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Nonlinear interaction of photons and phonons in electron-positron plasmas
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Nonlinear interaction of electromagnetic waves and acoustic modes in an electron-positron plas-

ma is investigated. The plasma of electrons and positrons is quite plastic so that the imposition of
electromagnetic (em) waves causes depression of the plasma and other structural imprints on it

through either the nonresonant or resonant interaction. Our theory shows that the nonresonant in-

teraction can lead to the coalescence of photons and collapse of plasma cavity in higher (~2) di-

mensions. The resonant interaction, in which the group velocity of em waves is equal to the phase
velocity of acoustic waves, is analyzed and a set of basic equations of the system is derived via the
reductive perturbation theory. We find new solutions of solitary types: bright solitons, kink soli-

tons, and dark solitons as the solutions to these equations. An implication of the present theory on

astrophysical plasma settings is suggested, including the cosmological relativistically hot electron-

positron plasma.

I. INTRODUCTION

When a plasma becomes so hot that it becomes relativ-
istic, the temperature T of the plasma exceeds the rest
mass energy of electrons me =0.5 MeV. In this relativ-
istic regime the processes of electron-positron pair
creation and annihilation become important:
2y~~e++e . In relativistic temperatures the electron
(and positron) energy c,, far exceeds the rest mass energy
so that electrons and positrons behave kinematically
similar to photons and come into equilibrium with nearly
equal population. In this case the population of electrons
far exceeds that of protons. Such highly relativistic plas-
mas may be found in the early universe, ' in active galac-
tic nuclei (AGN), and in pulsar atmospheres. The pul-
sar plasma is most likely magnetized, while that of the
early universe may be unmagnetized. The plasma in
AGN may or may not be magnetized. The other envi-
ronment in which relativistic electron-positron plasmas
appear is the e++e collider. However, it is very tran-
sient. Good laboratory examples are found also in semi-
conductor plasmas of holes and electrons, in which the
plasmas are likely to be nonrelativistic. In the present
paper we discuss only physical processes of unrnagnetized
plasmas. Furthermore, our emphasis is on nonlinear pro-
cesses. Some of the linear processes of such plasmas in a
general relativistic formulation may be found in Ref. 4,
while some of the magnetized plasmas are in Ref. 5.

The plasma of the early universe may be relativistic
(10 &t &1 sec) or mildly relativistic or nonrelativistic
(1 & t & 10' sec). Let us consider the epoch of the
universe of approximately 10 & t & 1 sec after the big
bang (although a slightly wider window of 10 3 & t & 10'
sec may be permissible). In this epoch the temperature of
the universe is low enough that nuclear matter has be-
come familiar hadrons made up from quarks and gluons,
but high enough that electrons, positrons, and photons
are in abundance and in (near-) thermal equilibrium.
Neutrinos are abundant and may be strongly coupled

with other leptons. In the present work, however, we
neglect this coupling. In this case the plasma density is
from 10 to 10 cm . Before the electron-proton
recombination (t —10' sec), the cosmic expansion is such
that the cosmic metric a scales as a ~t' and thus the
mass density p ~ t and the radiation density
p„~ T ~t, where T~Aco~a '~t ' . The period of
10 ( t & 10' sec is sometimes called the radiation
epoch. (More traditionally, the radiation epoch is
10 &t &10' sec. ) We may call this epoch the plasma
epoch, as the plasma is the main constituent matter form,
including photons. During the early part of this epoch
10 & t (10 sec the plasma and radiation temperature
T is (much) larger than mc . Similarly, when the primor-
dial magnetic field (if any) scales as B et.a, the plasma
beta P=4srnT/B is invariant (if the dynamo effect is not
operative). It is important to note, however, that it was
found that even the thermal equilibrium nonrnagnetized
plasma can sustain low-frequency magnetic fluctuations.
More details of plasma parameters of this epoch are dis-
cussed in Sec. V.

In the present paper we are concerned with collective
processes in the nonlinear interaction of a relativistic
electron-positron plasma with photons. For the purpose
of illuminating the unique properties of electron-positron
plasmas such as plasticity, we emphasize the dominant
population of electrons and positrons and neglect ion
effects. If ion effects are restored, they would exhibit
more traditional phenomena. These less idealized cases
are left for a future publication. High-frequency photons
in such a hot plasma contribute to the equilibrating pres-
sure (P) force where P ~ T, while there remain low-
frequency electromagnetic waves. It is these low-
frequency electromagnetic waves and their nonlinear in-
teraction with the plasma that we are interested in and
we investigate in the following. The reason for this is
twofold: (i) its intrinsic nonlinear interaction is rich and
deserves a full treatment; (ii) its implication on cosmic
evolution is potentially immense. The first point is well
recognized by many previous authors. The second
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point is not well appreciated yet. The blackbody radia-
tion from the big bang is observed as the 3 K microwave
background radiation. Its observed anisotropy is very
small and less than 10 . ' Although this puts a severe
constraint on theory of galaxy formation, it should be
noted that the observed highly isotropic distribution of
blackbody radiation is connected with high-frequency
(i.e., fico-T) photons. No signature of low-frequency
(fico « T) photons is known and thus constitutes no con-
straint if their imprints on matter are nonadiabatic. In
this regard the nonlinear interaction between the plasma
and low-frequency photons is important. Perhaps as a re-
sult of this, there may emerge a structure in the plasma,
which ultimately gives rise to a seed of galaxy formation.
Yet we note that such signatures in blackbody radiation
anisotropy are nondetectable, as long as they are. of an
isothermal nature. We believe that this assertion is criti-
cal to cosmology. A full impact of our theory on cosmol-
ogy cannot be expounded in the present paper.

We thus simplify the problem into that of interaction
of the electron-positron plasma with low-frequency pho-
tons with high-frequency photons being treated through
the pressure term of the ideal photon gas. Once we cast
the problem this way, our task becomes a well-defined
physics problem of its own. Our present work may be re-
garded as a physical treatment of such an abstracted plas-
ma and results can stand on their own. In fact, our treat-
ments are so simplified that their direct applications to
cosmic plasmas and other situations have to be done with
considerable caution. For example, we will not discuss
collisional efFects (and thus kinetic theory) of the plasma
at all in the following until Sec. V. Clearly these among
others are very important and should be considered in de-
tail in the future. It is, nonetheless, the case that our
present model seems to capture most of the essential
features of cosmic plasmas.

Our paper is structured as follows. Section II discusses
the basic model equations of the posed problem in the
long-wavelength limit, in which the characteristic length
of plasma modulation is much longer than that of low-
frequency electromagnetic radiation. The interaction is
nonresonant. It discusses photon packet collapse and
structure formation in a plasma. In Sec. III we turn to a
resonant interaction between the low-frequency photon
and the plasma phonon, in which both wavelengths are
comparable. A similar structure formation is expected,
although the theoretical treatment has to be accordingly
modified. Section IV discusses in more detail the result
of Sec. III. In Sec. IV we discuss solutions to the equa-
tions obtained in Sec. III, including its characteristic
steady-state properties, such as shock and soliton forma-
tion, and numerical investigation of these. We conclude
in Sec. V with discussions of more detailed parameters of
the cosmological electron-positron plasma. Kinetic
effects are briefly touched upon there.

where n+ are the positron (+) and electron (
—) densi-

ties, v+ the velocities, n ~ the photon density, v, the pair
creation frequency, and v the annihilation rate. Herewith
subscripts + refer to quantities of positrons and elec-
trons. In a similar fashion the equations of motion for
electrons and positrons may be derived. Here, however,
we treat the annihilation and creation of particles phe-
nomenologically, as we eventually neglect their effects as-
suming co &)v, . Thus we obtain

dv+ v+ XBI —=+e E+
dt C

1
VP+ —m vv+, (2)

where P+ are the positron and electron pressure and the
last term on the right-hand side of Eq. (2) is a phenome-
nological expression.

We can show that the longitudinal electric field and the
associated plasma oscillations are completely decoupled
from transverse electromagnetic waves in a positron-
electron plasma. We can further show that the acoustic
oscillations do not accompany charge separation in a
positron-electron plasma in contrast to ion-acoustic oscil-
lations in an ordinary plasma. This contributes to the
plasticity of the electron-positron plasma; i.e., the relative
ease of structure formation in this plasma. Thus for our
present purpose of the study of the coupling among elec-
trons, positrons, and photons, Poisson's equation is un-
necessary to solve: V EL =4ire(n+ n)=0 and—the
longitudinal electric field El =0. The Maxwell equation
is then

where

1 0 4m BJ
C gt2 2

and positrons are described by the two-fluid theory and
the long-wavelength photon effects are described by the
Maxwell equations. Short-wavelength photons (fico —T)
are treated to contribute only to the pressure term.
There are two distinct regimes, one is the frequency of
electron-positron collisions v, (and the frequency of
electron-positron pair creation), which is much larger
than the plasma frequency co, and the other is the re-
verse. In the former case, the local thermodynamic equi-
librium should be quickly established. In the latter case,
on the other hand, collective finite-frequency modes sur-
vive and interesting nonlinear coupling among electrons,
positrons, and photons can take place. In the present ar-
ticle we concentrate on the latter case, as the former is
more trivial.

The continuity equations for electrons and positrons
take a form

Bn+ +V.(n v+ j=v, nz —vn n+,
at

J=n ev+ —n ev (4)
II. NONLINEAR SCHRODINGER EQUATION

FOR RELATIVISTIC e -e+ PLASMAS

We model the relativistic electron-positron plasma im-
mersed in a photon gas by a fluid description. Electrons

The closure of the second-order moment equation may
be accomplished by assuming that the pressure of the
plasma is equal to the photon's, which behaves according
to the Rayleigh-Jeans law blackbody radiation. Then the
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pressure is given by

Pg =n~ T~ =0 Tg4 (5)

where the second term on the left-hand side is linearized
to give

where Eq. (5) is the Stefan-Boltzmann law with
cr =sr /45fi c . Equation (5) yields

4/3P+ J / 3
n +

O'

i.e., the plasma is a polytropic gas with the adiabatic con-
stant —', .

In the following we consider a situation in which elec-
tromagnetic waves propagate only in one direction (x).
We assume that the amplitude of the electromagnetic
waves is large enough that in the first-order equation the
electromagnetic force dominates the pressure force, but
that it is small enough that the wave is nonrelativistic,
eE/mtvc &1, where cv is the frequency of the radiation
and E the electric field of the radiation. This allows us to
expand the equation of motion in the following way in
the nonrelativistic kinematics. The first-order equation
in the power of E of the electromagnetic waves is

Bv+ e=+
3t m

where E may be assumed to point to the y direction if the
wave is linearly polarized (the option of circular polariza-
tion and a linear one is not essential and we take the
latter for the sake of concreteness). The nonlinear terms
v Vv and v+ X B/c and the pressure term are neglected in

this order. The solution of Eq. (7) is

v~~"=+eE/( item )
—. (8)

The perturbed (the first-order) continuity equation de-
rived from Eq. (1) is

Bn'"
=0

at

1

'"n (10)

where the convective derivative v. Vv vanishes and the
nonlinear term +ev'+'XB/c gives rise to the first term on
the right-hand side of Eq. (10). We have retained the
slowly varying component of the nonlinear term in Eq.
(10) by taking the absolute value. In the present article
we neglect the second-harmonic response. Combining
Eq. (10) with the second-order continuity equation
Bn+'/Bt+ n V.v'+'=0, we obtain

' j/3 2
nm ~2

Bt 2 mh)
V inn~ =

where we noted that the equilibrium for the zeroth-order
cancels the right-hand side terms and that V' v+' as ob-
tained from Eq. (8) vanishes. Thus we obtain n '+'

=n '"=0, which implies no charge separation, as assert-
ed earlier. This can change, of course, if the presence of
ions is taken into account, although charge separation
remains small as long as ions are a tiny minority.

The second order of the equation of motion Eq. (2) is

(2) '2
ep 4/3m = ——mV V'n ~

Bt 2 tom

8 2"' (n+n"')E
mc

(12)

where n =—n+(2) — (2

CO —Q7 + COP Pe PP

' = n ' ' since n '+' = n ' "=0. By writing
8~ne /m, Eq. (12) becomes

CO CO—VE+ E+- E= — E.
c2 c2 c}t2 c2 n

(13)

The term on the right-hand side of Eq. (13) is a third-
order quantity, while the terms on the left-hand side are
all the first order. However, these terms of the first order
cancel each other because of the dispersion relation of
electromagnetic waves in the positron-electron plasma
tv =tv +k c . Let E=Re(ae'"" '"'). Equation (13)
then reads

2

—V' a —2iI(., Va+ k +
c 2

N
a

C

tv@ 5n—2i" '+O(a', )= — '- "a, (14)
c2 ~t c2 n

where 5n =n' and —V and 8/r)t operate on a in slow
scales. Imposing the linear dispersion relation
co =co +k c, we obtain from Eq. (14)

2
a 1 Ugr ~p 5n

i iv, Va+ —— V a+O(B, )= a, (15)
Bt I' 2 k ' 2' n

where v, =Bee/Bk.
In the present section we investigate the interaction be-

tween photons and phonons when they are not in reso-
nance. This means that the group velocity u, of photons
in this plasma is not close to the phonon (acoustic) veloci-
ty c, . This can be fulfilled either by v, &&c, or by
u, «c, . In the former case such interaction as the beat
wave acceleration' takes place and will not be discussed
any further in this article. Some more discussion of this
case may be found in Tajima" and in Leboeuf et al. ' In
the latter case (U, «c, ) k « to /c. This condition in a
relativistic plasma is much less severe than that in a non-
relativistic plasma, as the relativistic sound velocity
c, -c/')/'3 is fairly close to the speed of light. In other
words, in relativistic plasma a wave packet of photons
with long wavelengths may be relatively easily able to
satisfy the nonresonant condition of v, «c, . In be-
tween these two nonresonant cases lies, of course, the res-
onant case v „=c,, which is deferred to Sec. III for dis-

2 nm 2 eE
n+ —c, v n+ =

Bt2

where c, = ', (n—/cr )' . Equation (1) is the acoustic equa-
tion driven by the ponderomotive force of photons on the
right-hand side.

The Maxwell equation, Eq. (3), is cast into

1 8 4me—V E+ —E= — (—n v n—v )
c Bt c + +
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cussion.
The nonresonant case of interest (u, «c, ) may arise

in a variety of settings. One can imagine a case where
most photons propagate in one predominant direction
(say, the x direction) with the mean wave number k with
a much smaller wave number spread b k —Ak
«k„«co /c. We refer to this as case (i). Such a wave
packet is basically one dimensional. See Fig. 1(a) for a
schematic spectral distribution. An extreme alterna-
tive to this is a wave packet spread in three dimen-
sions in a nearly uniform fashion Ak„- Ak —hk,
—Ik, I, Ik» I, Ik, I

«co~/c. A schematic spectral distribu-
tion of the latter wave packet is depicted in Fig. 1(b).
Such a wave packet is basically two or three dimensional,
depending on the presence of the third dimensional
spread. We refer to this as case (ii). Some of the cosmic
plasma may fall onto this case (U, «c, ), including the
"hydrodynamic" cases.

In case (i) we transform variables x, t to g, r as

c 1c
t =e(x —U, t ),

CO

-24ky

x 2&"y

2bkx

(b)

(Spy
I
I

~x

YI=EJP, (—e'Z, r —E t
(16) 2Qkx

where e is the stretching parameter' ' and we take
e =5n/n The.n Eq. (15) reads

ck

. (3a + 1 gr V2 p 5n
i +— V a= a,

Br 2 k 2' n

where V =Bt+il„+i3I. Equation (11) transforms into

8 8 8

Cs

5n= V IEI
2m&

(18)

The operator on the left-hand side in the brackets of Eq.
(18) becomes —e, V when v s, « c, . It becomes v s„V
when v „))cz If vga cz it will be treated separately in
Sec. III.

When U, «c, , Eq. (18) gives rise to
2

FIG. 1. Wave-number space locations of photon wave pack-
ets (a) and (b) for the nonresonant case v~„&&c,'. (c) The disper-
sion relations are shown, along with the resonant photon (indi-
cated by a dot) with the phonon branch co= c,k.

c V5n=— V'IEI'2' co
(19) +PV'e+ I@'@=0,

O'T
(22)

If 5n and E are localized, i.e., 5n and
I EI ~0 at infinity,

where p—=c /2'. Then Eq. (22) can be written in a forms

2

5n= — ', , IEI'.2' CO C

Mf
i

5@*

where the Hamiltonian is given by

(23)

Substituting Eq. (20) into Eq. (17), we obtain

2 2

. Ba 1 gr 2 9+ — V a+
O'T 2 k 32'lT Q)

1

, IaI'a=o.
S

(21)

c'= -'c'
s 3

(21) be-
8 =(9/

When the plasma is relativistically hot
the coeScient of the third term of Eq.
comes (3/32vr)(co /co ) (1/c, ). By setting
32~)'~ (co /co )(1/c )a, Eq. (21) is cast into

vf= J —Ivx@I — dg .
C2 2

(24)

Note that g is the stretched coordinates on the moving
frame. One can normalize the spatial coordinate g' such
that the coefficient of the first term in Eq. (24) becomes
unity. The Hamiltonian is a conservative quantity.
Gauge invariance '' implies the conservation of light
quanta:
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X= J [@[2dg'. (25)

For the system described by Eq. (22) it has been
shown, ' ' through the virial theorem, ' direct integra-
tion, ' and numerical integration, ' that the wave packet
tends to collapse in systems with dimensions larger than
one, while systems with one dimension do not. In a
spherical symmetric system on the moving coordinates g'
the quantity

I= J'(g', )'(I&, 12+ IZs 2)dg'„

nons in this plasma, we need a different systematic expan-
sion method than that employed in Sec. II. We again use
the reductive perturbation theory with the expansion
adopted being to specifically incorporate the physics of
this resonance.

In the following we take the normalization that the
length is measured in terms of c/co „the velocity in c,
and the density in np, the mean density of electrons,
where the electron plasma frequency co, is defined as
co, =4nnoe /m. In these normalized units our equa-
tions are derived from Eqs. (1)—(3) as

obeys

B21 =8~ 2—1 lEI4dg &8~.
Bt

Integrating I twice in time, we obtain

Bn+
+V (n~v~)=0,

dv+ J =+[Ei+(v XB)i],
dt

(28)

(29)

I &4&t2+C, t+C2, (26)
dv+

dt

aa
+[E,+(v XB),],

n+ Bx
(30)

where C, and C2 are integral constants. If & & 0, the po-
sitivity of I implies that the inequality is valid for t ( tp,
toward which the system exhibits a singular behavior.
The size of the density depression g„behaves' as

g„(t)~ (t, t)'",—

7' E=n+ —n

BE,
VXB— =n+v+~ nv-

Bt

B +AXE,=O,

(31)

(32)

(33)

and (27)

III. RESONANT INTERACTION
BETWEEN PHOTONS AND PHONONS

In this section we investigate the resonant interaction
between photons and phonons in an electron-positron
plasma, the case left out in the preceding section. That
is, the group velocity of (a set of) photons (or electromag-
netic waves) is nearly equal to the phase velocity of pho-
nons. See Fig. 1(c}. In order to derive the basic equations
that govern the resonant interaction of photons and pho-

F. (t) ~ (t, t )—
exhibiting the collapse of the electromagnetic wave pack-
et with a density depression in a finite time. However,
once the size of the depression becomes of the order of
the collisionless skin depth c/co, the present treatment
becomes invalidated. Some of the nonlinear numerical
simulations' can be a guide to suggest the more detailed
evolution of such an entity. Although Ref. 18 handles
electrostatic plasma waves, the relevant equations are
similar to our case. The high-frequency waves collapse,
creating a growing plasma density depression. The
deepening cavity eventually tries to emit short-
wavelength acoustic waves of the cavity size. The work
in Ref. 18 indicates that when the plasma is isothermal
(the temperature of both species are equal) and the (ion)
Landau damping is significant, the emitted acoustic
waves are quickly absorbed so that the collapsing waves
are "burned up. " In the present relativistic electron-
positron plasma case the Landau damping is supposed to
be significant (see Sec. V). Thus the collapsing elec-
tromagnetic waves in the plasma cavity would be burned
Up.

where d /dt =B/Bt+ U„(B/Bx ) and x is the longitudinal
direction parallel to the propagation of photons that
resonate with the plasma waves. We restrict the photon
propagation in the x direction and the electric linear po-
larization in the y direction in this section. Thus Eqs.
(28) and (31) can be written as B,n++B„(n+U+, ) =0 and

B„E,=n+ —n

We expand the quantities v+~, v+„, n+, and EJ as fol-
lows:

(1)+ 3/2 (3/2) ++J +J +J

v+„=SU+„+6 v+„+(1) 2 (2)

(34)

(35)

n+ = 1+gn +g n

E =eE'"+e E' '+
J. J. J.

(36)

(37)

where the superscripts in parenthesis indicate the power
of e, the expansion parameter. Furthermore, we may
write

(1) —(1) t(kx —cot ) ++J. +J.
1

~ ~

E(1) F (1) t {kx —cut ) +J. J. ~ ~

1

g(1) g (1)e t(kx —cut )+
J J.

1

~ ~ )

v+J =+—E~-(1) ~ (1) (38)

This is equivalent to Eq. (7).
From Eqs. (32) and (38) we obtain

where the subscripts refer to the harmonic component or
to the power to the e' ". One the order of e', from
Eq. (29) we obtain
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kxBx +

and from Eq. (33) we obtain

kB"'= xXE"'l

(39)

(40)

lcov ~g + 5k U v +g A. v +g
—(2) ~ ( 1 )- (1 ) —( 3/2)

1 1 Q 1

=+(Ei '+ U„"~x X BI' '), (51)
1 1

d /dt = —i co+ e "a/a~ —~e' "a/ag
where k=k„x. From Eq. (39) and (40) we arrive at the
dispersion relation

co =2+k

+ev„"'(ik„+e'"Xa/ag) .

This leads to

Hence the group velocity A, is

a~
Bk cc)

(42)

V+l = E) +k v+)
(2) —l + (2) (3/2)

I ~ ( a (

The Maxwell equations (32) and (33) in O(e ) yield

(52)

In executing the derivatives, we employ the reductive
perturbation theory. ' ' In the problem of the present
section we stretch the coordinates as

(x —gt ), 7.=e

ik xXB' '+xX B' '+it()E' '+A. E'
x ).

) ag
).

)
l

ag
).

)

(1) (1) (1) (2) (2)=n (v+) —v ) )+(v+1 —v 3 ),
and

(53)

O(a/ag)=k„O(e' ), and O(a/ar)=t()O(e ). On the
order of e /, Eq. (29) then yields

a-
v " —icov'+)

)
+).

)
— l)

Equation (32) and (33) give rise to

ikXB' '+icoE' '+AxX B'"+A, E'"
2( ~ l) ag l( ag

).
(

ieB—' )+'k XE' ' —
A, B '+xX E' '=0 .1 t(2 ) l X ) l X

(54)

Using Eqs. (47) and (54) to eliminate v(+3~~ ) and v(+~), we
1 1

obtain by combination of Eqs. (53) X co and (54) X Ir

(ice ik —2i)E—'+(co —
A, k )xX B' / '

x ll x g ll

2E (3/2) g E (1) (45)le ( tt() a(

icoB' '+—ik E' 2' —A. B "+xX E" =0.l( x )( ag l( ag )(

+(Ace —k ) E' '+ E'x
ag )) ag i)

(1)E(1) 2X iX a' E(1)
( ~ t)3 a/2 (

(55)

Hence

V1
+(3/2) l E (3/2)+ 1 k, a E (1)

CO ' 67

It follows from Eq. (32) that

(46)

(47)

Equation (55) can be simplified by using Eq. (50), yielding
the coefficients of (a/ag)EI ' as well as that of EI ' to

vanish because of the dispersion relation co =k„+2. The
term (a/ag)B I

' was replaced by the relation (50).
1

After this algebra, we obtain from Eq. (55)

a'—
E (1)—n (1)E(1)

t(2 a(~

and from Eq. {33)that

B( / )+ -kxE( / ) g B( )+xx E( ) —P

(49)

Combining Eqs. (48) and (49) and making use of the
zeroth-order dispersion relation (42), we obtain

k x
B — XE( / ) xx E( )

) ~ 1 ~2 ag )
(50)

On the order e we collect terms arising from the
momentum equation (29) as

lkxB(i3/2)+i E(3/2)+ kx B(l1)+ ' E(i1)=0,
co ' co a( tx) a(

with the adiabatic gas constant y = 4. Then

p(()) p p(1) —p + (1)

p(~2) —p[~&(2) + ) ~(~ 1)(&(1))2]

(58)

(59)

and P is equal to the normalized o. '/ . If the nonrela-

Equation (56) is one of our basic equations governing the
nonlinear behavior of the coupling between the e -e+
plasma and radiation, i.e., n'" and E'".

For relativistically hot electron-positron plasmas with
photons interacting with leptons opaquely, the equation
of state can be taken as that of ultrarelativistic particles,
or equivalently, that of photons. Thus the pressure of the
positrons or electrons Eq. (6) is written as

P =P(n )~=P{1+En"'+6n' '+ . )
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tivistic gas constant is used, the exponent y of Eq. (57)
takes the value of —', , the coefficient y and —,'y(y —1) in

Eqs. (58) and (59) take the values of —,'and —,'. In our
present normalization, the field E and 8 are measured in
the unit of (mc(U~, /e) and the pressure is measured in

the unit of (I/4')(mccoy~, /e) =nome . Therefore the
radiation pressure is measured in the unit of the electron
rest mass energy density. Introducing these expressions
into the equation of longitudinal motion (30), we have in
O(e3/2)

where n '
0 is denoted as n ' ' here and the right-hand side

of Eq. (68) can be cast into +(vXB)„' '= —(2/
(U )(a/ag) IE I"

I by utilizing the relation

k
v( ) X g(3/2) + E (1) )(E( //2)+ X E(2)+j J i I l 3—l —) ~ ag —)

and a similar relation for v(+~/ ' X 8~(". Equations (67) and
(68) yield

and

A
B „(1)+ a, (1) =06+ + U+x 0 (60)

(61)

Bn"'
B7.

(1) (1) (1) (1)

ag
" 9 ag

From Eqs. (60) and (61) we obtain

A, =yp. (62)

(69)
CO

In the present section we consider a specific case in
which the group velocity of the electromagnetic wave is
equal to the phase velocity of the longitudinal wave. We
refer the reader to Fig. 1(c). The longitudinal wave is ba-
sically the acoustic wave.

In the following we take the ultrarelativistic case in
particular for concreteness sake. The acoustic phase ve-
locity in the ultrarelativistic temperature limit is

c, =c/3/3, as derived from the equation of state (57).
Thus let A, be specified as

(63)

(1)
(1) a U(1) — 1 a E(1) 2

ar 6 "
ag 9 ag

(70)

IE(1) 2 2IE( )l2 s E(1) E(1) t(k cxot)+
1

From Eq. (56), on the other hand, we obtain, with the aid
of n "o=v'", /A. =&3v ", ,

Noting that the wave number k, at which the group ve-

locity of the photon becomes equal to the phase velocity
of the phonon is k, =1 and that the photon frequency co

at k„=1 is tt) =k, +2=3. Equation (69) can be written
as

This sets the normalization of the constant such that

I

y
—4

4~ T

We also note that

v+„=A,n+(1) — (1)

and

(64)

(65)

B2-
E (1)—33/3U(1 i E (1)

)) +xo l)

Introducing v and E by the relations

v =-'v(')
6 +xo

(
7

) I/2g (1)
54

(71)

(72)

(73)
n'" =n'" E"'=0+ —i x0

(66)

as already found in Sec. II.
In the order e there is no term. In the order e for

l=0 (the harmonic number for k„) we have from Eqs.
(28) and (29)

B B B

ag' ag
' a

BU BU
+U

ar ag

BE
B ~

=UE

IE I', (74)

(75)

and g'=(
—,', V3)' g, r'=(

—,', 3/3)'/ r, Eqs. (70) and (71)
are now written as

and

a „, a „, „, a „, 4 a

+—P (n'") — Pn'" n'' =+(vX—B)' '2 B 4 B

9 ag 3 ag

(68)
aU + aU U Igl2
ar ag ag'

(74')

where the primes of g' and r' have been removed in Eqs.
(74) and (75) and herewith. Equations (74) and (75) are
our basic equations for the photons and phonons in reso-
nance (ace/ak =c, ) in an electron-positron plasma.
When the viscosity effect comes in at the order
O(p. )-e'/, Eq. (74) becomes
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IV. STATIONARY STRUCTURE—
SHOCK WAVES AND SOLITONS

2—Vv'+
2

= —(IEI')', (76)

E"=UE . (77)

Integration of Eq. (76) yields

2

P= —VU+ + iEi
2

(78)

where P is a constant and is essentially energy except for
an additive constant. The velocity U can be written from
Eq. (78) as

U = V+&2(-'V'+P —~E~')'" (79)

It is required for reality of U that the "total energy" Q be
positive

V2
Q= +P&0.

2

Equation (79) takes the form

U = V+3/2(Q —Ei )'

With Eq. (81), Eq. (77) yields

E"= [ V+3/2(g —lEI')'"]E .

(80)

(81)

(82)

Some discussion is presented in the Appendix on whether
the initial and boundary conditions to Eqs. (74) and (75)
are well or ill posed.

We look for particular solutions to the problem of
one-dimensional resonant interaction of electron-positron
plasma with electromagnetic waves described by Eqs. (74)
and (75). In this section we write E as E. We also re-
strict ourselves to a class of solutions that depend only on
g—=g

—Vr, where V is the phase velocity. In the follow-
ing the derivative with respect to g is expressed by a
prime.

Equations (74) and (75) are cast into

where Wis the total energy.

1. Case A {V) 0)

From Eq. (83) it follows that when V& 0 the plus sign
in Eq. (83) gives B4/BE=0 only at E =0, while the
minus sign yields two roots E =0 and E =P, which re-
quires P &0. From this the minus sign should be taken.
The three extrema of 4 are E =0 and +3/P. See Fig. 2.
The potential maximum 4~ takes at E=+3/P with
@M=—

( V/2)P —'V —+( 3/2/3)(V /2+P) / .
Case I: 0( 8'(4M, periodic solution.
Case II: IV=@M (homoclinic), kink or antikink soli-

ton solution.
Case III: IV) @sr, free particle (unbounded).
Case IV: W & 4M, E & 3/P, —one-side unbounded.
Case V: IV &4M, E )3/P, one-side unbounded.
Thus bounded solutions of interest take place in cases I

and II. In particular, case II yields kink or antikink soli-
tary solution. For (~ac, E~3/P and for g~ —oo,
E~ 3/P fo—r the kink and vice versa for the antikink.
From Eq. (81) U ~0 as

~ g~ ~ ec.

2. Case B (V&0)

In this case for a reason similar to case A we must take
the plus sign in Eq. (83). The potential is now
q) = —( V /2 )E~ + ( 3/2 /3 )( g —E3

)
/2 —

( 3/ 2 /3 )g
Hence when ,'V 2P—&0—, C&(E =+3/Q )&&0. This situa-

tion is depicted in Fig. 3, parts I, II, and III. Note that
~E & Q for real U from Eq. (81).

Case I: —,
' V —2P & 0. A solitary wave exists for

IV=0. For 0& IV& ~ a periodic wave (approximately
with two periods) solution and for W & 0 a periodic wave
(approximately one period) solution exist. See Fig. 3(I).
The electric field E goes to zero and U ~ V
+(V'+P)'"&Oas ~g~

A. Real E

= [V+3/2(g E)' )E-
BE

so that the "equation of motion" for E is

(83)

Let E be real and we introduce a pseudopotential (Sag-
deev potential) 4 by the relation

Q I

I

m

0
B2E Bc&

BE
(84)

Integrating Eq. (83), we obtain

E2+ (g E2)3/2+ g3/2
v'2

2 -3 +3 (85)

—,'(E') +4= IV

Integration of (84) with respect to g yields the "energy
conservation"

FIG. 2. Pseudopotential 4 [Eq. (85)) for case A with real E
as a function of the electric field E. The maxima at E=+"t/P
and the minimum at E =0 are shown. The homoclinic (solitary)
wave is realized for the case II, i.e., 8'=@M. Case I gives a
nonlinear periodic wave train, cases III—V unbounded (unac-
ceptable) solutions.
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(Y& 0)

,
'-JF 0

Q

(I) -V -2P &0

=E

(Ir) —,
' V'-2P &0

—F1 1———2[V+v'2( '—V +P —p)' ]'P
—1/2( —1/2 i )i

By writing R:—v p & 0, Eq. (92) can be written as

ac
BR

where

(92)

(93)

-jg -jp 0 MpiU
2

4=4+—1 Fo

I. Cased ( V &0)

-JQ -JP o

(ar) —,
' v'-2p = 0 The potential 4 looks like Fig. 4(a) if F is s IIi

small. The maximum point R,„ is given by M&/BR =0,
i.e.,

T

V2
V —i/2 +P —R

2

F2
+ =0.

4R 2
(95)

FIG. 3.. Pseudopotential 4 for case B with real E. Case I can
give two period waves as well as one period dwave around

or — P. The solitary wave is realized when W=O.
u no so itary wave possi-Case II: periodic waves for W&0 but l'

ble. Case III: solitary wave is possible for W=O.

Case II: —,
' V —2P (0. Asymptotic solutions i.e. E

becomes uniform as
~ g~ ~ ae, are not possible.

Thhe soliton solution appears where the total ener is

q o ( =R,„). In this case the electric field E in
e o a energy is

Eq. 87 suggests that it holds its maximum p,„=R
as ~(~~co and its minimum p =R tmin min a
Fig. 4(b)]. This is a dark solitary wave.

2. Case8 ( V(0)

In this case the potential 4 looks like Fi . 4(c). Th
is no"homoclinIc point and thus no soliton solution, un-
ess Fo=O; that is o. =O. If o. =const, then p=const so

t at there are no plane-wave solutions for which

B. Complex E

To solve Eqs. (74) and (75) for more general cases of
complex electric field E, we introduce the expression p ja

E=p' (g)exp —Jo(g)dg (87)

where p determines the amplitude squared and o the
phase of E. Substituting Eq. (87) into Eq. (75), we obtain

(pt7
)' =0,

i + [
—1/2( —1/2

P P

namely

R min R max

=R

(c)

Pmin

po =F(r),

,'cr = —2—v+p '/
(p

'/ p')'+G(r),
(88)

(89)

where the primes denote the derivatives with respect to g.
Let us choose G =0 and F(r) =Fo = const so that

o —Fop )

Fo 1

2 p

—
1 /2( —1 /2 ~

)
~

P P

From Eq. (91), we obtain

(90)

FIG. 4. Pseudopotential 4& [Eq. (94)] as a funct' f 1'unc ion o amp i-

u e . ase A potential is in (a), case B potential in (c), while
n ot case A andt e dark soliton for case A is shown in (b). I b h

nonlinear periodic waves are also possible.
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v =const. If Fo =0, we have a solitary-wave solution that
was already given as a particular solution in Fig. 3.

C. Numerical integration

We carried out numerical time integration of Eqs. (74)
and (75). Starting from an arbitrary initial condition, we

obtained various results, including some wave breaking
resulting in angular profiles. These are too complicated
to present here. Instead we present a few cases of runs
starting from the equilibria discussed earlier in this sec-
tion. The discussion on well-posed and ill-posed bound-
ary conditions is given in the Appendix.

the periodic wave of u and E propagate to the right with
the roughly prescribed velocity with hardly any change of
the profile.

2. Case A II (real E)

This case corresponds to the homoclinic (soliton) solu-
tion of case A for real E. This is a kink soliton for E.
The initial condition is determined by solving Eqs. (97)
and (98) with E((=0)=0 and

3/2

E'(g 0)
VP 2 V

2 3 2

1. Case A I (real E)
V2+ +P

3 2

3/2 1/2

This case corresponds to case A of real E in the first
part of this section, the positive V, and 0 & 8'& 4M, the
mode being trapped in the potential 4 and thus bounded.
This is a periodic solution. We take the periodic bound-

ary conditions for v and E. It should be noted that Eq.
(75) is a homogeneous differential equation with respect
to E and does not fix the amplitude of E by itself. In or-
der to determine the amplitude of E, therefore, it is
necessary to invoke the energy conservation. The
electric-field amplitude at v =v,„ is determined as

The symmetry of E( —g)= E(g) —and u( —g)=u(g) is
imposed for solving Eqs. (97) and (98). With this initial
kink soliton profile, we solve Eqs. (74) and (75) in time
with the boundary conditions E(0)= v'P, E—(L)=UP,
and u (0}=u(L }=0,where 0 and L are the left- and right-
most coordinates of the system. An example of V=0. 5
and P =0. 1 for this case is illustrated in Fig. 6. The kink
soliton propagates to the right. Towards the end, the dis-
tortion of the v profile appears, which is attributable to
our boundary handling.

E(u,„)=[Q —
—,'(u, „—V) ]' (96)

3. Case 8 I (real E)
The initial condition is determined by the steady-state
solution of Eqs. (74) and (75)

and

E"=[V—&2(Q E)' ]E—

u = V —v'2(Q E)'—
(97)

(98)

with the boundary condition of E'=0 at the edge of the
computation box. An example of V=1 and P =5 is
shown in Fig. 5. The time step and spatial grid size are
0.001 and 0.05, respectively. A numerical viscosity of
0.01 is included for computational purpose. We see that

This case belongs to case B as discussed in the first half
of this section, V&0. For the total energy in the range
0 & W & oo (case B I) the solution is periodic with two in-
dependent periods, with the shorter one arising from the
small hump and the longer one from the overall well.
The initial condition is once again determined by Eqs.
(83) and (84) with boundary conditions E =0. The
periodic boundary conditions for v and E are employed.
The normalization of E is again that of Eq. (96). An ex-
ample is given in Fig. 7 for the parameters of V= —5 and
P =1. One discerns the nonsinusoidal oscillations due to
double periods.

- 0.1 -Ql

—0.2 -0.2 (c)

0.6 0.6-

-06-
0 18

-0.6
0 18

FIG. 5. Numerical time integration of Eqs. (74) and (75) for U and E for case A I with real E. The periodic wave case is shown.
The phase velocity of the structure was measured to be V.
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0
V

t= 5.6

-O.l- -OI-

0.3- 0.3-

E 0'

0 X

(b)

20 0 = X 20

FIG. 6. Time integration for v and E for case A II with real E. Solitary wave case (kink soliton) for E is shown. Note that ~v~

shows a bright soliton shape.

4. Case B II

This is the homoclinic (solitary wave) case of case B of
real E with W =0. The initial condition for Eqs. (74) and
(75) is given by the solution of Eqs. (97) and (98) with
5 V —8P ~ 0 under the boundary conditions E =Eo and
E'=0 at the center, where Eo is a zero of 4=0 between
&P and &Q. The boundary conditions are chosen to be
v(0) = u(L) = V+( V +P)' and

Once again the initial value is chosen as the equilibrium
value

E —ReI'/28

8= J Fo/R dg,
F2

R"=IV—[2(Q —R )]'~ jR+—4Z' '

E(u;„)=[Q—
—,'(v;„—V) ]'i', (99) v = V —[2(Q —R )]'~

and E'(u;„)=0. An example with parameters of
V= —2 and P =1 is shown in Fig. 8. Note that the ve-

locity U changes its sign from positive at the asymptotic
points to negative at the peak of the soliton. It is ob-
served to move to the left approximately with velocity V

( &0).

with R((=0)=R;„and R'((=0)=0, where R;„ is
found from the 4 curve. The symmetry is imposed as
u( —g) =v(g), Re[E( —g)] =Re[E(j)], and Im[E( —g)]= —Im[E(g)]. The temporal Eqs. (74) and (75) are
solved by

D. Complex E

We numerically investigate the homoclinic (dark soli-
ton) case of the complex E solution of type Eq. (87).

+ +R =0
at ag 2

a'z
Bg' 4R' '

(100)

(101)

—0.5 -0.5

2.0

24 0 24

FIG. 7. Time integration for U and E for case B I with real E. The double periodicity pattern can be seen particularly in E. Note
that U changes its sign.
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0.4- 0.4—

0-
V

(a)

„0-
(c)

I.O- I.O

0
0 X 25

0
0

(d)-
25

FIG. 8. Time integration for U and E for case B II with real E. The bright soliton is observed. Note again that u changes its sign.

with the periodic boundary conditions for v and R and
the normalization of

R ( v,„)= [Q —
—,'( v,„—V) ]' (102)

V. SUMMARY AND DISCUSSION

We have investigated nonlinear interaction of elec-
tromagnetic waves and acoustic modes in an electron-
positron plasma. The ponderomotive force of elec-

An example of a dark soliton with V= —5, P=1, and

Fo =0. 1 is shown in Fig. 9.
All these solutions that started from the equilibria we

discussed early in this section seem to show stable propa-
gation in time (within our integration period), although in

some cases a certain degree of degradation of the original
profile of v and E is observed. In particular, the kink soli-
ton (and, therefore, perhaps a trapezoidal soliton, i.e., a
pair of kink and antikink solitons) for case A is stably ob-
served; the soliton in case 8 is also stably observed; and
the dark soliton in the complex E case is also observed to
be a stable entity over the period of runs we performed.

tromagnetic waves acts on the electron-positron plasma
density. The density depression of the plasma created by
the em waves in turn acts on the propagation and
diffraction of the em waves: it tends to trap the em
waves. Thus the self-trapping of em waves and self-
evacuation of the plasma result. When the typical wave-

length X of the em waves is much greater than the col-
lisionless skin depth c jr' „the packet of the em waves is
virtually stationary with respect to the sound propaga-
tion (which is c /&3 in a relativistic plasma). Such a situ-
ation was called the nonresonant interaction of em waves
and acoustic waves. This process may happen explosive-

ly in two- or three-dimensional cases, as the phenomenon
accelerates, and the density perturbation grows and fur-
ther intensifies the process. Thus the nonlinear coupling
of em waves and plasma in this case can give rise to
significant structure formation and the plasma density
profile can be easily modified by the "self-attractive
force" of em waves.

When the group velocity of the em waves and the
phase velocity of the acoustic waves match, a resonant in-
teraction (and possibly amplification) of acoustic waves

0 0-

v v

-(a)-0.2 ' -O.I8-
- (c)

I.O
R

I.O
R

(b)

X 50

(d)

0 50

FIG. 9. Time integration for U and amplitude R for case A with complex E. The dark soliton is observed in the amplitude R of the
electric field. Although V) 0, the solitary velocity U is locally negative with V+ U still being positive overall.
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by the em waves becomes possible. This happens when
the typical wavelength of the em wave packet is equal to
the collisionless skin depth for the relativistic e -e

plasma case. The coupling between the em waves and
acoustic waves has been analyzed, using the reductive
perturbation theory. Our analysis led to coupled equa-
tions for the acoustic wave field v, and the em field E,
Eqs. (74) and (75). Equation (74) appears in many litera-
tures of em-plasma coupling. Equation (75), however, ap-
pears to be a new type of equation in this connection.
This is a homogeneous equation. These two equations
conserve energy. The initial and boundary value problem
of this system is discussed in the Appendix. We are able
to obtain stationary (or propagating) solutions to the sys-
tem of Eqs. (74) and (75). They take such forms as bright
solitons, shock waves, trapezoidal solitons, and dark soli-
tons, as well as periodic nonlinear wave trains. To our
best knowledge, these solitons obtained for the system of
Eqs. (74) and (75) are a new discovery. These solutions
represent, once again, a possible significant structure for-
mation in an electron-positron plasma. Thus in either
nonresonant or resonant cases we find possible mecha-
nisms of structure formation in the electron-positron
plasma. This plasma can be said to be more plastic than
the usual electron-ion plasma. This is because the former
does not develop charge separation and thus no restoring
force, while the latter invariably develops charge separa-
tion and this tends to saturate the above process.

Let us discuss the cosmological relativistically hot
electron-positron plasma in particular. Several plasma
densities characteristic of each particular physical pro-
cess are examined. For the plasma to exhibit collective
processes such as plasma oscillations, it is necessary to
have the mean distance of plasma particles much less
than the characteristic mean free path

c —
1 (107)

[Note, however, that for modes with wavelengths A, much
greater than (no KN) ', the plasma may be regarded as a
usual fluid. ] More discussion on the collisionless nature
of the plasma and kinetic effects is provided later. The
critical density below which Eq. (107) is fulfilled is

'2

1037 (108)
mc

cm

The condition that the mean distance of particles is much
smaller than the typical collective length (the collisionless
skin depth)

1 c

~ 1/3
Npe

(109)

yields the threshold density of

n, = r„=2X10 cm
1

(4~)' " (110)

below which Eq. (109) is fulfilled. Thus in our plasma the
condition n ' (clio~, &(noKN) ' holds.

In our plasma the (average) photon energy
AN- T))mc . In our classical treatment of plasma col-
lective mode to be relevant, we require

where r, =e /rnc, the classical electron radius. Thus
Eq. (103) is fulfilled in our plasma, where n is typically
10 —10 cm '. For more kinetic theory, see such as
Ref. 20. Similarly, the plasma collisionless skin depth
c/cu, for collective behavior should be shorter than the
mean free path

1 —1

1/3 (103)
T AN ))AN

P

where n is the electron density and o. is the cross sections
of electron-photon collisions. Since in the relativistic
plasma photons and leptons behave similarly kinematical-
ly speaking, this cross section can be a measure of
photon-photon, electron-electron etc. collisions as well.
When T ))mc, the cross section should be, instead of
the Thompson cross section, the Klein-Nishina formula

3 IC
o ~N

—— o r ( for iiico &&mc ),
8 AN

(104)

3/2
AN 3 36 AN

e
PlC mc

3/2

cm

(106)

while

~„N=a., (for iri~&(mc'),

where the Thompson cross section
cr (T8~/3)(e /mc ) . The typical energy of photons
AN is, of course, T. Then the critical density n below
which Eq. (103) is realized is

The density at which AN =mc is given by

n = r 'X =2X10 cm
1

q 4 e C (112)

where A, c=iri/mc the Compton wavelength. Therefore
most of the time we have

T AN ))Plc )AN& (113)

in our particular epoch of 10 '(t (1 sec after the big
bang.

So far in our investigation we have neglected collision
and kinetic effects. The viscosity p in a collisional fluid is
inversely proportional to the collision frequency. When
the fluid becomes less collisional, the collisional viscosity
begins to lose simple meaning. In a less collisional plas-
ma the mixing of particles, so to speak, gives rise to large
viscosity. In the collisionless limit we now have inter-
penetrating "fluid elements, " i.e., collisionless plasma
particles. Each particle preserves its memory for a long
time with a straight orbit as the first approximation. Be-
cause of this, the particles now experience Landau damp-
ing, which can play a role of eftective collision. The ki-
netic equation under consideration is
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APPENDIX

(114)

where the collision term on the right-hand side is neglect-
ed and the pressure term can incorporate the photon in-
teraction through P =o ' n . An approximate
dispersion relation for the phonon in e -e+ plasmas may
be given by

We examine well-posed initial and boundary conditions
to the system of Eqs. (74} and (75}, where the spatial in-
terval is a ~ g ~ b. To this end, by means of Eq. (75), we
express U by E as

U =Err/E,
which is introduced into Eq. (74) to give

2

(E((IE ),= — + )E
i

1+4 W =0,
kc

(115) 1.e.,

which exhibits large Landau damping, where W is the W
function. ' Because of the significant Landau damping
for phonons with wavelength larger than c /co „the most
important coupling would be the nonresonant (Sec. II) in-
teraction. ' Another distinct kinetic effect (or effect of
particle nature) is the Compton scattering of photons (em
waves). The Compton scattering by plasmons becomes

important when Ace-%co for densities of n & n, which
can happen very early in the plasma epoch. The discus-
sion of such topics is beyond the scope of the present pa-
per.

In the description of fluid behavior the Reynolds num-
ber sometimes plays an important role. For wavelengths
much larger than (noKN) ', the plasma behaves like a
usual fluid and the Reynolds numbers may be expressed
as %=A. v/p, which can be much larger than unity,
where v is effective collision frequency either replaced by
the Landau damping rate or other collisionless mecha-
nisms such as the chaotic orbit effect. On the other hand„
for wavelengths A, -c/co, (((no~N) ', the plasma is
collisionless and nearly dissipationless.

The impact of the present theory on astrophysical set-
tings is expected, as the theory predicts a fairly stable sta-
tionary structure carved out in a relativistic plasma. De-
tailed examinations of the application of this theory to
cosmological plasmas, AGN plasmas, pulsar plasmas,
etc. , however, are too much to be contained in this short
article. Instead, it should be left to future astrophysical
publications. For semiconductor electron-hole plasmas
the process of combination into positronium has to be
taken into consideration along with lattice ions and
bound electronic responses.
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" +~E~' E'=F
2

or

(E(,E E~E, )—(=F . (75')

E,=CE+Ef (G/E )dg+DE f dg,
a E2

where C is a function of ~ and

G= f 'Fdg,

(A2)

D =(E(,E E -E,)(—. (A4)

If E at (=a is given and does not identically vanish,
namely E(a, r)=f(r)WO, then

d ==Cf, i.e. , C =f'If .

Therefore when E and E& are given at (=a as functions
of ~, E, is determined by

E,=(f'If )E+Ef '(G/E )dg+(g'f gf')E f ~
d(—,

(A5)

where E&(a, r)—=g. We thus find that the initial and
boundary conditions can be given in a ~ g ~ b as follows.

Case (i): r=O, E((,0) is given; and /=a, E(a, ~)WO
(does not identically vanish), E&(a,~) are given.

A simple boundary condition may be that both f and g
are constant. In this case C and D vanish, and (A5} takes
the form

E,=Ef (G/E )dg . (A5')

In this case, the boundary /=a may be —~, so that E
approaches asymptotically the constant value f as
g~ —oo. (Then E&~0, i.e., g =0.)

If E(a, r) =0 for V~(f =0), but E(b, r) does not identi-
cally vanish so that E(b, r) =h (r), we have

Integrating this equation from a to g, we have

E(,E E;E,=—f F d (+(E~,E EgE, )(—=, , (A 1)
Q

which is formally solved for E, as
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=(h'/h )E — f (G/E )dg E . (A5")

If h is constant, Eq. (A5") reduces to

E,= — f (6/E )dg E .

We thus find the following,
Case (ii): ~=0, E((,0) is given, and /=a, E(a, r)=0

and g=b; E(b, ~)=h(r)%0 is given. (a~ —~, b~ao
may be assumed. ) If both E(a, r) and E(b, r) vanish
identically, C is not determined, hence the time evolution
of E at v=0, (E,), o, is not uniquely determined by the
initial value E((,0). There may be infinitely many solu-
tions satisfying the same initial value. Unique solutions
will be possible under special initial conditions only,
which are examined as follows. From Eq. (75') and the
boundary condition it follows immediately

f'Fd&=0, i. , f'( ,'"+lE~-'),E d(=0, (A6)
Q Q

where u =E~~/E. When (A6) holds initially, it perpetu-
ates, provided E, is given by (A2) [because (A2) yields
(75')]. Hence (A6) is a necessary condition in order that
the boundary condition is satisfied. In the special case
that E is real and U is a function of E, Fbecomes perfectly
differential. Then in the limit E~0 as a ~—ao,
b~ —~, (A6) is satisfied automatically, and it leads to
the solitary waves of Fig. 3(I). The solitary waves
comprise two independent parameters ( V and P), which
can be selected freely. (This differs from the KdV soli-
ton). Hence by fixing these two parameters and a phase
constant we have a solitary wave, which is given unique-
ly. If the initial value is given by the solitary wave at
~=0, the initial form moves with constant velocity Vas ~
evolves. That is, the solitary wave is a unique solution
for the initial value. In view of Eq. (A2), for the solitary
wave we have the relation E = —VE &, which makes it
possible to uniquely determine C. However, if the initial
state is disturbed slightly so that it is no longer a solitary
wave [though (A6) is valid], then for the perturbed initial
value, C is not uniquely determined. Therefore a con-
tinuous dependence of solutions on the initial value (given
by the solitary wave) is lost. In this regard, it may be said
that the solitary wave is not evolutionary, hence it is
physically irrelevant. Here we note that this difficulty of
nonuniqueness of solution originates not in the condition
(A6), but in the evolutional property of (A2) [or (75')] as-

h'=Ch+h f (6/E )d(,
hence

C=h'/h —f (G/E )d(.
(D&, vanishes regardless of g so that it is not necessary
to specify g.) Consequently, the time evolution is given

by

E,= h'/h —f (6/E )d( E+Ef (6/E )dg
Q a

ol

E E —EE=-jr

consequently one has

Fdg;

E,=CE+E 6 E d or — I' d

6= f Fdg or —f Fdg
oc

Then, by means of the boundary condition at g= —~, or
+ ~, Cis given by

C= —ikV .

We thus obtain the evolution equation for E. Therefore
we find the well-posed initial and boundary conditions.
Case (iv): r=O, E((,0) is given, the boundary is at
g~+~; the outgoing wave E~Eoe '"'~ ' for V)&0

or (0, respectively.
The kink solution of real E (case A, V) 0) is a special

solution (F is perfect differential), but it belongs to (i) with
a ~ —~, E~f X (const)%0. Hence, for perturbed
states, solutions are determined uniquely. Namely, in
contrast, to the solitary waves in case (iii) the kink solu-
tion is evolutional and physically relevant. The dark soli-
tary wave of complex E (case A, V) 0) belongs to (iv). If
the outgoing wave at g= + ~ ( V) 0) is assumed, in gen-
eral at g= —~, the solution will be comprised of the in-
coming and outgoing waves. Only in a special case that
solitary waves propagate at g= —~, the outgoing wave
(namely the refiection wave) does not exist. That is, the
(nonlinear} potential u in Eq. (75) is refiectionless. We
thus find that the difficulty of the nonuniqueness of solu-
tion arises in case (iii) only.

sociated with the boundary condition. [In fact, (A6) is re-

quired also in case (ii) in the limit a ~—~, b ~ oo, but C
(solution) is unique provided (A6) holds initially. )] The
periodic boundary condition also leads to the same

difficulty. Therefore we conjecture the following.
Case (iii): E(a, r)=E(b, r)=0 (a and b may be +oo}

or the periodic boundary condition is ill posed.
Finally, we examine the case of infinite region of

—~ & g & ~ and lim,
&
„„Eis indefinite. In this case as

a physically relevant boundary condition we assume the
outgoing wave at g=+ oo, that is

E~EO(expi)k(g —Vt) as g~+ co for V) 0

g~ —~ for V&0,

where Eo(%0) is a constant. From Eq. (75) we see

u ~—k & 0 as (~+~ ( V)&0) .

Under this condition D at g=+ ~ vanishes. Hence (Al)
becomes

E~,E E(E,=—f Fdg
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