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We have developed a three-dimensional nonlinear theory for the slow-wave cyclotron instability
in a dielectrically loaded waveguide. The efficiency, gain, and bandwidth of the amplifier are calcu-
lated from a self-consistent solution of a set of coupled nonlinear differential equations describing
the growth of the electromagnetic field and the evolution of the electron trajectories. Calculations
show that very broadband amplification with high efficiency is possible in the slow-wave region of
the propagating waves. The instantaneous bandwidth (full width at half maximum) near saturation
depends on the efficiency (1) of the amplifier. For a cold beam, the bandwidth Aw/w=6% at
1n=~40%, but Aw/w increases to 30% if the amplifier is operated at an efficiency of 20%. The
efficiency is very sensitive to the axial velocity spread of the beam since interaction occurs with
waves having large propagation constants. The maximum efficiency drops from 48% to 10% as the
velocity spread increases from 0% to 5% but the bandwidth shows a small increase.

I. INTRODUCTION

The instability of the waveguide modes interacting
with a relativistic beam guided by an applied uniform
magnetic field B, may occur due to three different mecha-
nisms, namely, cyclotron maser radiation? (CMR),
drift-induced instability,’ and Weibel instability.* All the
mechanisms depend on an anisotropic velocity distribu-
tion of the electrons. In each case the energy is extracted
from the perpendicular motion of the beam through the
interaction with the transverse electric field and radiation
occurs near the Doppler-shifted electron cyclotron fre-
quency or a harmonic. The bunching mechanisms, how-
ever, are different for the three interactions. The instabil-
ity in CMR results from the azimuthal bunching of elec-
trons due to the relativistic variation of their masses with
energy. Weibel instability and the drift-induced instabili-
ty, on the other hand, are nonrelativistic in nature. The
drift-induced instability was used by Ono et al.’ to devel-
op a new microwave source called peniotron. The drift
motion® of the electrons ({ E,;) X B,/B3 drift) is set up by
a finite time average of an rf electric field which is at right
angles to the applied magnetic field B,. The drift motion
occurs in such a way that the electrons move into a
stronger electric-field region during the decelerating
phase in their orbits whereas they move into a weaker
electric-field region during their accelerating phase.
Weibel instability originates from the axial bunching of
the electrons caused by the Lorentz force v, X B, where
v is the velocity of electrons perpendicular to both B,
and B,;.

For large axisymmetric orbits where the guiding center
radius (Ry~=0) is much smaller than the Larmor radius
(r; ), the amplifier based on the drift-induced instability
has the potential for extremely high efficiency® in excess
of 70% but has a narrow bandwidth of about 5%. For
off-axis electron motion in small orbits (R,>r;), the
(E,;) XB,/B} drift is negligible and the CMR and
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Weibel instability compete with each other. The azimu-
thal bunching in CMR predominates for waves with
phase velocity (v, ) greater than the speed of light in vac-
uum (c¢) while the axial bunching in Weibel interaction
predominates’ if vpp <c. The theoretical efficiency for
the CMR in fast-wave-gyrotron traveling-wave amplifier®
(TWA) is near 45% with a small bandwidth of about 5%.
The highest efficiency achieved so far in gyro-TWA ex-
periment® is 23% with an output power of 25 kW at 34.7
GHz and the bandwidth is about 1%. The bandwidth of
a gyro-TWA can be increased by tapering'® the
waveguide and the applied magnetic field but the
efficiency is low and the device is prone to oscillation. An
instantaneous bandwidth of 28% in the K, band (28-40
GHz) has been observed in the small signal regime and
the beam current is less than 0.3 A to avoid absolute in-
stability. Slow-wave cyclotron amplifiers are expected to
have the same efficiency as gyro-TWA but are capable of
producing amplification over a wide bandwidth. In this
paper we consider a particular slow-wave structure,
namely, a dielectrically lined waveguide as the interaction
medium. The group velocity of the propagating modes in
this waveguide remains approximately constant over a
wide frequency range. The beam can be made resonant
with the waves in the broad frequency range by properly
choosing the cyclotron frequency and the axial velocity
of the electrons.

Theoretical work on slow-wave cyclotron amplifiers
dealt with linear analyses of the growth rate of the insta-
bility in both the cylindrical'' and the rectangular'?
waveguides showing large bandwidth (~50%) under
small signal condition. Here, we perform a nonlinear
analysis to study the evolution of the system through the
linear regime of interaction to saturation and provide a
realistic estimate of the interaction efficiency as well as
the bandwidth for large signal operation. We treat wave
propagation in a dielectrically loaded waveguide with
rectangular cross section. The rectangular configuration
3544 Work of the U. S. Government
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is better than the cylindrical configuration as a slow-wave
cyclotron amplifier. In rectangular geometry, the rf field
components can be described by a set of orthogonal TE
and TM modes'? with the fundamental waveguide mode
being TE,, in character. Thus single mode propagation
and an efficient cyclotron interaction with the lowest
waveguide mode are possible. In the cylindrical
geometry, TE and TM modes are separable only for the
azimuthally symmetric modes. Moreover, the fundamen-
tal mode is TM,,, and the TE,, or the TM,, modes with
different radial eigen-numbers (r) are not orthogonal.
Thus, mode coupling is a serious problem even for the
modes with no angular variation.

The nonlinear analysis involves the solution of a set of
coupled differential equations which self-consistently de-
scribes the evolution of the trajectories of an ensemble of
electrons as well as the growth of the electromagnetic
field. Since we are interested in the amplifier
configuration, only a single frequency needs to be con-
sidered. This permits an average over a wave period to
be performed which eliminates the fast-time-scale phe-
nomena from the formulation and includes only a beam-
let of electrons which enters the interaction region within
one wave period. The slow-time-scale formulation has
been extensively used to study the nonlinear regime in
many coherent radiation sources such as gyrotrons,3 !4 13
free-electron lasers,'®!” and orbitrons.'®

The paper is organized as follows. The general formu-
lation is given in Sec. II. A description of the vacuum
modes of a dielectrically lined waveguide is included in
the section. The nonlinear differential equations govern-
ing the beam-wave interaction are also shown. The nu-
merical solutions of the coupled equations are discussed
in Sec. IIl for some specific cases. Conclusions are
presented in Sec. IV.

II. MODEL AND FORMALISM

An end view of the configuration under consideration
is shown in Fig. 1. An annular beam of electrons with
the guiding centers uniformly distributed in a circle of ra-
dius R, and an electromagnetic wave of arbitrary input
power are simultaneously injected at z=0 into a rec-
tangular waveguide partially filled with a dielectric. The
beam is guided along helical trajectories by a uniform
magnetic field B, applied along the axis of the waveguide
(z axis). The beam is initially monoenergetic but may
have an axial velocity spread. The subsequent evolution
of the beam is treated self-consistently. In Fig. 1 the
widths of the waveguide along the x and y axes are denot-
ed, respectively, by 2Ly and L,. The origin of the coor-
dinate system is taken on the axis of the waveguide and
the unit vectors will be denoted by €,,€,, and €,. The re-
gion 0<|x|<d is vacuum and the region d <|x|<d
+w=L, is dielectric. The dielectric constants of the
two regions will be denoted by €, and ¢, respectively. The
two regions have the same permittivity u,.

The self-consistent evolution of the electromagnetic
field and the trajectories of an ensemble of electrons can
be calculated from a simultaneous solution of the
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FIG. 1. End view of the dielectric loaded waveguide. Guid-
ing centers of the electrons are uniformly distributed on a circle
of radius R,,.

Maxwell’s equation and the Lorentz force equation
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where By is the axial guide magnetic field, and E and B
are the rf electric and magnetic fields, respectively. The
rest mass of an electron is m and e is the magnitude of
its charge. The velocity of an electron and the current
density are denoted, respectively, by v and J. The relativ-
istic factor y=1/[1—(v-v)/c?]"2 The analysis will
proceed under the following approximations: (a) an arbi-
trary number of TEx modes'? (i.e., modes with the com-
ponents of the electric field transverse with respect to the
X axis) at a single frequency propagate in the waveguide,
(b) the beam is tenuous, i.e., the plasma frequency (w,) is
much smaller than the wave frequency () such that the
space-charge effects are negligible, and (c) the system is
quasistatic in the sense that the electrons entering the in-
teraction region at times t, separated by integral multi-
ples of a wave period execute identical trajectories, i.e.,

vir,t,to+2mm/w)=v(r,t,t,) .

With these assumptions, the set of coupled equations (1)
and (2) can be solved in the slow-time-scale model'
where the fast cyclotron motion and the fast rf oscilla-
tions are averaged out. The inclusion of the multiple
modes at the same frequency is based on the assumption
that waves are coupled through the intermediary of the
electrons and are not directly coupled. The individual
source current for each mode is calculated from the in-
tegration of the electron orbit equations in the aggregate
field of all modes. The only restriction is that all modes
included in the calculation should be sufficiently close to
resonance with the beam so that relative beam-wave
phase

b=(w—k,,v.—Qu/7)t

The axial
the axial

for each mode varies on a slow time scale.
wave vector for the nth mode is denoted by k
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velocity of the beam is v,, and Qy=eB,/mj is the cyclo-
tron frequency.

We consider the uncoupled wave and beam modes be-
fore developing the slow-time-scale formulation. The
modes of a dielectrically lined waveguide cannot be
classified as either TE or TM with respect to the propaga-
tion direction along the z axis. However, they may be
classified as TEx or TMx with respect to the x axis.!?
These are also referred to as longitudinal section electric
(LSE) and longitudinal section magnetic (LSM) modes,
respectively. The modes may be divided into odd and
even symmetries with respect to reflection at the yz plane.
It will be shown in the Appendix that the even and odd
modes couple, respectively, to the odd and even order cy-
clotron harmonics. Since our primary interest is the exci-
tation of the fundamental cyclotron harmonic, we give
detailed calculation for the even symmetry modes and
mention the modifications necessary for the odd symme-
try modes. For L, <2L,, the fundamental mode is
TEx ,, with even symmetry. We, therefore, restrict our
attention to the TEx,, modes."?

In the absence of an electron beam (J=0), the nonzero
field components of these modes are Ey, H,,and H,. The
electric field for the TEx,, modes is given from Eq. (1)
by19

mqc?

E=¢, oL Re n2='1 F,Z,o(x)cos(wt —k,pz) , (3)

where for even modes

sin[x, (L, —|x[)] d<Ix|<L,
Z,o(x)= | sin(x,w) “
mcosh(xnx) 0<|x|<d
and for odd modes
sgn(x)[sink, (L, —[x[)] d<|x|<L,
Z,o(x)= | sin(k,w) )
msmh(xnx) 0<|x|<d,
with
K = (ko —po€qw®)'? Ky =(poe® —k})'2 . (6)

In Eq. (3), F, is the wave amplitude, w is the angular fre-
quency, and k, is the unperturbed propagation constant.
The rf magnetic-field components can be obtained for
Maxwell’s equation VXE=—0B/dr. By applying the
relevant boundary conditions at x =0, +d, and *L,, the
unperturbed dispersion relation!’ is given by

k,tanh(k,d )+« cot(k,w)=0 for even modes

)

k,coth(k,d)~+«k,cot(k,w)=0 for odd modes .

The subscript n refers to the nth root of Eq. (7). It can be
easily verified that the functions Z,,(x) are orthogonal
and we have

0 for n¥#n'

LN, forn=n", ®

LX Ly
f—L, fo Z,o(X)Z yro(x )dx dy =

where the normalization constant N, for the even modes
is given by

L, | 4 sin*(k,w) | sinh(2«,d)
N,=-% % +1
L, | L, cosh*(k,d) 2k,d
w sin(2«,w)
+— 11—, 9)
L, 2K, w
while for the odd modes
L, | g sin*(k,w) [sinh(2k,d)
N =—|— —_
" L, | L, sinh*(k,d) 2x,d
sin(2«;,w)
+ 2 - — (10)
L, 2k, w

A typical dispersion curve and the field distribution for
the fundamental TEx ;, mode are shown in Figs. 2(a) and
2(b), respectively. Fast-wave propagation occurs when
0 <k, <V po€o@ and slow-wave propagation exists for
V g€ow <k,o<V poew. The transition occurs at
k,o=k, such that w=ck, where c=1/1/uy€, is the
speed of light in vacuum. From Egs. (6)-(7), it can be
shown that

k,=m/[2w(e/e,—1)?] .

For k,,<k, we have w>ck,, (fast wave) and o <ck,,
(slow wave) for k,,> k,. From Fig. 2(b), it is seen that for
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FIG. 2. (a) Dispersion relation for dielectric loaded
waveguide of rectangular cross section. (b) E, as a function of
x.



42 NONLINEAR THEORY OF THE SLOW-WAVE CYCLOTRON AMPLIFIER 3547

fast waves the field is maximum on the axis while for slow
waves the maximum occurs inside the dielectric. Hence,
the beam should be placed close to the dielectric layer for
strong interaction with the slow waves. In Eq. (3), «,, is
imaginary for the fast waves and Egs. (2)—(5) should be
used with the following substitution:

K,—iK, ,
cosh(k,x )—cos(k,x) ,

and sinh(k,x )—1i sin(k,x ).

When the beam is injected into the waveguide, we seek
solutions of the form in Eq. (3) where the amplitude F,(z)
and the wave vector k,(z) become slowly varying func-
tions of z such that

4 1nF(2)] <<k, and (k) <<k (11)
dz : dz °¢ 2
The cutoff wave vectors k, and k,, however, are con-
sidered to be characteristics of the waveguide without the
beam and remain constant throughout the course of the
interaction. The rf field components in the presence of an
electron beam can be written as

—2 myct = Fo( .
Y oL 2 x)cosa,, , (12)
2
myc
H=—"
.an)eLx
i dr,( d .
2 4, Sina _EEF" Jcosa,, |Z,o(x)€
dZ,,(x)
—F,(z (sina, )€, | , (13)
dx
where
a,,(z)=mt—§=wt—fozk,(z')dz' , (14)
k=25 (15)
dz

We now consider the propagation of the electron beam.
In the absence of the electromagnetic fields (E=0, B=0),
the unperturbed orbits of the electrons from Eq. (2) may
be written as

r(0)=(X60)+r£0’cosw(0’)'éx+(Y0)+r SIn\P(O)) y+z’e\

z 0

(16)

V= —vr(sinW' "8, +vpg(cosW V), +v,08, | (17)
where W'9'=0, Q‘O)=Qo/yo=eBo/yomO is the rela-
tivistic cyclotron frequency, v;,=r;"Qq/y, and v,, are
the perpendicular and parallel components of electron ve-
locity, r (0’ is the Larmor radius and the guiding center
coordmates are (X, Y.

In the presence of a signal, it is possible to obtain solu-
tions'* of the form in Egs. (16) and (17) where Uy Uy Pps
Q, v, Xy, and Y, are allowed to vary slowly as functions
of z satisfying the inequality conditions similar to those in

Eq. (11). Thus, we may write

r=(X,+trcosWe, +(Y,+r sin¥)e, +28, ,  (18)

%—v —vr(sinW)e, +vr(cosW)e, +v,e, , (19)
Q

vT=r,_Q.=r,_7 . (20)

Equations (18) and (19) imply that the guiding center
motion is determined by the equations

dX,  drg av .

ar +7COS\P_"L [—dT—Q sinV=0 , (21)
dYo dry dVv

7 +751n\P+rL —dT—-Q cos¥=0 . (22)

On substituting Eqgs. (12)-(22) in Egs. (1) and (2) and
averaging the resulting equations over a wave period, the
set of coupled nonlinear differential equations for the
slow-time-scale variables can be derived by a procedure
similar to that used for the fast-wave gyrotrons.>'> The
derivation is shown in the Appendix. Here we write the
resulting equations in a normalized form which scales out
the width of the waveguide, L,. The dimensionless vari-
ables to be used are defined as follows: normalized length
§=z/L,, normalized wave vector y=k,L, =L d&/dz,
normalized frequency @=wL, /c, normalized time
T=ct /L, normalized velocny BT: vr, /¢, normalized
electric ﬁeld F,=eEL /moc , and normalized magnetic
field Q,= yQ—eBL /mgc. Equations (A11) and (A12),
describing the variation of the wave amplitude and the
wave vector due to the interaction with the sth cyclotron
harmonic, may be written in normalized form as

d§2 ——+x5—x* |F,(2)
_ 2T05®n < BT BzO ,
=— (k,rp)
Nn |B[ <Ez())
Xcosh(k, X, )sin<D> , (23)
124 (1n
2x dc [x'“F,(2)]
2Iy@®, | By B,
= 3\’,, <|BTI <BZZ) (k,r )cosh(k Xo)cos<I>>
(24)
where I/(a)=dI, /da,
P=ow(t—ty)—E—sV+Y¥,

is the slowly varying phase difference between the beam
and the wave, the normalized current I, =el,/€;mqc?,
and

sin(k,w)/cosh(x,d) for even mode

©,= sin(k,w)/sinh(k,d) for odd mode . (23)
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As shown in the Appendix, the cyclotron harmonic num-
ber s is odd when the resonant mode is of even symmetry
and it is even for an odd symmetry mode.

Equations (A16)-(A18) for the phase ¥ and the com-
ponents of the normalized momentum (u,=yfj,,
ur=7vfB7) of the electrons in their orbits take the dimen-
sionless forms

duT
=— E@ +(k,r; )cosh(k, X))
| _COS‘I’ +— —51n(b
o | B @ d§
(26)
duz ur ,
dé‘ == z u_®nIs(Kan )COSh(KnXO)
(27)
@ d§
dv  Q O, sl (k,r)
de =— 22— —cosh(k,X,)
g vh; 2,," DK, UT 0
Kﬁ"zﬁo
X | |@=B.x+ —sin®
sy i
dF, ® 2
dé‘ cos , (28)
and
3_22731‘ : (29)

Equations (26) and (27) can be combined to give the rate
of change of energy of an electron,

U-r
—‘;Jé =—3 ~ui®,,1;(xn r, Jeosh(k, X )F, cos® . (30)

n z

The equations for the guiding center motion given by
Egs. (A19) and (A20) become in normalized form,

dX, O,I(k,r.) inhirc. X.)
= sinh(x,,
ic ~ 27 q, ’
0 —sQ dF,
XB, ot ]
@ B. o d§
(31)
dYO . KnlL Fn .
=3 0,I/(k,r; )sinh(k, X,) sin® (32)
dg n v VLT) BZ
where X,=X,/L, and Y,=Y,/L,.

The power flow in the waveguide is calculated by in-
tegrating the axial component of the Poynting vector
over the cross section of the guide:

P, =1Re [(EXH*)®,dx dy
eomic’ ck,

= N —>F?. 33)
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The growth rate of the amplifier I =(1/F, )(dF, /dz)
can be calculated from Eq. (24) and its efficiency is given
by n=(P,, —P;,)/Vyl,, where V, is the beam voltage
(y=1+eV,/myc?), I, is the current, and P, is the input
signal power. The summation over the mode index num-
ber (n) in Egs. (26)-(33) includes only those modes at a
given frequency for which ® =wt —§— WV is small.

III. NUMERICAL RESULTS

The set of equations (23)-(33) are solved by specifying
the initial conditions of the beam and the input signal.
The initial conditions on the radiation field are chosen
such that dF, /dz=0 and k,=d§/dz=k,, at z=0. The
amplitude F, at z=0 is calculated from the input signal
power using Eq. (33). The initial states of the electrons at
z=0 are chosen to model the injection of a monoenerget-
ic beam with uniform distribution in phase and cross sec-
tion, i.e., o (¥,)=1 for 0=¥,=<27, and 0 ;(R(,6,) =1
for 0<©,<27, R,.<Ro<R,,, where R,=(X}
+Y§)"/? and tan®@=Y,/X,. Although the beam is
monoenergetic, it may have an axial velocity spread and
we assume that the initial distribution function is of the
form

folp)<expl —(p, —p,o)*/2(Ap,)*]

X8(pt+pl—pio—pi) -

Only one experiment?® has been reported for the slow-
wave cyclotron amplifier. The experiment was performed
at frequencies near 6 GHz in the TE; mode of a
dielectric-loaded cylindrical waveguide operating with a
67.6-kV, 8-A beam having a high a=5.0 and a large ve-
locity spread Av, /v,4>5%. The dielectric constant used
in the experiment is €=4.7¢, and the magnetic field
B,=2.26 kG. The observed instantaneous bandwidth is
only 3.7% since the “grazing condition” (the beam line is
tangential to the dispersion curve) required for large
bandwidth was not accessible with the experimental pa-
rameters. The measured efficiency is also small because
of the axial beam velocity spread. The calculations will
show that the efficiency is very sensitive to Av,/v,,.
Since the experimental parameters were not favorable for
high efficiency and large bandwidth amplifier, we show
calculated results for parameters which are experimental-
ly accessible.

The output power depends on a large number of beam
and waveguide parameters. We will keep some of the pa-
rameters fixed and study the dependence of the efficiency
and bandwidth on the other parameters. We choose the
lowest waveguide mode (n =1) and the fundamental cy-
clotron harmonic (s=1) so that the interaction is
efficient. From Eq. (24), it is seen that the growth rate is
inversely proportional to the aspect ratio, L, /2L, of the
waveguide. We set L,/2=d =0.6L, so that the aspect
ratio is small but the dimensions are large enough for
beam propagation without interception. We consider an
infinitely thin beam to reduce the time of computation.
The inclusion of a finite thickness beam is straightfor-
ward but requires more particles. We choose
R,=0.05L, so that |Ry+r,[=~0.9d at the applied mag-
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netic fields. The value of € of the dielectric layer is an im-
portant parameter. The group velocity of the waves,
v, =0w/3k,, should be nearly equal to v, for grazing con-
dition. For a fixed value of the velocity ratio a=vy/v,,
higher beam energy is required to maintain grazing con-
dition with increase in v,. The average slope of the
w—k, curves (Fig. 2) in the slow-wave region increases
with decrease in € but the modes become more dispersive.
A degradation of bandwidth and efficiency occurs at low
as well as at high values of €. For beam energies in the
range 60 to 100 keV and a ~ 1.5, high efficiency and large
bandwidth are obtained with €, =€/¢€, lying between 10
and 15. Some common materials with high dielectric
constants and low loss tangents are alumina®' (e, =9.5,
tand=0.0001), sapphire?? (¢, =11.7, tan$=0.0001), mag-
nesium titanate?®' (e,=16.0, tan6=0.0002), and lantha-
num gallate23 (€,=24.3, tan6=0.0007). These materials
are used as substrates for very low loss-shielded or
-unshielded microstrip transmission lines. Since the loss
tangents are very small, we neglect propagation losses in
the medium.

In the following figures we show the variation of the
efficiency, gain, and bandwidth with y, 8,, a, Q, and e.
A beam current I;=5 A and an input signal power
P =150 W are used in all calculations. The results in
Figs. 3-6 are calculated with €/€,=15 and y=1.12
(Vy=61.3 kV). The cutoff frequency w.,=0.913¢c/L,
and the group velocity of the slow waves v, =0.232c¢ for
the waveguide parameters being used. The optimun
efficiency and bandwidth are obtained with an applied
magnetic field Q,=0.924 and v, =0.24c (¢ =1.588). The
output power as a function of the axial position is shown
in Fig. 3 at two frequencies f/f_,=1.24 and 1.44 for
which the saturation gain differs by about 3 dB. The
lower frequency has a maximum efficiency 7,,,,=48.5%
and maximum gain G, =30 dB. The interaction length
required for saturation is L,=85.2L,. The higher fre-
quency saturates at a shorter interaction length
L,=41.6L, with 9.,,=23.7% and G,,,=26.9 dB. The
normalized growth rates (I'L, =L d InF, /dz) for the

108
C 0 =1.24
105 s f/fcut=_1’44
104 E g !
% E K V=613 kV
g F / 1=50A
r / Q_=0.924
103k 8=0.24
£ «=1.588
102 - | | | 1 L 1
0.0 150 30.0 45.0 60.0 75.0 900 1050

zle

FIG. 3. Power in the waveguide as a function of axial posi-
tion for two frequencies f/f ., =1.24 and 1.44. Other parame-
ters are y=1.12, B.=0.24, Qy=7Q,=0.924, a=1.588,
e=15¢y, Av, /v,=0,I,=5 A, P,,=150 W, and d =0.6L,.
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FIG. 4. Growth rate vs axial position for the same parame-
ters as in Fig. 3.

two frequencies are shown in Fig. 4 as functions of z.
The average normalized growth rates in the linear region
are approximately 0.049 and 0.093 for the two frequen-
cies.

The effect of a spread in the axial velocity of the elec-
trons is shown in Fig. 5 where the efficiency is plotted as
a function of frequency for different values of Av,/v,.
The efficiency of the slow-wave cyclotron amplifier is
much more sensitive to the velocity spread than the fast-
wave gyrotron since the propagation constant for the
slow waves is larger. In Fig. 5 the maximum efficiency
drops from 48.5% to 12.2% as Av, /v, is raised from O to
5%. The frequency for maximum efficiency increases
with Av, /v,. The results in Fig. 5 do not show the in-
stantaneous bandwidth since the modes at different fre-
quencies saturate at different axial positions.

The instantaneous bandwidth can be obtained from the
1 versus f curves plotted in Fig. 6. The 3-dB bandwidth
(Aw/wy) is the frequency range representing the full
width at half maximum (FWHM) of the output power
versus frequency curves. The center frequency of the
band is denoted by w,. If P,, <<P_,, then the bandwidth
is, also, given by the FWHM of the 7 versus f curves.
The bandwidth, of course, depends on the peak power
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10.0

MAX.EFFICIENCY 7 (%)

o
(=)
I
F

-
n

1.3 1.4 1.5 1.6 1.7
FREQUENCY LA

FIG. 5. Maximum efficiency vs frequency for different values
of Av,/v,=0.0, 0.01, 0.03, and 0.05. All other parameters are
the same as in Fig. 3.
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FIG. 6. Efficiency as a function of frequency for fixed in-
teraction lengths L,/L,=40, 50, and 60 with beam and
waveguide parameters the same as in Fig. 5.

level at which Aw/w is calculated. The three curves in
Fig. 6 show that Aw/w=31.4%, 9.7%, and 5.5%, re-
spectively, at peak efficiencies M, =23.0%, 32.2%, and
38.5%. The corresponding values of the peak gain are
26.72, 28.15, and 28.96 dB with output power P, =70.5,
98.1, and 118.0 kW, respectively. The interaction lengths
required are L,=40L,, 50L,, and 60L,, respectively.
The bandwidth increases to 40% if the gain is lowered to
20 dB but the efficiency is low (~5%). These results are
in agreement with the linear theory.!"!?

In Fig. 7 we compare the bandwidth of the amplifier
for two values of the dielectric constant, €=10.0¢, and
15.0€,, keeping the dimensions of the waveguide the
same. The normalized cutoff frequencies for the two
cases are 1.309 and 0.913, respectively, and the group ve-
locities in the slow-wave regions are v, ~0.277c and
0.232¢. To obtain grazing condition in both cases, we

s -‘\‘ CASE (a) ()
20+~ |/ V=90kvV 613KV
(b) / a=1.442 1.588
3 H €=10.0 15.0
< , 0 =0.954
=
>
S
w 10.0f
Q
Tl K
[TH [
w
0.0 !
1.3 1.5 1.7 1.9 2.1

FREQUENCY f/f_,,

FIG. 7. Plot of efficiency as a function of frequency for two
values of dielectric constant. (a) Solid curve: €= 10¢,, 3,=0.3,
a=1.442, Q,=y0=1.122, and V;=90 kV; (b) dashed curve:
€=15¢,, B,=0.24, a=1.588, Q,=y02=0.924, and V,=61.3
kV.
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choose B,=0.3, Qy=1.122, and ¥;=90 kV for the first
case and 3,=0.24, 0,=0.924, and ¥V,=61.3 kV for the
second case. The values of a for the two cases are 1.442
and 1.588, respectively. To compare the bandwidth at
nearly equal efficiencies ( ~20%), we choose an interac-
tion length L,=50L, for the higher-energy beam and
L,=40L, for the lower-energy beam. The two cases
have nearly equal bandwidths of Aw/wy,=32.6% and
31.4%, respectively. The actual frequency range
(Aw=0.56w,,) for the first case is larger than that
(Aw=0.480w,,,) for the second case. The center frequen-
Cy wy is also higher for the first case. The slope of the
o—k, curves is larger at smaller € and the interaction
occurs over a wider frequency range for the same spread
ink,.

The beam temperature effects on the instantaneous
bandwidth are shown in 7 versus f curves in Figs. 8(a)
and 8(b) for two interaction lengths L,=50L, and
L,=60L,. In these figures we use e=10¢, B,=0.3,
Q,=1.122, and V,=90 kV. For L,=50L,, the peak
efficiency 7, decreases rapidly from 20.8% to 10.8% as
Av, /v, increases from O to 2% but the bandwidth de-
creases by a small amount from 32% to 29%. For the
same increase in Av, /v,, the bandwidth increases from
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o
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FIG. 8. CEfficiency vs frequency for different values

Av, /v,=0, 0.01, and 0.03 at (a) interaction length L,=50L,
and (b) LZ_=60L_X. Other parameters are €=10¢, B,=0.3,
a=1.442, Q,=yQ=1.122,and V,=90 kV.
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9% to 19% when the interaction length is L,=60L,.
The peak efficiency, as usual, decreases from 29.2% to
17.6%.

IV. CONCLUSIONS

We have developed a 3D nonlinear theory of a slow-
wave cyclotron amplifier in which an electron beam is
guided in helical trajectories by a uniform magnetic field
inside a dielectrically lined waveguide. The gain, band-
width, and efficiency can be accurately calculated from
the resulting numerical code. The rectangular waveguide
configuration is better than the cylindrical configuration
as a slow-wave cyclotron amplifier. The modes are or-
thogonal in the rectangular waveguide and the lowest
mode is TE in character. The modes in the cylindrical
configuration, on the other hand, are nonorthogonal and
mode coupling is a problem. The relative dielectric con-
stant of the layer in the waveguide should be in the range
of 10 to 15 to obtain large instantaneous bandwidth and
high efficiency with electron beam energy between 50 and
100 kV having a=1.5. The large signal bandwidth of the
slow-wave cyclotron amplifier is comparable to that of
the tapered fast-wave gyro-TWA but the efficiency is
higher and the amplifier is free from spurious oscillations
typical of the tapered circuits. Because the interaction in
the slow-wave region occurs at higher values of k,, the
efficiency of the slow-wave cyclotron amplifier degrades
more rapidly with increase in the beam temperature than
the fast-wave gyrotrons. The bandwidth is not sensitive
to the beam temperature and may increase as the beam
temperature rises. One difficulty in the slow-wave experi-
ment is that the beam has to be placed close to the dielec-
tric layer for enhanced interaction and precautions
should be taken to drain off the charges on the dielectric
if some electrons reach the wall.
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APPENDIX

Here we derive the set of the coupled nonlinear equa-
tions to describe the evolution of the electromagnetic
field and the trajectories of an ensemble of electrons.
From Egs. (1), (6), and (12), we obtain

> d’F, . s
S P + (ko —k;) | Z,0(x)cosa,,
n=1
1 d . A _ 9]
+Fn dz(kZF,,)Z,,o(x)sma,, € =Hoy, > (A1)

where k,, and k, are defined in Egs. (6) and (15), respec-
tively. The subscript n has been suppressed in k, and k,
for clarity. Multiply both sides of Eq. (Al) by
€,Z,0(x)cosa,, integrate over the cross section of the
waveguide, and average over a wave period. After using
the orthogonal property of the functions Z,,(x) [Eq. (8)]
and the cancellation of the end terms in the partial time
integration due to the quasistatic assumption, we obtain

d’F,

n

dz?

2#060 27 1
== dlwt)—
L2N, J, w5

+(k220—k22)F

n

X fAbdx dy €, J(r,t)Z,y(x)sina,, .

(A2)

Similarly, multiplying Eq. (A1) by €,Z, (x)sina, and re-
peating the procedure as in Eq. (A2), we get

2k21/2__‘j;(kzl /ZF'7 )

200 p2g 1
= d(wt)—
L2N, Jy o5

XfAbdx dy€,-J(r,t)Z,(x)cosa,, ,

(A3)

where A4, is the cross-sectional area of the beam. The
current density?* can be written as

. 1 T/2 Uz0
J(r,t)——Ioffo(v)dv—A? fAbf_T/zdxodyod(tO o 7(x0,30)0 (1) T

vix,y,z,t)
IUZ(X,I,Z;Xo,tO)i

where v(x,1,z;X.,1,) is the velocity of an electron at axial
position z with transverse position x=(x,y) which en-
tered the waveguide at z=0 at time ¢, with transverse
position Xy=(xg,y,),

z dz'
HZ;X 0P 0stg) =1+ [ —— 22—
TOFOR0TR0 T TG b (2%, V0, )

O(x —x (X0, 0,2))8(y —y(x¢,10,2))0(t —t(X0,29,2)) ,

<U20>

(A4)

f

and T=L /v,,, L being the length of the interaction re-
gion. The electronic current is I,=nye{v,,) where n, is
the average electron density and (v,,) is the average
value of v,,, the axial velocity at z=0. The initial distri-
bution of the electrons in cross section, phase, and veloci-
ty are described, respectively, by o1, o, and f((v) sub-
ject to the normalization
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[ fotvdv=1,
—l;—b' AbUT(xO,yO)dedy():l , (AS)

1 p7/22

On substitution of Eq. (A4) into Eqgs. (A2) and (A3), the
integrations over x, y, and ¢ are transferred to an integra-
tion over the initial distributions and using the expres-
sions for r and v from Egs. (18)-(20), we obtain

d’F,

+(k2—k2)F,

dz?

2el )

€omoc’ L N,

Vo Ur
X —Z,x)cos¥sina,, ) , (A6)
| v n0 n

< UzO) I
2k ’2—:;(kz‘ /F,)

2el, )

€gmoc’ cL, N,

V20 vr
X < mz,,o(x )cosW cosa,,) , (A7)

<sz>
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where a,=w(t—t,)—E+V¥,, Y,=ot, and the symbol
(O defines an average of the variable O over the initial
electron distribution function as

1
2T A,

(0)= [ foviav

><fAbOUT(RO,GO)a“(\lfo)dROdeod\Po ,  (A8)

where R, 0, are the polar coordinates corresponding to
Xg,Y0- Since the wave functions Z,,(x) in the region
—d <x <d where the beam propagates are of the form

cosh(k,x )=cosh[«,(X,+r, cos¥)] (for even modes)
or
sinh(k,x )=sinh[k,(X,+r,cos¥)] (for odd modes) ,

these functions can be expanded® in a Fourier series of
cos(s¥) whose coefficients are the modified Bessel func-
tions I («,X,) of the first kind. The product of the tri-
gonometric functions cos(s¥), cos¥, and cosa, or sina,
can be converted to sums whose arguments vary as
cos(a, £s¥) or sin(a,+s¥) and the following identities
are obtained for the even modes:

Z,(x)sina,cos¥ =0, cosh(k,X,) ¥ I/(k,r )[sin(a,—s¥)+sin(a, +sV¥)]

s=1,o0dd

—O@,sinh(x,,X,) Y I(k,r )[sin(a, —s¥)+sin(a,+s¥)],

s=2,even

Z,o(x)cosa,cos¥=0,cosh(k, X,) ¥ I/(k,r;)[cos(a,—sV¥)+cos(a,+s¥)]

s=1,0dd

—O,sinh(k, Xy) ¥ I(k,r;)cos(a, —s¥)+cos(a, +s¥)],

s=2,even

where I/ =dI (a)/da and the factor @, is defined in Eq.
(25). The results for the odd symmetry modes may be ob-

tained by the following replacement in Eqs. (A9) and
(A10):

cosh(k,X,)—>sinh(x,X,)
and
—sinh(x,X,)—cosh(k,X,) .

On substituting Egs. (A9) and (A10) in Egs. (A6) and
(A7), it is seen that the average over the initial phase ¥,
for a beam with uniform distribution [i.e., o,(¥y)=1 in
the range 0 < ¥, < 2] will be vanishingly small except for
the resonant sth cyclotron harmonic for which
P =wt—&—sVY is very small. Furthermore, all factors in
the integrands of Eqs. (A6) and (A7) except sinh(k,X,) or
cosh(k,X,) are insensitive to variation in ®,. If the ini-

(A10)

tial cross-sectional distribution o (R, ®,) is, also, in-
dependent of ®,, then

) Oz”sinh(xnxo )d©,=0
and

) 02”<:osh(;<,,x0 )d®,=1I,(k,R,) .

The terms in sinh(x,X,) from Egs. (A9) and (A 10) vanish
when averaged over the initial distribution and we obtain
the selection rule that the odd cyclotron harmonics cou-
ple to the even symmetry waveguide modes and vice ver-
sa. Hence, considering the interaction with a single reso-
nant cyclotron harmonic, we obtain from Egs.
(A6)-(A10) the following equations for the wave ampli-
tude and the wave vector:
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><< 0 T, )cosh(x, X, Jsind
(o) |U| (K, rp Jcosh(k, X )sin >

224 (k) E,)

(A11)

2@10 a)@
egmoc® cL, N,

20 vr
X<(v 207 iv |

n

(k,r; )cosh(k, X, )cos<I>>

(A12)

where ®=wt —§+s¥ with s odd for even modes and s
even for odd modes.

The equations of motion of the electrons in their heli-
cal trajectories can be derived from Egs. (2), (12), (13),

(18), and (19). Thus
d
4 —(yvr) ——2 F,cosa,
= 4 Z,o(x)cosW¥
R wolx)cos¥
(A13)
_ C2 vr an .
dt(yvz)— L. % W | g, sinan
—k,F,cosa, |Z,,x)cos¥ ,
(A14)
dv ‘QO (,‘2 kzvz
—_— _ = - F
dt Y yvrL, % [ ‘ 1) nCOSy
UZ an . .
3, Sind, Z,o(x)sin¥
c? dZ,,O(K,,x)F . ALS)
oL, = dx Mo (

As in Egs. (A9) and (A10), the various combinations of
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Z,o(x), cos¥, sin¥, sina,,, and cosa, can be expanded in
a Fourier series of sin(a,, =s¥) and cos(a, =s¥) in which
the coefficients are either I (k,r;) or sl (k,r;)/k,r,.
Again, retaining only the resonant sth cyclotron harmon-
ic term for which the phase ®=a, —sV¥ is slowly vary-

ing, we get
d
dt(yvr)
C2 n
=—E§ o F,cos® e
X0,I(k,r; cosh(k,X,) , (A16)
d Cz vt an .
— =y — —k,F,cos®
dt(}/vz) L > pull e sin® —k, F, cos
X®,I.(k,r; )cosh(k,X,) , (A17)
and
Q 2 ko, kiriQ
AV _o__ ¢ |- B0 s
dt Y yvrL, % 1) syw
UZ an .
- ]
S dp o
sI(k,r;)
®,——cosh(x, X,) .
Kprp
(A18)

As mentioned before, odd and even cyclotron harmonic
numbers appear in Eqgs. (A16)-(A18) for interaction with
the even and odd wave modes.

The equations of motion for the guiding center coordi-
nates in the slow-time-scale formulation can similarly be
obtained from Eqgs. (12), (13), and (18)-(22) and we get

dXx, c?®,I(k,r)
o :% L0, sinh(k,X)
w—k,v,—sQ
X | |————— |[F,cos®
®
+— v: 4F, (A19)
© dz
dYO . K,
=3 0,I/(k,r; )sinh(k,Xq)—— F sin® .
" vL,.o
(A20)
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