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Information-theory approach to the variable-mass harmonic oscillator
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A careful analysis of the well-known Kanai-Caldirola Hamiltonian yields rather surprising results
concerning its physical origin. Recourse to the maximum entropy principle sheds some light re-
garding the meaning of the equivalence between di8'erent Lagrangians and/or Hamiltonians.

I. INTRODUCTION

During the last forty years, there have been numerous
attempts to quantify dissipative forces, as experimental
evidence of the presence of dissipation in several micro-
scopic processes has been repeatedly found. ' In spite of
the fact that several techniques have been used to achieve
that purpose, a unanimously accepted approach for quan-
tifying dissipative systems has not been found so far.
Different methods have been proposed. ' In the present
work we intend to investigate, using the information-
theory approach, some features of one of these methods,
on which there is a great amount of literature (see Refs. 4
and 5 and references therein): the use of a time-
dependent Hamiltonian.

Idealizing the system that undergoes dissipation as a
harmonic oscillator, the kind of Hamiltonian that would
describe it, first proposed by Kanai, adopts the following
form:

with

p e
—at+ 1 m eatco2q2

2mmo

[q,p]=i% . (1.7)

The commutator given by Eq. (1.7) occurs due to the
fact that q and p are conjugate canonical variables and
that the Dirac quantization method is used. Working in
the Schrodinger picture, one can use the generalized
Ehrenfest theorem (Ref. 17) and, in terms of its matrix G,
the mean values of the position and momentum operators
(q) and (P ) result,

(1.8)

variables q and p into the quantum operators q and p, one
obtains

2

H(t) = + ,'rn (t)cooq-
2m (t)

where

m(t)=moe ' (a)0) . (1.2)

—(p) = —m, e "co,'&q) .

From Eq. (1.8) one obtains

(p)=m e '—&q),at d
dt

(1.9)

(1.10)
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are due to the fact that this Hamiltonian leads to the
equation of motion

Some peculiarities of this model have been either widely
criticized or misunderstood. ' ' ' The numerous at-
tempts to apparently obtain the correct quantization of
the damped harmonic oscillator, starting from the Hamil-
tonian

instead of the oiechanical momentum usually considered
to be the pertinent one for the problem at hand, i.e.,

(p„)=m,—&q& .
d

We should mention that this feature of the operator p ap-
pears also in the corresponding classical treatment.

Using the same procedure as in Eqs. (1.8) and (1.9), one
obtains

q+nq+o)oq =0, (1.4)
d 2 e—&q'&= '

&0P+pq&
dt mo

(1.12)

which is actually the equation of motion of a damped
harmonic oscillator. Several difficulties emerge when one
uses the Hamiltonian (1.3) or, equivalently, the Lagrang-
ian and

—&p') = m, e 'coo2(&p+pq—),~2 at (1.13)

L, e ( moq —mocooq
at 1 ~ 2 ] 2 2 (1.5) bqbp ~ —.

2
(1.14)

in trying to quantify the system under study:
(a) One of the first problems to be observed is related to

the apparent violation of Heisenberg s uncertainty princi-
ple. On quantifying Eq. (1.3) by changing the dynamical

On the other hand, for pk one finds that

b qbPk =hQh(e p ) =e 'b "qbP ~ e '—, (1.15)
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which implies

b,gbp„ (1.16)

which indicates that a simultaneous accurate measure-
ment is not possible for the operators g and p due to Eq.
(1.7), but it could be possible for q and p„since

%hen considering the measurement process at a quan-
tum level, it was not clear whether the quantity measured
was the mechanical momentum or the generalized
momentum, although this ambiguity vanishes when one
carefully examines the real physical meaning of the Ham-
iltonian given by Eq. (1.3}, as we will see in subsequent
sections.

There were also some attempts to add a stochastic
force to the Lagrangian [see Eq. (1.5)) or equivalently to
the Hamiltonian [see Eq. (1.6)). The efFect of this sto-
chastic force was to allow for an uncertainty principle to
hold for g and Pk.

(b) Another problem that has been pointed out is that
the Hamiltonian given by Eq. (1.6) is not the energy
operator. This problem already appears at the classical
level, as the energy should be defined according to's

E e
—at (1.19)

With the choice of Eq. (1.19), one obtains the "correct"
rate of energy dissipation, namely,

dt
= —amoq (1.20)

However, in the quantum approach, this energy steadi-
ly decreases (to zero). In a correct treatment, one would
expect the decay to stop at the ground state of the oscilla-
tor. This is due to the fact that, notwithstanding the time
dependence of this Hamiltonian, there is a minimum en-
ergy compatible with the uncertainty principle (see Ref.
3).

It is interesting to isolate the fact that makes the Harn-
iltonian given by Eq. (1.3) ( or its quantum equivalent
[Eq. (1.6}])not equivalent to the energy operator. It can
be demonstrated that Eq. (1.3) oscillates without dissipa-
tion. ' In Sec. II, we shall see that this feature, far from
being an obstacle, constitutes a signature of the actual na-
ture of the system to be quantified.

(c) Finally, we mention a well-known alternative ap-
proach that consists in considering the Lagrangian given
by Eq. (1.5), or equivalently the Hamiltonian given by Eq.
(1.3), as corresponding to a harmonic oscillator with vari-
able mass. According to this approach, there is no con-
tradiction, at a classical level, in considering that Eq.
(1.5) or Eq. (1.3) represents a damped harmonic oscillator

The result given by Eq. (1.16) was first interpreted as a
violation of the uncertainty principle. ' ' ' At a later
time ' a different interpretation of this situation was
given in terms of a more general mathematical version of
the uncertainty principle, namely,

(1.17)

II. VARIABLE-MASS HARMONIC OSCILLATORS

A. Variable-mass harmonic-oscillator description
in the Newtonian framework

According to Newton's mechanics, one describes a sys-
tem consisting of a harmonic oscillator with variable
mass by defining the momentum as

p (t) =m (t)q(t) . (2.1)

Recourse to Newton's second law of motion and to a

as well as a harmonic oscillator with variable mass.
However, the problem appears at a quantum level, where
the Hamiltonian given by Eq. (1.6) would represent just a
harmonic oscillator with variable mass. The peculiar
features that were observed in Eq. (1.6) when this Hamil-
tonian was misinterpreted as a harmonic oscillator sub-
ject to a damping force are to be reconsidered. In this
sense, if Eq. (1.6) actually represents a harmonic oscilla-
tor with variable mass, the canonical momentum [see Eq.
(1.10)] would be the usual mechanical momentum. No
contradictions ensue concerning the validity of the uncer-
tainty principle since the inequality given by Eq. (1.14)
holds and refers to the position and the (usual) mechani-
cal momentum of the particle. However, the problem of
the definition of the energy still remains since, if one
identifies the Hamiltonian with the energy, it oscillates
without dissipation, and if, on the contrary, one identifies
Eq. (1.19) with the energy, it steadily decreases towards
zero.

It is the intention of the present work to shed some
light upon the fact that the Lagrangian given by Eq. (1.5)
[the Hamiltonian given by Eq. (1.3)] represents neither a
damped harmonic oscillator nor a harmonic oscillator
with variable mass, and that, consequently, the con-
clusions that can be drawn in this sense from the Hamil-
tonian given by Eq. (1.6) are incorrect Besi.des, it should
be noted that these consequences are not a result of the
quantization procedure itself but of the special features of
the problem at hand, even at the classical level, having to
do with the method with which the Lagrangian given by
Eq. (1.5) is obtained.

%hat we want to make conspicuous is the fact that the
Kanai-Caldirola Hamiltonian does not describe the
damped harmonic oscillator (Ref. 6) and that there does
not exist any violation of the uncertainty princi-
ple, ' ' ' ' ' ' or problems with the identification of
the energy operator. ' ""' Moreover, we find that
the reinterpretation of the Kanai-Caldirola Hamiltonian
as corresponding to a variable-mass oscillator is wrong.

It is important to emphasize the fact that this model,
employed by many authors in the past, does not actually
correspond to the problem to be solved. One should not
try to apply it without carefully dealing with the problem
of quantifying dissipation.

The paper is organized as follows: In Sec. II we ana-
lyze the problem from the Newtonian, Lagrangian, and
Hamiltonian viewpoints. In Sec. III we show an alterna-
tive approach through information-theory techniques.
Finally, in Sec. IV, the conclusions are drawn.
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kq+aq+ e 'q =0 .
mp

(2.2)

The solutions of Eq. (2.2) have been studied in Ref. 10.
According to this reference, the solution would be

2')p
q (t) =exp( —at/2) AJ, exp( at—/2)

2cop+BI', exp( a—t/2)

Hooke's-type force —kq, the particular choice of
m(t)=moe ', leads to

Eq. (2.6), which implies that a time-dependent mass
makes the system a nonconservative one, though the
forces acting on the particle are conservative. This
feature may be related to the fact that a system with a
time-dependent mass should be considered as an open
system. Thus, if one wants to study the evolution of

—,'m(t)[q(t)]'+ —,'k [q(t)]',

one finds that, with the particular choice rn(t)=moe ',

the quantity T + V decreases.
(b) If k =m(t)coo, the force F can no longer be con-

sidered as a conservative one, and then (see Appendix 8)

(2.3)

where J& and Y& are Bessel polynomials and A and 8 are
arbitrary constants.

Thus, a harmonic oscillator with variable mass does not
reproduce the equation of motion for a damped harmonic
oscillator, which is given by q+aq+cooq =0 [see Eq.
(1.4)].

Indeed, one obtains Eq. (1.4) from Eq. (2.2), only if the
elastic constant k is no longer a constant but k =m (t)coo

Thus, we must conclude that a system consisting of a
variable-mass particle subject to a force

(2.4)F = —m ( t)cooq,

with m (t) =moe ', has Eq. (1.4) as its equation of
motion.

The question that now naturally arises is whether such
a system is in fact a damped harmonic oscillator. It is
our intention now to discuss the problem within the
Newtonian formalism, starting from the very definition of
the energy.

Analysis of the energy for a Uariable mass particl-e Fol-.
lowing a textbook procedure one can conclude that, if
one is dealing with a variable-mass particle, the usual
"definition" of the kinetic energy as T= —,'m(t)q(t) im-

plies that its variation is not equal to the work done by
the system, since it can be proved that (see Appendix I)

W'=
—,'mq ~f+ —,

' I rhq dt . (2.5)
1

Notice that the last term on the right-hand side (r.h.s.) of
Eq. (2.5) is directly related to the variable-mass character
of the system.

From the analysis of the behavior of the variation of
the energy of a variable-mass system subject to forces like
—kq, it is possible to establish that

(a) If k =const, by equating the work done by the sys-
tem to Eq. (2.5), one obtains

—,'m (2)[q(2)] + —,'k [q(2)] + —,
' j mq dt

=
—,'m (1)[q(1)] + —,'k [q (1)] (2.6)

Thus, although in this case F is a conservative force,
there does not exist a quantity of the type of the usual
mechanical energy, equal to the sum of a kinetic energy
plus a potential energy, that should be conserved. This is
due to the presence of the integral in either Eq. (2.5) or

—,'m (2)[q(2)] + —,'m (2)aio[q (2)]
2 2+21 mq Momq' t

=
—,'m (1)[q(1)] + —,'m (1)coo[q (1)] (2.7)

Now, if one performs an analysis similar to the one
made above, one can conclude that the evolution of the
quantity

—,'m (t)[q(t)] + —,'m (t)coo[q(t)]

is just determined by the integral in Eq. (2.7). This quan-
tity is not the usual energy of the system [in the light of
Eqs. (2.5) and (2.7), it is not the counterpart of the so-
called mechanical energy for either conservative or non-
conservative systems with constant mass] In .choosing
m (t) =mac ', one finds that this integral oscillates, which
in turn determines that

—,'m (t)[q(t)]'+ —,'m (t)coo[q (t)]

should oscillate. Thus, the oscillation of this quantity is
not to be regarded as a disappointing feature, for this be-
havior is a direct consequence of the nature of the quanti-
ty under study, even at a classical level.

B. Variable-mass harmonic oscillator, I.agrangian framework

Within the Lagrangian framework, one is provided
with a definite prescription in order to construct the La-
grangian I. corresponding to a given system. '

For a time-dependent mass particle subject to a har-
monic potential, recourse to the well-known Lagrange
equations yields the equation of motion given by Eq.
(2.2). If one chooses

V(q, t) = ,'m (t)cooq— (2.8)

one obtains the equation of motion given by Eq. (1.4) via
Kanai's Lagrangian [see Eq. (1.5)]. Finally, if one wants
to describe a harmonic oscillator with dissipation, one
should use the generalized Lagrange equations. ' A non-
conservative force expressed in terms of the Rayleigh dis-
sipation function leads to

(2.9)R= —,
'

q
fPl p

so that the Lagrange equation adopts the appearance:
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a~
dt Qq Bq

(2.10)

It is easily seen from Eq. (2.8), or Eqs. (2.9) and (2.10),
that Lagrangians with different physical origins can yield
the same equation of motion for the system. This feature,
far from being a disappointing one, clarifies the actual
meaning and origin of Kanai s Lagrangian. It was al-
ready seen in Sec. II A that different physical systems are
described by the same equation of motion.

Consequently, it is not at all obvious that any Lagrang-
ian that gives the equation of motion for the system one
wants to describe should be the proper Lagrangian of the
system. Furthermore, when such a Lagrangian is not
constructed according to a very well-defined prescription
(i.e., L = T —V), one may be actually dealing with a com-
pletely different physical system. In fact, many Lagrang-
ians which yield the same equation of motion can be ob-
tained by recourse to appropriate mathematical tech-
niques such as the integrating factor method (see Ref. 22).

There are many examples of different physical systems
(with diff'erent Lagrangians) that yield the same equation
of motion [the case of a RLC circuit and a L (t)C(t) cir-
cuit constitutes a good example (see Ref. 16)]. Of course,
when obtaining these "equivalent" Lagrangians, one is to
be surprised by the fact that two different physical sys-
tems can be described by the same equation of motion. It
would be misleading to conclude that two or more
different Lagrangians do represent the same physical sys-
tem.

In the case of Kanai's Lagrangian, Ray has found a
physical system that is well described by it. Thus, the
question that naturally arises is, if different Lagrangians
which yield the same equations of motion really represent
different systems, where can this difference be found?
The answer is, in the energy of the system.

Let us conclude this analysis of the Lagrangian
description of a system by studying changes of coordi-
nates (keep in mind that one is dealing with one-
dimensional problems here; extension to several dimen-
sions is straightforward, provided all the coordinates are
independent). If one transforms the coordinate q for a
system into another coordinate Q by means of a point
transformation,

for they are related through a point transformation.
Nevertheless, one should recognize that q and not Q is
the coordinate indicating the position of the particle. Q
would give the actual position only by inversion of Eq.
(2.11).

We can proceed further and realize that the third
term in the Lagrangian given by Eq. (2.12) can be ex-
pressed as the total time derivative of a function of the
coordinate Q, i.e.,

dF(Q)—-'m, egg =
2 dt

where

F(g)= —
—,'mo&g' .

Therefore the Lagrangian

(2.14a)

(2.14b)

(2.15)

would yield the same equation of motion for Q [Eq.
(2.13)] as the Lagrangian L&. One may wonder whether
both Lagrangians could represent the same physical sys-
tem. It should be noticed that the Q coordinate would be
the same for both Lagrangians. Answers to all the ques-
tions posed in this section are given in the next two sec-
tions.

C. Variable-mass harmonic oscillator, Hamiltonian framework

where

Within the Hamiltonian framework, the Hamiltonian
H is the generator of the evolution of the system with
time. However, it is the energy of the system only if (1)
the Lagrangian of the system is the sum of functions,
each homogeneous in the (generalized) velocities of de-
gree 0, 1, and 2, respectively; (2) the equations defining
the (generalized) coordinates do not depend explicitly on
the time; and (3) the potential V does not depend on the
(generalized) velocities. Anyway, it should be noticed
that the energy one is referring to is defined by

(2.16)

Q =exp(ut /2)q, (2.11) T =
—,'m (t)q and V = V(q, t) .

Kanai's Lagrangian turns into

L, =L, (Q, Q, r) =
—,'mog —

—,'moQ Q —
—,'moa

(2.12)

and by recourse to the Lagrange equation, one obtains
the equation of motion for the Q coordinate,

If a canonical transformation (the analog of the point
transformations for the Lagrangian description) is time
independent, the new Hamiltonian H is directly obtained
by substituting coordinates in the old Hamiltonian H,
while, if it is time dependent, the Hamiltonian transfor-
mation is '

Q+0 Q=0, (2.13) H =a+'
Bt

(2.17)

where 0= (coo —a /4 )
'

It can be easily seen that the time evolution of Q that
arises from Eq. (2.13) would yield, via inversion of Eq.
(2.11), the same evolution for q as the one obtained
directly from Eq. (1.4). Then, though Lagrangians L and
L

&
are different, they represent the same physical system

(F the generating function).
Now, we want to describe the situations studied with

the Lagrangians given by Eqs. (1.5), (2.12), and (2.15).
Starting from the Lagrangian

L =L (q, q, t)=e '( ~ moq —,'mocooq )—
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[Eq. (1.5)], one obtains

[Eq. (2.12)] that was obtained from Kanai's Lagrangian
through the point transformation given by Eq. (2.11), one
obtains

P= L]
=moQ —

—,'moag (2.18)

and

p2
H, =H, (Q, P, t)= + ,'mocoog +—,'aPQ . (—2.19)

2mp

Of course, for H, Hamilton's equations lead to
Q+0 Q =0 [Eq. (2.13)].

As all point transformations are canonical, one may be
interested in the canonical transformation leading from H
to H&, i.e.,

Q =exp(at/2)q,
P =exp( atl2)p . — (2.20)

Starting from the Lagrangian

Lz =L&(g, g, t) =
—,'moQ —

—,'moQ Q~

[Eq. (2.15)],one obtains

BL2P'= . =mog, (2.21)

which is different from Eq. (2.18), and

p&2
H~=H~(Q, P', t)= + —,'moQ Q

0
(2.22}

From Hamilton's equations for the Hamiltonian
Hz(Q, P', t), one again obtains the equation of motion
Q+0 Q =0 [Eq. (2.13)]. As well as with Lagrangians L,
[Eq. (2.12)] and L~ [Eq. (2.15)], one finds that two
different Hamiltonians yield the same equation of motion
for the Q coordinate.

If one starts from a Hamiltonian of the form of Eq.

[classical counterpart of Eq. (1.10)] and

2

H =H(q, p, t) = e '+ —,'moe 'cooq
0

[Eq. (1.3)]. This Hamiltonian is known as the Kanai-
Caldirola Hamiltonian. '

If the Kanai's Lagrangian describes a system, it should
be the system characterized by Eqs. (2.1), (2.4), and
Newton's second law of motion. According to what was
previously discussed, the Hamiltonian given by Eq. (1.3)
must be the "energy" of the system E =T+ V. There-
fore, one should not try to define this energy as
E =e 'H [Eq. (1.19)] because this definition would have
no physical meaning.

If one starts from the Lagrangian

L i
=L i(Q, Q, t) =

—,'moQ —
—,'moQ Q

—
—,'moagg

[Eq. (2.19)] via

Q)0

P+ Q
2mpQcop 0

(2.23)

yields

H
H ~

=H q ( R, II ) = + ,' m OQ—R (2.24)
2mp

One thus obtains the equation of motion for the R coordi-
nate,

R+0 R =0. (2.25)

Therefore, it is obvious that, although Lagrangians L,
[Eq. (2.12)] and Lz [Eq. (2.15)] do yield the same equation
of motion for the Q coordinate, one should not regard
this coordinate as being identical for both Lagrangians.
In spite of the fact that both Lagrangians give the same
forrnal equation of motion for their respective coordi-
nates (left unchanged on purpose when writing Lagrang-
ian Lz [Eq. (2.15)]), these coordinates are not identical
but are connected through the transformation equations
[Eq. (2.23)]. Thus, if Lagrangian L i [Eq. (2.12)] is the La-
grangian of the system one wants to describe, one should
not consider dropping a term (that representing a total
time derivative of a function of the coordinate and time}
as just a simplification of the pertinent Lagrangian with
no physical relevance. The Q coordinate of Lagrangian
L, [Eq. (2.12)] cannot be regarded in the same light as
the corresponding coordinate of Lagrangian Lz [Eq.
(2.15)], for that would lead to physical inconsistencies.
For instance, if one is provided with proper initial condi-
tions for Q and Q in Li, those initial conditions should
not be used straightforwardly for the coordinate and ve-
locity in L t, but should be transformed via Eq. (2.23).

Thus, when analyzing the physical meaning of the
equivalent Lagrangians L

&
and L2 within the Hamiltoni-

an framework, one concludes that different Lagrangians
yielding the same equation of motion should not be re-
garded as describing the same physical system.

We finish this section by mentioning that an alternative
demonstration of the nondissipative character of the
Kanai-Caldirola (KC) Hamiltonian can be obtained fol-
lowing, for example, Refs. 21, concerning phase-space
area-preserving dynamical flows; in fact, the demonstra-
tion includes time-dependent Hamiltonians in general.

III. INFORMATION- THEORY APPROACH
TO THE PROBLEM

Within Jaynes information-theory context, the sta-
tistical operator p(t) that describes a system having a

(2.19) and tries to construct a Hamiltonian of the form of
Eq. (2.22) by means of a canonical transformation, one
finds that22

p2
H, =H, (Q, P, t) = + —,'mocoog + —,'aPQ
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Hamiltonian H is constructed according to a well-defined
prescription. ' ' Combining the normalization for
p(t) (i.e., Trp(t)=1) with the knowledge of the expecta-
tion values of N operators (i.e.,

& OJ /p ) =Tr[p(t)OJ ]=0, 1 ~j ~ N)

and with the maximum entropy condition for
S = —Tr(plnp), one finds that solving the equation of
evolution for

Bg,
!J

gJ
(3.7)

Obviously, M will be time dependent if the canonical
transformation is time dependent. The quantization is
achieved by identifying the phase-space coordinates with
their corresponding operators. One obtains

(3.8)

Differentiating Eq. (3.8) with respect to time, one gets

p(t)=exp —
Ao

—g A,, (t)O,
j=1

which is iiii[B(p)/Bt]=[A', (p)], is equivalent to finding
the q (relevant) operators (with N ~ q) that close a partial
Lie algebra under commutation with the Hamiltonian H:

d&f) dM „d&ri)
di dt dr

From Eq. (3.8) one may write

(3.9)

(3.10)

[B,OJ]=i%' g gJO;,
I=0

(3.2) and, replacing Eqs. (3.10) and (3.5) in Eq. (3.9), one ob-
tains

where the g," are the elements (c numbers) of a q Xq ma-
trix G (which may depend upon time if 8 is time depen-
dent). Consequently, in order to build p(t), we need q ob-
servables 0;.

As a result, one can directly obtain the evolution equa-
tions for the so-called Lagrange's multipliers A, s in-
volved in Eq. (3.1) according to

'i

gil ~i
i=o

(3.3)

q= —y g„&o, ) . (3.4)
1=0

and the evolution equations for the expectation values of
the 0; observables,

d&o, )

dt
M ' —MGM ' &() .

dt
(3.1 1)

d&g) G, &() (3.12)

and

M
—1+MGM

—1

dt
(3.13)

Comparing Eq. (3.11) with Eq. (3.5), it is seen that if
one defines G' as the matrix obtained by closing the par-
tial Lie algebra of the (relevant) operators denoted by g
with the Hamiltonian 8'=8'(g, t) [that should be ob-
tained through the transfortnation given by Eq. (2.17)],
then

The whole dynamics of a system is contained in the G
matrix. It is then interesting to see how canonical trans-
formations affect it.

We first assume that the set of relevant operators one is
dealing with constitutes the set of canonical coordinates
of the system (which reflects the situation we are actually
concerned with here). For the sake of simplicity, let us
denote the set of (canonical) coordinate operators (which
are constructed by directly associating the phase-space
coordinates to quantum operators) by a column matrix ri,
and by & g ) the column matrix representing the expecta-
tion values of those operators. Then, according to Eq.
(3.4), dM1

1 1 1M '+M GM (3.13a)

Equation (3.13) gives the transformed matrix under a
canonical transformation. Explicit knowledge of the new
Hamiltonian 8'(g, t) (to calculate the matrix elements of
G') becomes unnecessary.

As the canonical transformations form a group, if one
first applies a canonical transformation (described by M, )

and afterwards a second canonical transformation (de-
scribed by M2 ), this is equivalent to applying a single
canonical transformation (described by M3 =M2M, ).
Indeed, it can be easily proved that this allows one to
write

(3.5)

where G is the transpose of G.
A canonical transformation for the phase-space coordi-

nates can be written in matrix notation as

G"=—

or, directly,

dM2
2 2 2M '+M G'M (3.13b)

(3.6) G"=— dM2M1
(M2M, ) '+(M2M, )G(M~M, )

dt

where M is the invertible square matrix that character-
izes the canonical transformation from the g coordinates
to the g coordinates. Its elements are

(3.13c)

Consequently, if two different matrices G and G' are
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supposed to describe the same physical system, they must
be related according to Eq. (3.13) so as to guarantee that
the transformation of observables is canonical and there-
fore the evolution of the system is correctly described by
Eq. (3.5) or Eq. (3.12). If two different Hamiltonians that
are not connected by a canonical transformation corn-
pletely describe a physical situation and one finds that
they lead to different 6 matrices, one should conclude
that these Hamiltonians actually pertain to physical sys-
tems with diferent dynamics.

We discuss now the Hamiltonians studied in Sec. (II C).
If one starts from Kanai-Caldirola s Hamiltonian (in its
quantized form)

8=8(g,P, t)= e '+ —'m e 'cog
mo

[Eq. (1.6)], one easily ascertains that the set of observ-
ables I q,P I closes a semialgebra under commutation
with the Hamiltonian 8. One finds

CX——exp( —at /2)
2

—exp(at /2)
2

(3.20)

one can easily prove that the equality

dM)

dt
M '+M GM

[Eq. (3.13a)] holds, yielding the G' matrix directly from
the 6 and M matrices.

Consequently, if one starts from the Lagrangian

L& =L, (Q, Q, t)= —,'mog —
—,'moQ Q

—
—,'moaQQ

[Eq. (2.12)], which in turn yields the Hamiltonian given
by Eq. (2.19), one can drop the last term of Eq. (2.12), as
explained in Sec. II B, obtaining

Lz =Lz(g, g, t) =
—,'moQ —

—,'moQ Q

m e at~2
0 0

(3.14)

m eat0

We have already seen that, by means of the canonical
transformation for the observables g and P, one has

PI2
8z =H~(Q, P', t) = + —,'moQ Q

2m0
(3.21)

[Eq. (2.15)]. If one carelessly assumes that the Lagrang-
ian given by Eq. (2.15) describes the same physical system
as the Lagrangian given by Eq. (2.12), then, in construct-
ing the quantal Hamiltonian that corresponds to it,
namely,

Q =exp(at/2)g,
P =exp( at/2)p . —

We obtain the transformed Hamiltonian

(3.15) one would find out that the set I Q, P'] closes a partial
Lie algebra under commutation with H2 yielding

m00
A2

8& =8~(Q,P, t) = + —,'mocooQ +—,'a(PQ+QP),
2m0

6 II

m0

(3.22)

(3.16)

in which we use the symmetrization rule for the product

As expected, the set [Q,P) closes a semialgebra under
commutation with 8, , yielding

EX 2m co0 0

(3.17)

m0

The canonical transformation j;iven by Eq. (3.15) of the
observables Q and p into Q and P can be described by the
time-dependent transformation matrix &g)+n'&g) =0. (3.23)

We deliberately wrote P' instead of P in Eq. (3.21), be-
cause they denote different operators, as the classical
variables they come from are different, i.e.,
P =moQ —

—,'moag [Eq. (2.18)] and P'=moQ [Eq. (2.21)].
Apparently, if one does not consider what was dis-

cussed in Sec. IIC, one may think that Q denotes the
same operator in Eqs. (3.16) and (3.21). But, as G" is
different from G' and we claim to be describing the same
physical system, there must be a canonical transforma-
tion that links both Hamiltonians 8& and Bz In apply-.
ing Eq. (3.5), we should obtain the same equation of
motion for the expectation value of the position operator,
namely, & Q ):

Thus as

exp(at /2)
0

0

exp ( at /2)— (3.18)
As a consequence of this feature, and noticing the

difference between 6' and 6",we look now for a canoni-
cal transformation that leaves the position operator un-

changed. This is of the form

M 1

exp( at /2) 0—
0 exp(at/2) (3.19)

1 0
(3.24)

and The equation G"=MG'M ' [see Eq. (3.13b)] must
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hold. Here we drop the term containing the time deriva-
tive of the matrix M, as the canonical transformation one
is searching for is time independent.

It can be easily proved that there does not exist any
matrix M of the form of Eq. (3.24) that fulfils Eq. (3.13d).

If one frees the four elements of the matrix M from any
constraint, one easily finds that

~o a
0 2moOuo

0
coo

(3.25)

connects 6' and 6" according to Eq. (3.13b). It is then
obvious that one is not dealing with the same operator Q
in the Hamiltonians given by Eqs. (3.16) and (3.21).
Within this context, although the Lagrangians given by
Eqs. (2.12) and (2.15) lead to the same equation of motion
for the coordinate operator, they do not describe the
same physical system.

As a further remark, we can mention that the integrat-
ing function method (see, e.g., Refs. 22) can be applied in
order to obtain different Lagrangians, and therefore
different Hamiltonians, that yield the equation of motion
(1.4). In fact, in these references, the possibility of ob-
taining not explicitly time-dependent Lagrangians (and
Hamiltonians) is considered. But, in the light of our pre-
vious analysis, we can conclude that, if the dynamical
variables position and momentum are to be the same as
those involved in the KC Hamiltonian, the G matrices as-
sociated to these time-independent Hamiltonians will be
different from (3.14), either in their elements or even in
their dimensions. This fact enables us to assert that we
would be dealing with different physical systems.

IV. CONCLUSIONS

Dissipative systems are interesting not only because
one faces them quite often but also because they allow for
a deeper understanding of some natural processes. As we
have pointed out in the Introduction, the quantization of
dissipation is still an open problem.

One of principal aims of this paper was the exhaustive
analysis of the inspiring Kanai-Caldirola s Hamiltonian.
After doing so, we applied the maximum entropy princi-
ple (MEP) procedure to it, with the aim of reaching un-

biased results as far as the physical meaning of this Ham-
iltonian is concerned.

We can summarize our findings as follows:
(a) We conclude that the Kanai-Caldirola's Hamiltoni-

an does not describe the system it was originally meant
for, i.e., a damped harmonic oscillator of mass mo. In-
stead, this Hamiltonian actually describes a particle of
mass m(t)=moe ' subject to a force F=moe 'cooq, as
pointed out in Sec. II (see Ref. 8). This conclusion can be
easily drawn at the classical level. Many difficulties that
are mentioned in literature as emerging from the quanti-
zation of this Hamiltonian are instead plain consequences
of considering that the Kanai-Caldirola s Hamiltonian
describes a physical system different from the one to
which it actually refers. Therefore, we point out that all

the modifications made to this Hamiltonian, in order to
solve the above-mentioned difficulties, should be revised
in the light of its real physical meaning. Besides, many
and recent contributions to the literature that consider
this Hamiltonian as corresponding to the damped har-
monic oscillator should also be revised (see Refs. 4—6).

(b) We explicitly find that the Heisenberg's uncertainty
principle is not violated in the case of the Kanai-
Caldirolas Hamiltonian. In fact, previous interpreta-
tions indicating a violation of this principle arise from a
confusion concerning the physical meaning of this Hamil-
tonian. After properly identifying the system that this
Hamiltonian actually describes (see Sec. II), one finds that
the mechanical momentum is just p =m (t)q and that the
uncertainty principle holds for the coordinate q and for
this momentum p. Then, it is obvious that one should
not expect the uncertainty principle to hold for the coor-
dinate q and the so-called "physical" momentum

p&
=m oq. Besides, all the reinterpretations or

modifications of this Hamiltonian ' formulated on ac-
count of this apparent violation of the uncertainty princi-
ple prove to be meaningless.

(c) We also find that Kanai-Caldirola s Hamiltonian is
the energy operator of the system. Therefore, recourse to
spurious definitions of the energy operator [as E =e 'H,
Eq. (1.19)] becomes unnecessary, and, consequently, one
avoids difficulties concerning the ground-state energy and
the quantum energy levels. There is no problem in the
quantization of the KC Hamiltonian, provided one al-
ways bears in mind the nature of the real physical system
one is quantifying. Thus, the behavior of the quantized
system agrees with what should be expected: well-defined
energy levels and oscillating evolution of the expectation
value of the Hamiltonian. These are just properties of
the system to be quantized, and not problems of the
quantization procedure. Since this system is not dissipa-
tive at all, we should not try to look for dissipation at the
quantum level, or, what proves to be more misleading, to
force dissipation at any rate. Anyway, it should be noted
that the energy the KC Hamiltonian is referring to is to
be analyzed in the light of the discussion in Sec. III, but
keeping in mind that this is not a difficulty that arises
when one quantifies the system.

(d) As a main conclusion of this paper, we believe that
a great deal of confusion has been originated by having
lost sight of the way the KC Hamiltonian can be ob-
tained. One should carefully revise the use of
"equivalent" Hamiltonians and Lagrangians. In this
sense, we find a simple and straightforward method of
analyzing the real equivalence of different Hamiltonians
(and consequently Lagrangians) within the information
theory (IT) context, without needing to get entangled
with secondary aspects of the problem in hand. Above
all, IT affords the possibility of obtaining unbiased re-
sults.

(e) Finally, we mention, at the end of Sec. II, that, fol-
lowing, for example, Refs. 21, a Hamiltonian which com-
pletely describes a physical system (even a time-
dependent Hamiltonian) cannot yield any dissipation.
Although the analysis that. can be found in these refer-
ences is made at the classical level (the phase-space
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framework), the same conclusion can be drawn at the
quantum level, since the fundamental assumption made is
the validity of Hamilton s equations (opposite to the gen-
eralized Hamilton's equations that include forces that
cannot be derived from a potential). Hamilton's equa-
tions can be proved to be directly connected to
Schrodinger's equation, in the same way that Liouville's
theorem is related to Ehrenfest's theorem. ' ' The
existence of a finite Lie algebra associated with this linear
time-dependent Hamiltonian seems to be the correspond-
ing aspect in the IT approach for making evident the
nondissipative character of the system.

As a brief final remark, we can say that, owing to the
oscillation in time of the KC Hamiltonian, it cannot be
considered a dissipative Hamiltonian in the sense that it
does not represent a decaying function. This oscillation,
as was shown in Sec. II, is due to the open character of
the system explicitly indicated in the time-dependent
function m(t), that in turn allows for an out-of-phase
dynamical evolution for the decreasing position and in-
creasing momentum.
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(From now on, we will omit writing in the different vari-
ables the explicit dependence on time. )

From (Al} and (A2) one can write

W= f (mq+mq)dq . (A3)
1

As dq =q dt, then

8'= mqq dt+ mq dt .
1 1

(A4)

Replacing (A5) in (A4),

W= —,'mq ~f+ —,
' f mq dt . (A6)

APPENDIX 8

One wants to evaluate

F q
1

where [see Eq. (2.4)]

F = —m (t}cuoq (t) .

(B1)

(B2)

(From now on, we will omit the explicit dependence on
time. )

From (Bl) and (B2) one can write
28'= —co0 mq q . (B3)

On integrating by parts the first integral in the rhs of
Eq. (A4}, one obtains

f mqq dt =
—,'mq

~&
—

—,
' f mq dt . (A5)

APPENDIX A

One wants to evaluate

W= f Fdq,

where [see Eq. (2.1)j

F= =m(r)q(r)+m(r)q(r) .dp
dt

(A 1)

(A2)

As dq =q dt, then
2W= —co mqq dt0 (B4}

and, evaluating the integral in the r.h.s. of (B4) by parts,
one obtains

2. 2W= ,'m (1)cooq(1)——
—,'m (2)co qO(2) + 2coo f m—q dt .

(B5}
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