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A detailed study of the linear stability and nonlinear wave collapse of Langmuir solitons in a
weakly magnetized plasma is performed. An analytical investigation of the linear soliton instability
with respect to long-wavelength transverse perturbation versus magnetic field effect is presented.
For a more complete understanding of the growth-rate structure, a numerical solution of the eigen-
value problem that corresponds to the model equations is obtained and compared with analytical
predictions. Comparison with earlier results is given. Furthermore, numerical results obtained by a
direct simulation method in two dimensions are also presented. In a linear regime, detailed agree-
ment with the results of the corresponding eigenvalue problem is found. In the nonlinear regime of
the soliton instability all considered cases exhibit a collapse dynamics. Moreover, in the developed,
highly nonlinear stage of the soliton collapse, self-similar behavior consistent with a “weak” col-

lapse regime is found.

I. INTRODUCTION

One-dimensional stationary localized solitonlike wave
structures are understood to be the basic elements of
strong plasma turbulence. In one-dimensional systems
solitons are stable, evolving rapidly from an arbitrary ini-
tial plasma state, and therefore they determine the basic
features of the emerging plasma turbulence. However, in
real plasmas, as a rule, solitons appear to be unstable
with respect to transverse perturbations.! In a nonlinear
stage of evolution, this instability often leads to a soliton
collapse, a unique nonlinear wave phenomenon of the for-
mation of a singularity in a finite time. Accordingly, the
appearance of the collapsing nonstationary wave struc-
tures (cavities) that exhibit a rapid field growth followed
by an intensive spatial localization (self-focusing) results
in a qualitative change of the turbulence character.’? The
dispersion relation describing linear Langmuir waves in a
weak magnetic field has a form
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where 0., and w,, (0, <<w,,) are the electron cyclotron
and the electron plasma frequency, respectively, rp. is
the Debye radius, and k, is the wave number component
transverse to the magnetic field. It is evident that the
transverse perturbation increases the wave frequency and
is therefore energetically unfavorable. Accordingly, un-
stable modes should only correspond to long-wavelength
transverse perturbations, with a frequency increase on
the order of the instability growth rate. Moreover, a
magnetic field increase results in an increase of the fre-
quency of transverse oscillations and appears as a stabil-
izing factor.

Soliton instability in a weak magnetic field was studied
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in Ref. 3. It was shown that for moving solitons with a
velocity V /v, > w. /w,, (v, is the electron thermal veloci-
ty) the magnetic field produces no changes in the behav-
ior of the soliton instability apart from increasing the
transverse instability length scales, according to
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where 1,~(87nT/E})"/? is the soliton characteristic
length.

In the opposite limit, the case of a standing soliton
(V' =0) in the long-wavelength region for the instability
growth rate (y), the following analytical solution of the
corresponding eigenvalue problem? was obtained
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where
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is Riemann’s zeta function.

At first sight, it seems that for sufficiently large values
(0, /), >0.43E5/87nT) the magnetic field stabilizes
the linear instability. However, instability may reappear
if one takes into account the next terms in the expansion
in transverse wave numbers k,. The dispersion relation
(1.2) in the limit k&, —O0 turns into a marginally stable
mode corresponding to a small variation of the soliton
amplitude. On the other hand, the expression (1.2) by it-
self does not appear to be sufficiently exact. In the treat-
ment!? only the first term in the expansion y(k,) was
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calculated. Moreover, the existence and solvability of the
perturbation scheme, typically has not been proved, nor
was the convergence of the series expansion.

Numerical results obtained by Rowland* indicate that
the magnetic field is unable to stabilize the soliton insta-
bility. Yet, these results are based only on a few values of
the parameters, so it is unclear if other regions of soliton
stability exist. The influence of the magnetic field on the
growth rate structure and on the transverse instability
length scales remains a very important issue. These
characteristics would give us an opportunity to estimate
the parameters of the emerging collapsing Langmuir
wave packets. The magnetic field effect on the collapse of
Langmuir wave packets for different model equations has
been a subject of earlier studies.’~?

In this paper, we present a detailed study of the
influence of the magnetic field on the soliton stability.
First, we formulate the basic model equation and discuss
the physical background of the problem. Based on the
variational principle, we present an analytical investiga-
tion of the growth rate structure in a linear regime for
finite values of the transverse perturbation wave number.
Then we give results of the numerical solution of the cor-
responding eigenvalue problem. We have obtained a
complete spectral structure of the growth rate and corre-
sponding eigenfunctions. Somewhat unexpectedly, the
calculated form of y(k,) does not agree with the analyti-
cally obtained equation (1.2). We discuss the possible
reasons for this discrepancy due to the inadequate accu-
racy of the perturbation treatment. Finally, the last sec-
tion is devoted to the nonlinear stage of the soliton insta-
bility, which exhibits a soliton collapse. In order to study
the magnetic field effect on the nonlinear stage of the soli-
ton instability we have performed direct numerical simu-
lations in two dimensions (2D). In the linear regime we
find detailed agreement with the results of the corre-
sponding eigenvalue problem. In the nonlinear regime all
considered cases exhibit collapse dynamics. Moreover, in
the developed, highly nonlinear stage of the soliton col-
lapse, self-similar behavior consistent with a “weak” col-
lapse regime is found. Our work differs from the earlier
studies on Langmuir collapse’~® in terms of model equa-
tion, initial conditions (soliton) level of nonlinearity and
observed phenomena.

II. BASIC EQUATIONS

Nonlinear evolution of Langmuir waves in a weak
magnetic field is conveniently described by a time-
averaged dynamical equation for the envelope of the
high-frequency potential ¢, which in dimensionless units
172

3IM 3 T
z-»;;wpe‘t, r—>> || et b (12) %y
reads’

Aliy, +AY)—o A+ V(| VY|2VY)=0 , 2.1

where 0 =20}, /wf,eM/m, M and m are the ion and the
electron mass, respectively. The external magnetic field
B (w,,=eB/mc) is in the x direction while the dimen-
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sionless equation (2.1) is valid for o <<iM/m. The
linear part of (2.1) corresponds to the dispersion relation
(1.1) while the nonlinear term is described through a stat-
ic plasma response to the ponderomotive force action.
We assume that the characteristic nonlinear time scales
are slower than the ion-sound motions. The above is
justified in a small amplitude region E}/8mnT <m /M,
the subsonic regime.

For more complete insight into the soliton stability
problem and corresponding growth rate structure the in-
clusion of the ion inertia is essential (see Refs. 5-9). A
detailed study of this physical problem will be presented
in a separate publication. As will be seen below, the mag-
netic field increase results in an increase of transverse
perturbation length scales. Under the assumption that
the characteristic transverse length scales are sufficiently
larger than longitudinal ones, the equation (2.1) substan-
tially simplifies to’
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As mentioned above, we shall investigate stability of a
planar standing soliton, as the only known analytical
solution of (2.1) and (2.2)

¥o="V"2 arctan[sinh(Ax)]exp(iA’t) , (2.3

where A is the soliton strength parameter.

We study the stability of (2.3) with respect to small
transverse perturbations with a potential ¢, =f +igina
form
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Linearizing (2.1) on the background of the soliton (2.3)
and taking x —xA and 0 — o /A? we obtain
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The increment y (growth rate) of instability is given by
the eigenvalues of the equation (2.4) corresponding to the
spatially localized eigenfunctions.

In the literature there exist standard methods of solu-
tions for y(k) in the long-wavelength limit, based on the
local proximity of the eigenfunctions (2.4) for neutrally
stable perturbations.! It is evident that odd and even
(with respect to x) solutions of (2.4) can be treated in-
dependently. Odd modes (antisymmetric) correspond to
marginally stable soliton deformations in the long-
wavelength region. However, for even (symmetric)
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modes in Ref. 3, the following analytical solution was ob-
tained:

y?=2k2{[12—7E(3)]=T0E(3)} . 2.5)

Due to instability the soliton is split into a number of
wave packets that each exhibit a local growth of the soli-
ton amplitude. From the expression (2.5) it seems that
for sufficiently large values of o,

12—7£(3)
76(3)

the magnetic field stabilizes the instability. However, as
already mentioned, in a real situation this might not
occur. Namely, the instability may reappear in the calcu-
lations if one takes into account the next terms of the ex-
pansion in k. It seems that standard analytical methods
do not appear to be successful in that case. Therefore, we
shall try to investigate the structure of the growth rate
y(k) for finite values of k by applying an approximative
variational method.

III. VARIATIONAL TREATMENT
OF SOLITON STABILITY

A basic idea of an approximative “brute force” treat-
ment of a soliton instability in its nonlinear stage (see
Ref. 10 and references therein) is as follows.

Equation (2.1) can be obtained by the variational prin-
ciple
J
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where S is the action defined by
s=[[ é(V¢V¢7—V¢*V¢,)+IA¢I2
+o|V > =1 Vy|* |drdr . (3.2)

Let us substitute ¥ in (3.2) as a set of trial functions with
varying parameters. In our case we chose ¥ in the fol-
lowing form:

Yo=V2arctan{sinh[ A(y,1)x]}exp[ —ig@(y,1)] ,

Al <<lg,,l. (3.3
Accordingly, Eq. (3.1) reduces to a much simpler system
of differential equations for A and ¢, which can be treated
by standard analytical methods. However, the success of
the above procedure essentially depends on our choice of
trial functions. As already mentioned, an unstable mode
appears as a local modulation of the soliton amplitude
and phase. Our chosen trial function corresponds to such
type of perturbation and should in a long-wavelength lim-
it recover expression (2.5).

We substitute the trial function (3.3) into the action S,
where after a straightforward procedure we obtain
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By varying the functional S over ¢ and A, it is possible
to derive a system of two equations (if the initial function
was appropriately chosen). We limit ourself to check if in
a long-wavelength limit (k —0) of the linearized version
of the equations 85 /8¢=0 and &S /8A=0, one can re-
cover the results in Ref. 3. By linearizing the equations
39S /8¢ =0 and 8S /8A=0 on the background of the sta-

tionary solutions @,=tA3, A, =const, @=g,+8¢,
A=Ayt A, we get
—48A, — 4808, — (245 8, +4Adp,,

+41g %8¢, —40hy '8¢, ) (=0, (3.5)
43¢, —8ABAL+21 "8, +8A; *I,81,,,=0.  (3.6)

For perturbations in a form &\, 8¢ ~exp(yt +iky), after
simple calculations we obtain the formulas for y (k) as

(3.4)
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(3.7)

It is evident that in a long-wavelength limit our result
(3.7) agrees with (2.5). However, it is also obvious that
the instability reappears if we take into account the
higher order terms in k. The maximum growth rate de-
pends only weakly on o. Accordingly, generally taken, in
the framework of Eq. (2.1) the magnetic field does not
stabilize the soliton stability. However, based on (3.7),
for sufficiently strong magnetic fields, islands (regions) of
stability around

y=1277603)
786(3) 0

should exist.

We have already emphasized that the accuracy of the
above-noted variational treatment critically depends on
our choice of trial functions. This procedure seems con-
venient to predict the rough qualitative features of the in-
stability increment, however, hardly adequate enough to
describe the fine structure of the eigenmode correspond-
ing to (2.5).
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Therefore, to single out the detailed structure of the in-
stability increment, we have numerically solved the eigen-
value problem (2.4).

IV. NUMERICAL TREATMENT

In order to find a detailed structure of the instability
increment y(k) it is necessary to calculate a set of eigen-
functions which vanish at infinity with the corresponding
eigenvalues for y, for different values of the perturbation
wave number k and the magnetic field 0. As mentioned
above, unstable modes, at least in the long-wavelength
limit, correspond to a symmetric (even) type of the elec-
tric field perturbations. Accordingly, the electric poten-
tial perturbations are antisymmetric. This situation en-
ables us to solve the system (2.4) in the interval [0, o)
with the boundary conditions
|
d*sy

dx*

_d’y
x =0 dxz

=0, SY=f+ig . 4.1)

x =0

Further, based on (2.4) the following condition is au-
tomatically satisfied:

611]1)( =0:0 .

In order to find spatially localized (vanishing at infinity)
solutions which satisfy (4.1) we have adopted the follow-
ing method. On the right-hand side (rhs) of the interval
[O,R] R >>1, for given k, we assume the following
asymptotic solution of (2.4):

SyY=f +ig =C exp(K;x)+ Cexp(K,x) , (4.2)

where C; and C, are the arbitrary complex constants.
By making use of (4.2) as boundary conditions for (2.4) it
is possible to solve the system (1.4) as a Cauchy problem
and to calculate the eigenfunction 8¢ and its derivatives
at the lhs of the interval (at x =0). As a next step, we
define an auxiliary function F(y,C,,C,) in the following
way:

F(y,C,C)=[f0)+ f1.(0)+f2
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If F revolves at a zero point, then the obtained functions
f(x) and g (x) appear to be the eigenfunctions and y (k)
the corresponding eigenvalue of the system (2.4), with
boundary conditions (4.1) and (4.2). The function F de-
pends on five independent parameters. Based on a linear-
ity of (2.4) it is possible to fix one of them, e.g., ImC, =1.
By varying the remaining parameters we look for a
minimum of the function F. The minimization is per-
formed by the method of steepest descent, starting with
arbitrary values of y° C9, and C9. Typical maximum
values for f and g were equal or larger then unity. The
procedure was terminated when the value of F became
smaller than 1073, In order to perform calculations in
the small k region, with the slowly decaying asymptotic
solutions, we have chosen a substantially larger interval
of calculations R =8.

It has been proved that for all considered initial states
a single minimum of F exists being independent on the in-

itial conditions. Therefore, in Fig. 1 we plot the calculat-
ed spectrum y (k) for different values of o. It is evident
(Fig. 1) that the magnetic field increase results in a con-
tinuous change of y(k); its maximum shifted to the long-
wavelength region while the maximum value weakly in-
creases with 0. Accordingly, the magnetic field increase
leads to growth of the transverse perturbation length
scales. For larger values of /, /1, i.e., for larger magnetic
fields (o), which correspond to Eq. (2.2), the spectral
dependence y (k) on the magnetic field strength appears
to be universal:

ylk,o)=y(kVo). 4.3)

Our calculations indicate that the transition to this
universal behavior (4.3) already appears at o = 10.

It is a very important fact that the numerically calcu-
lated spectral dependence differs qualitatively from the
analytical formulas obtained in Sec. III. Namely, numer-
ical results show that the magnetic field increase does not
produce an island of stability near k =0; i.e., instability
exists in the entire interval between k =0 and the cutoff
(critical) value k =k,. On the other hand, the spectral
structure of the growth rate in the small k region consid-
erably differs from the analytically predicted dependence
v(k)~k, exhibiting a nonlinear behavior according to
y(k)~k!/3 (see Fig. 2).

The above situation convinces one that the formulation
of the perturbation theory for the plasma soliton stability
proposed in Refs. 1 and 3 does not appear to be
sufficiently accurate. As an additional check of this prob-
lem we have performed further investigations in the re-
gion k—0. It seems obvious that for kK =0 and y =0
neutrally stable perturbations correspond to infinitely
small variations of the soliton parameters. Accordingly,
the eigenfunctions f and g of a symmetric type turn out
to be

FIG. 1. Linear growth rate (p) vs transverse perturbation
wave number (k) for five values of the magnetic field (o): 0, 0.9,
3, 10, and 50.
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FIG. 2. Linear growth rate (p) vs transverse perturbation
wave number (k'”?) for three values of the magnetic field (o ):
0, 3, and 10.

f=0, g=V2arctan(sinhx) . (4.4)

Our numerically calculated solutions, as kK —0, continu-
ously assume the form of (4.4).

Furthermore, we study the spectral behavior near the
cutoff value k.. Solutions of the eigenvalue problem (2.4)
for k50 and ¥ =0 were obtained in an independent way.
It appears that two types of solutions exist. The first one,
with the critical (cutoff) wave number k., =1—o0, if k#k,
turns into a stable mode (y><0). The second type corre-
sponds to an unstable branch (for =0 and k,=0.7)
with a continuous transition for k¥k_ to a solution of
the complete system (2.4).

In order to check the accuracy of our numerical
method we have investigated the soliton instability in the
framework of the nonlinear Schrodinger (NLS) equation.
The calculated spectral form of y(k) coincides with the
one found in Ref. 11. In the case of the NLS equation,
the soliton stability problem for a small k is solvable with
the perturbation theory! to any order of expansion, there-
fore y ~k for k —0, as was confirmed in our calculations.

Moreover, we have attempted to analytically construct
a novel perturbation scheme which for k—0 should
correctly recover the results of the above numerical cal-
culations. We look for a solution of (2.4) in a form of
series expansion for a small k values

y=AkVi4 o

g=8o Tk gy, sk gyt -
=80t823t84nt ", 4.5)

f=k”3(f1/3+k2/3f3/3+k4/3f5/3+ )
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In the first order of the perturbation theory we get
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Further, to successive orders one obtains
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Finally, at the sixth order, we come across the terms pro-
portional to k2
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In that way, so far as f5,; ~y°, we have constructed the
perturbation scheme for which y~k!/3.  Although
operators H , and H _ and their inverse counterparts are
well defined, a fact that, in principle, should allow the
derivation of f5,;(x), the proof of the convergence of the
above perturbation scheme is rather complex. A particu-
lar point lies in the fact that the expansion for a small & is
justified only in the region |x| <<1/k. This is connected
with a slow decay of the solution of the complete system
(2.4) f,g ~exp(—kx). Naturally, that is a reason why we
try to check the proposed scheme upon our numerical
calculations. It is evident from Fig. 2 that the depen-

dence y ~k!”? is obeyed with a high degree of accuracy
T T T
o.s5f : ¥ : + -+ :
(e M(o)]
S o4 .
2
S
£
* oaf .
i
o2l f. |
o1t .
0 1 1 A
0.2 0.3 04 05 K1/3

FIG. 3. Spatial derivatives of eigenfunctions (f,g) at x =0 vs
transverse perturbation wave number (k'/?).
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for small k values. The deviation from the above depen-
dence, for large o, comes from the fact that in this case,
as y =f (kV g), the expansion is justified for substantial-
ly smaller values of k. In Fig. 3 we plot the dependence
of dg /dx|,_oand df /dx|,_,on k'/°. As expected from
the expansion (4.5), g.(0)=const and f,(0)=Bk'/3. In
this way, our numerical results give strong support for
the proposed perturbation scheme.

V. NONLINEAR STAGE OF THE
SOLITON INSTABILITY

Further, we discuss a nonlinear stage of the soliton in-
stability. In an isotropic plasma, in a linear regime, this
instability results in a transverse modulation of the soli-
ton amplitude. The nonlinear growth of the perturbation
leads to a soliton breakup into a number of collapsing
wave packets (Langmuir cavities).'> Therefore, in our
problem, it is expected that the magnetic field might sub-
stantially affect this nonlinear stage of the soliton insta-
bility (see Refs. 5-8).

In Fig. 4 we plot the eigenfunctions of the system (2.4)
calculated in Sec. IV that correspond to the maximum
linear growth rate for different values of the magnetic
field. It is evident that the increase of o does not bring a
qualitative change in a structure of the growing perturba-
tions. Therefore, it seems reasonable to expect that the
magnetic field growth just increases the transverse length
scales of the wave packet leaving all basic qualitative
features of the collapse process preserved.

In order to investigate the soliton instability, in partic-
ular, in its highly nonlinear (developed) stage, we have
further performed a direct numerical simulation of Egs.
(2.1) and (2.2) in two dimensions (2D). We have used the
spectral Fourier method with respect to the space coordi-
nates with an explicit time integration scheme. The in-
stability development was studied by imposing initial
conditions in a form of the standing planar soliton (2.3)
periodically perturbed in a transverse direction. For
sufficiently large values of o the calculations based on
(2.1) and (2.2) produce very close results.

Moreover, the direct simulation results are checked
against those obtained in Sec. IV of this paper. In the ini-

foo
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FIG. 4. Eigenfunction [ f(x)] for c=0and o =3.
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tial stage, where instability exhibits an exponential
growth of the perturbation, we have chosen sufficiently
small initial perturbation levels. We have used periodic
boundary conditions (L,,L, ), a numerical grid of 3232
(checked upon 64X 64) points, a time step of 0.001 and
the perturbation level €=1%, with regularly checking
the conserved integrals of (2.1) and (2.2), i.e., the plasmon
number (N) and the Hamiltonian (H). As compared to
Pereira, Sudan, and Denavit'? the perturbation level €
was decreased until the growth rate y has become in-
dependent on €. We have performed runs with different
values for k and o. However, in the range of small per-
turbation wave numbers (k <0.2) the grid resolution ap-
pears to be insufficient for accurate calculations. In Fig.
5 we compare the direct simulation results for y(k) with
the results of Sec. IV, i.e., numerical solutions of the ei-
genvalue problem (2.4). As seen on inspection the results
based on these two essentially independent methods of
solution show satisfactory agreement. In particular, the
results coincide for the values near to the cutoff wave
numbers.

The direct simulation results have confirmed that all
linearly unstable solitons, independently of the magnetic
field strength and the perturbation wave number, in their
nonlinear stage enter a collapse phase. This result is con-
sistent with the earlier work of Goldman and co-
workers>® concerning the collapse of Langmuir wave
packets in a weak magnetic field with full ion dynamics.
In order to illustrate this, we show typical time plots in
Fig. 6 of the early collapse, which exhibit the basic col-
lapse features: the initial localization, subsequent explo-
sive wave amplitude growths connected with a rapid de-
crease of the spatial dimensions resulting in high wave
energy densities. The earlier results on soliton break up

FIG. 5. Linear growth rate (p) vs transverse perturbation
wave number (k) for four values of the magnetic field (o): O,
0.9, 10, and 50. (a) Direct 2D simulation method, (b) solution of
the spectral problem.
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(@) t=1392 E,=4.69 (b) t=1491 E, =659

(c) t=1534 E, =931 (d) t=1556 E,=13.2

o
E

(e) t=1564 E,=16.2 (f) t=1571 E,=194

FIG. 6. Space-time dependence of the electric field amplitude (E).
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FIG. 7. Characteristic spatial scales (/,,/,) and the maximum
electrostatic energy density (|E|?) as a function of the time in-
terval to the collapse time (¢,). Dashed lines denote ¢ =0 and
solid lines denote o0 =5.

and subsequent collapse in an unmagnetized plasma'?

were readily recovered in our simulations for o =0.

An important characteristic of the collapsing wave
packet is its eccentricity (Fig. 7), i.e., the elongation ratio
I, /1,. This quantity defines the energy content trapped
inside the cavity, which is of considerable importance
concerning the final collapse stage and the ultimate ener-
gy dissipation. Generally taken, there possibly exist solu-
tions with various degrees of eccentricity,'® also depend-
ing on the way they were initially formed.

Self-similarity and collapse regimes

Let us further discuss a highly nonlinear, developed
stage of the collapse. A general scenario was proposed in
the early work of Krasnosel’skikh and Sotnikov’ which
was based on an analytical study of a version of Eq. (2.2),
which takes into account a full ion inertial response. The
above is necessary in the so-called supersonic regime
(E}/8mnyT >m /M) of the magnetized Langmuir wave
collapse.

In the early stage of the soliton collapse, as long as
@, /@0, >>krp,, the transverse dimensions of the collaps-
ing wave packet are substantially larger than the longitu-
dinal ones, forming highly elongated, dipole field struc-
tures. During the collapse process the transverse length
scale of the cavity decreases more rapidly than the longi-
tudinal one and therefore, when krp.~w, /@, these
two scales become of the same order. Accordingly, in the
later stage, the magnetic field is not expected to influence
the collapse development.” However, it is still believed
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that in the final collapse stage magnetic field might possi-
bly make an effect on the cavity structure and its energy
content. Indeed, our simulation results seems to point in
the same direction (vide infra), i.e., that in the final
stage, the cavity form and the trapped energy depend on
the magnetic field strength.

Further, we investigate the potential self-similar time
behavior of the wave collapse process in its developed
stage. More recent studies of the wave collapse have
shown that a collapse process, as a unique nonlinear
phenomenon of the formation of a singularity in a finite
time, can be developed through two different collapse re-
gimes: weak and strong. Zakharov and Kuznetsov'* for
the case of the NLS equation and Kuznetsov and Skorié'
for the nonlinear upper-hybrid and lower-hybrid waves
have shown that during the strong collapse regime the
trapped wave energy through the collapse stage remains
finite and the wave radiation from the cavity is absent.
On the other hand, in the weak regime, which formally
preserves zero energy into the final collapse stage, wave
radiation is present. In the framework of Eq. (2.2) it has
been shown that two regimes, weak and strong, exist.
Both regimes near the singularity can be described by a
general self-similar ansatz in the form

1
(to'—t)a +ip

x I
(to—1)%" (tg—1)°

Y(r,t)= f , (5.1)

where a, b, ¢, and p are the real parameters. This means
that the cavity dimensions scale as

L=(ty—0)° 1 =(t,—1)". (5.2)
The number of waves localized in the cavity (N") de-
pends on time (in two dimensions) as

2
S

ax dr~(t0~t)2"‘b+c, 2a —b+c=20,

(5.3)

where for a strong collapse N should remain constant,
while for a weak collapse N goes to zero as collapse
reaches the singularity.

We return to the early collapse stage when
e /®pe >>krp. In this case, a simplified version of the
nonlinear equations (2.2) is appropriate which accepts the
following self-similar substitution:’

1
(to_t)'p

X I
(tg—0)172" (tg—1)

Y(r,t)= ) (5.4)

where the corresponding cavity dimensions scale like
I.=(ty—t)? 1,=(ty—1).

However, the above self-similar ansatz describes the
weak collapse process with a cavity plasmon number
(N®) which decreases in time as

2
Neav— f ay

5; dr~(to—t)1/2
for the 2D case.
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The numerical simulation of an axially symmetric ver-
sion of the Krasnosel’skikh equation presented in Ref. 16
has seemed to support the above general picture.” How-
ever, conclusions concerning the late collapse stage, when
the disappearing magnetic field effect supposingly
switches the collapse to an isotropic type of evolution, are
somewhat of a speculative nature.

In order to check the self-similar character of the col-
lapse evolution consistent with (5.1), based on our 2D nu-
merical simulation results, we vary ¢, to find the best fit
for the time evolution of the maximum electric field am-
plitude, for different values of the magnetic field 0 =0, 5,
10, and 15. From (5.1), the maximum electric field ampli-
tude squared scales like

[ —

|E
(tg—1)*

, a=2a+2b . (5.5)

max

Our results indicate that the self-similar evolution is ex-
hibited also for smaller values of ¢ including o =0, with
a slope a=1.2, which is in agreement with the earlier re-
sults of Pereira, Sudan, and Denavit.!> For o =15 they
come close to the analytical predictions'> (a¢=2) based
on Eq. (2.2). In Fig. 7 we plot in a double-logarithmic
scale, the time variation of the maximum amplitude (5.5)
and characteristic spatial dimensions of the collapsing
cavity for 0 =0 and o =5. The self-similar behavior is
evident, although with a different slope:

ap=1.20 (0=0), a;=1.74 (c=5).

Transverse length scales grow faster than longitudinal
ones, resulting in that the initial dipole field structure
tends to be symmetrized. The above process gets more
pronounced with the magnetic field increase.

By calculating the parameters a, b, and ¢ from Fig. 7
we readily find the time dependence of the plasma num-
ber (N?), which based on (5.3) turns out to decrease in
time, as

Ngav ~( to— t)O.ZO’ Ngav ~( to— Z)O.Bé ,

which defines a weak type of collapse.

However, the self-similar features of the described col-
lapse processes, were studied in a time interval restricted
to increase of the energy density on approximately two
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orders of magnitude. Therefore, the later stages of the
collapse, closer to the singularity, might exhibit some-
what altered type of dynamics.

As a general picture, our simulation seems to indicate
an early collapse development corresponding to a weak
collapse regime. Possibly, this comes from the fact that
in order to approach other, the so-called (ultra) strong
collapse'® regime, much larger inertial interval seems
necessary.

The energy content of the collapsing wave structure is
of a considerable physical interest. Namely, the results
indicate an altered effective absorption rate, i.e.,

[(korpe) /(@ /0, )] *~(EF /87nT) %0, /o,

times the absorption rate for an isotropic plasma, corre-
sponding to the increased level of the strong Langmuir
turbulence. However, a possibility of an experimental in-
sight in such physical situation would be of great
scientific value.

Finally, it was only recently understood that the ulti-
mate ‘‘burn out” process of the collapsing wave packets is
expected to dissipate a finite amount of the wave energy.
Namely, the structure of the weak collapse (conserving
zero energy) seemed to indicate that the final stage should
allow only an infinitely small value of the dissipated ener-
gy. However, in reality one expects a different situation.
Recent refinements in the wave-collapse theory have indi-
cated a possibility? of a collapse process formed as a
long-living spatially localized narrow core (hot spot) close
to a singularity, which entrains the wave energy from the
surrounding region (black hole effect). Such an effect was
variably named as a “funnel effect,”? “nucleation pro-
cess,”!? or “distributed collapse.17 Accordingly, in our
case, the solution (5.1) is supposingly valid only in a thin
region close to the singularity. At larger distances,
different type of a solution is formed providing a continu-
ous energy influx into the singularity. More simply, in
such a weak collapse dynamics a type of a “funnel” is
formed entraining the energy from the outer regions.

For our Eq. (2.2) this funnel is of an anisotropic struc-
ture. Anisotropic bi-self-similar'® collapse solution
describing a finite energy capture into an anisotropic fun-
nel has been obtained only recently.!®
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