1/A, , we can
match the exact solution for x ~ 1/A. to the approximate
one for x ~ 1/A, and get

r ' "«f,(x)+ r ' "«g, (x)= r ' "«g, (x) . (3)

[G (x) yx JF'(x) =—yF (x), (4a)

xF(x)= —6"(x)—y x i&« —iG(x)
QX

(4b)

Neglecting Bu/Bt in (lb) would now correspond to drop-
ping the 6 (x) term in (4b). A solution can then be found
that is formally very similar to the one given in Ref. 10:

F(x)=——2A, , 6(x)=yeux, x &—1 (Sa)

F(x)=0, G(x)=2yx ——,x &r
(Sb)

Introducing the aggregate height Pt) =t«lk and com-
puting again BplBt and Bu/Bt, we find

Bt
(g(t) —O, t)= y(y+—1) t' '—

Bp
Bt

(g(t) —O, t)=2yk, t

(6a)

(6b)

which shows that y= —,
' is a marginal exponent: for

larger values of y, Bu /Bt is not negligible inside the ag-
gregate in comparison with Bp/Bt; for y= —,', Bu/Bt is
negligible at all times, if only A. is large enough; for small-
er y values, Bu /Bt is always asymptotically negligible.

Hence, for y =
—,', Eq. (5a) together with the scaling an-

satz qualifies as an approximate solution to the full
mean-field equations inside the aggregate. However, Eq.
(Sb)—predicting u (r, t)~ ao for r ~ao —is not even
qualitatively correct outside the aggregate, as will be seen
in the following. Equations (4) may be rewritten as a set
of integral equations, which for y

=
—,', read

From (3) we immediately obtain the exponents a =1,
y= —,'. Note that by neglecting the second term on the
left-hand side of (3), which is Bu/Bt, one renders y in-
determinate. This corresponds to the arbitrariness in the
definition of time as stated by Cates, ' who then chose
y = ~ in order to obtain constant flux boundary condi-
tions. Once the g, (x) term in (3) is neglected, the set of
(nonlinear) differential equations for the scaling functions
following from (3) can be solved for arbitrary y (see
below).

Introducing F(x)=x 'f(x) and 6(x)=x' ' «g(x)
[hence p(r, t)=po+t «F(x), u(r, t)=t« 'G(x)] we ob-
tain a set of ordinary differential equations:

1 1 2 16 (x)= exp ——x—
2A, 4

+ 1+ I dz exp[ —
—,'(x —z )] .

4A,
' (8)

Using (5a) and (8), we find that a decent approximation to
a scaling solution of Eqs. (1) should be given by

p(r, t)=pc+2[r ' —
g '(t)], r ~ g(t)

u(r, t)= ,'r t 'g '—(t), r Pt)

p(r, t) =pc, r & g(t)
2

(9a)

(9b)

(9c)

u(r, t)= t '+ g(t)
2t

dz exp — (r —z )—z

g(t) 4t

+ exp — [r g(—t) ],—r &g(t)Pt)
2t 4t

(9d)

where g(t)=t'«2/k. Figure 1 displays this solution for
several finite times and at t = ~. To assess its quality,
the scaling functions are compared with numerically ex-
act solutions of the system (4) in Figs. 2 and 3. The
boundary conditions have been chosen such that the solu-
tion coincides with (Sa) at a small positive value x =e
[i.e., x, =x2=e, a =2/e —2A, , b =

—,'A,e, and c =1+—,'A, e
in (7)]. Comparison of Figs. (2a) and (2b) shows that the
agreement between approximate and exact solutions im-
proves with increasing A, , as anticipated, and is already
very good for k=2. Even for A, =1, an appreciable
difFerence between the aggregate densities of the exact
and the approximate solutions appears only close to the
interface separating the regions with and without aggre-
gate. The solution (9) tends to the exact infinite time lim-
it p(r, t)=po+2lr, u (r, t)=0 [Eqs. (4) are solved exactly
by F(x)= A /x, 6(x)=0]. Comparing (2) with (9) we see
that the former result provides quite an acceptable repre-
sentation of the spatial dependence of the aggregate den-
sity (but not of its time dependence) and even correctly
reproduces the infinite time limit. However, if a solution
is to ever become a reasonable starting point of a pertur-
bative expansion in a noise term, " it should also well ap-
proximate the diffusion field, which is only done by the
new solution.

The exact solution to the full mean-field equations
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space-time domain at best. In particular, the description
becomes invalid for r ~~. Equation (12) might describe
a finite system into which a constant particle Aux is fed
from one side, or else a transient scaling state (in a finite
domain) of an essentially nonscaling solution of (1).
Therefore also this somewhat pathologic solution does
not allow for simple boundary conditions. It is asymptot-
ically stable, and all negative solutions with F'(x) &0 and
G (x ) & —,

' x converge to it, unless G (x ) manages to cross
the line y =

—,'x, in which case F(x)~0 and G(x)~0 for
x~ 00.

Hence, for positive physical solutions [which have
F'(x) &0] the density of random walkers decays to zero
at infinity, while negative solutions become unphysical at
large r. Only for special initial distributions of walkers
(given at a time slightly larger than t =0), can one expect
scaling behavior. This seems at odds with numerical
simulations which show (nontrivial) density scaling until
a single needle survives. The reason is presumably that
simulations of the model operate in the zero-density
limit —a new random walker is started only after the last
one has aggregated. This limit is not well represented for
all times by the mean-field equations (1). Rather one
would have to consider a sequence of mean-field descrip-
tions with decreasing initial densities u (r, to) at increas-
ing aggregate sizes. In the simulation of a Pnite density-
system with u (r, t) approaching a constant value at
infinity, one would expect that at large times, a stationary
state evolves which consists of an array of needles
separated by roughly the diffusion length I and growing
at constant velocity and constant density —1/l" '. This
means that the density would no longer scale. However,
the height g(t) of the aggregate would scale as g(t)-t and
should, if there is a region of density scaling, show a
crossover froin an exponent y &1 ( —,

' in mean-field ap-
proxiination) at small times to y =1 at large times. In the
light of these considerations, it seems interesting to simu-
late the branchless model with finite walker densities to
find out, to what extent scaling properties survive under,
e.g. , constant density boundary conditions.

F(x)= —x, G(x)=x,
leading to

r r
p(r, t) =po ——, u (r, t)=— (12)

Because the result for p(r, t) is not bounded from below, it
can represent a physical solution to (1) in a limited

To summarize, the solutions constructed to agree with
(5a) for x ~0 fall into two classes. For A, & I,„there is no
(sharp) aggregate boundary, i.e., xo does not exist. These
solutions correspond to a situation where arbitrarily high
needles are already present in the initial aggregate —a
case that is not considered in simulations. For A, ) A,, an
interface exists at xo. Contrary to what is suggested by
the approximate solution (9), the aggregate density does
not rise sharply with a finite slope there, but increases
smoothly in the way discussed above.

If instead of F(e)=2/e —2A, , one requires
F(e)= 3/e 2k [m—otivated by the existence of an exact
solution with F(x)= A /x], the situation is a little
different. Equation (10) is then replaced with

xo =22 —2 —2/p, which for A )2 allows solutions with
p& 1. These solutions actually cross the x axis at xo and
continuing them by F(x)=0 would render F'(x) discon-
tinuous. For 3 (2, the foregoing discussion still applies,
but the maximum value for xo is decreased and the
minimum value for P increased. For A &1, there are
only solutions with a diffuse interface.

As r ~ ao, u (r, t) goes to zero or, equivalently,
lim„„G(x)=0. It can be shown rigorously that this

property holds for all solutions with F(x ) )0 and
G(x) & —,x initially. This ineans that there is no physical
scaling solution with pc =0 that satisfies simple, i.e., either
constant density (%0) or constant flux boundary condi-
tions at infinity.

However, our generalized scaling ansatz admits the
possibility of negative F(x) as long as pot' & F(x). —
An exact solution to (4) (with y =

—,
'

) is
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