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Frequency shifts induced in laser pulses by plasma waves
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An analytical theory is developed that describes how a radiation pulse is modified as it propagates
through a plasma with arbitrary temporal and spatial density variations. Expressions are derived

for the shifts induced in both the frequency and the wave number of the radiation pulse. The possi-

bility of upshifting the frequency of the laser pulse using plasma waves is analyzed. It is found that
maximum shifts occur when the phase velocity of the plasma wave is equal to the group velocity of
the laser pulse. Nonlinear analysis of laser propagation in underdense plasmas (~p/LID 4(1 where

m~ is the plasma frequency and m is the laser frequency) shows that the frequency shift scales

asymptotically as the square root of the propagation distance. Furthermore, it is shown that the
laser power remains constant as the pulse propagates through the plasma.

I. INTRODUCTION

The propagation of electromagnetic radiation through
plasmas is a problem of general interest with a wide
variety of applications ranging from communications' to
laser-driven particle accelerators. ' For example, recent
plasma simulation studies ' suggest two possible
methods by which the frequency of an electromagnetic
(em) wave may be upshifted. In the first method, the
plasma density through which the em wave is propaga-
ting is suddenly increased in time, while the second
method utilizes the interaction of a plasma-wave wake
field (having a phase velocity near the speed of light) ' ' '

with a short em pulse. Phenomena such as these, which
result from variations in the plasma density, may offer a
way of tuning the radiation from a laser or, alternatively,
they may describe the distortion of radio signals in the
ionosphere.

The possibility of using an intense driving laser pulse to
upshift the frequency of a trailing laser pulse within a
plasma may be of practical significance. In such a
scheme, an intense driving laser pulse of length
(where A, is the plasma wavelength) is propagated
through a plasma generating large amplitude plasma
wave wake fields. ' A trailing, less intense laser pulse of
length (k /2 may be properly phased in the wake field
such that its frequency is upshifted as the pulse propa-
gates through the plasma. Frequency upshifts result
when the trailing pulse is phased such that it "rides" the
wake field in a region where the local wake-field density
gradient is negative (see Fig. 1). Alternatively, a driving
electron beam may be used to produce the large-
amplitude plasma wake field. ' This process of upshift-
ing the frequency of a laser pulse by use of a plasma wake
field was proposed and demonstrated in Ref. 5 through
the use of particle simulation codes. To explain this
phenomenon, Ref. 5 uses arguments based upon Lorentz
transformations of the dispersion relation for an em wave
in a plasma. The goal of the present work is to develop a
rigorous analytic theory describing this process and to

clearly delineate the underlying physics responsible for
the frequency upshift.

In the following, an analytic theory is developed from
first principles that describes how an em radiation pulse
is affected by variations in the plasma density.
Specifically, the one-dimensional (1D) wave equation is
used to derive expressions for the shifts induced in the
frequency and in the wave number by arbitrary plasma
variations (both in space and in time). In Sec. II, a linear
theory is presented which is valid for su%ciently small
shifts in the frequency and wave number. It is shown
that temporal plasma variations lead to shifts in the radi-
ation frequency, whereas spatial plasma variations lead to
shifts in the radiation wave number. For the case of a
short radiation pulse interaction with a plasma wave with
finite phase velocity and arbitrary amplitude, it is shown
that shifts are induced in both the wave number and in
the frequency. Maximum frequency shifts may be ob-
tained when the phase velocity of the plasma wave is
equal to the group velocity of the radiation pulse evalu-
ated at the ambient plasma density. In Sec. III, a non-
linear theory is developed that is capable of describing
large frequency shifts (and amplitude changes) induced in
a laser pulse by a nonlinear wake field in an underdense
plasma. It is found that the frequency shift asymptotical-
ly scales as the square root of the propagation distance.
Furthermore, the amplitude of the vector potential of the
laser changes in such a manner as to keep the laser power
constant as the pulse propagates. This paper concludes
with a discussion in Sec. IV.

II. LINEAR THEORY

The 1D wave equation for the normalized transverse
vector potential a =eAi/(mc ) of the radiation field is
given by

a'
a( t)=zk ( , z)ar( tz),2 2 Qt2
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where k =k 0n (z, t)I[y(z, t)n0]. Here, y(z, t) is the rela-

tivistic factor associated with the motion of the plasma
electrons, n (z, t) is the plasma electron density, and
k p =co p/c, where co p is the electron plasma frequency
in the ambient density np. In deriving the above equa-
tion, conservation of canonical momentum was used,

pi =e A, /c, which gives a transverse plasma current (in

the fluid limit) of Ji—: en—p~/(my). Throughout the
following it will be assumed that a «1 such that k (z, t)
is independent of a (z, t), i.e. , the effects of the radiation
field on the plasma wave will be ignored.

To solve the above wave equation, it is helpful to write
a (z, t ) =b (z, t)exp(i k0z i c00t—), where b (z, t } is the radia-
tion envelope and where cop and kp are the frequency and
wave number of the radiation in the ambient plasma (in
the absence of a plasma wave) that satisfy the dispersion
relation cop=c kp+c k p. Furthermore, it is convenient
to introduce a change of variables g=z v t an—d r=t,
where v =c k0/c00 is the group velocity of the radiation
in the ambient p1asma. The wave equation is then given
by

. ~0 a v, a'
cz clr c2 c}gr yi

1 c}

C

=5k'(g, r)b (g, r), (2)

where 5k =k —k 0 and 1/yg = 1 —
vg /c .

It will now be assumed that the radiation envelope
b(g, r) is slowly varying compared to the radiation fre-
quency cv0, that is,

l
c}b/c}r

l
«

l cv0bl and
l
c}b Ic}pl

&(lcvob/cl. Assuming this, the second-order derivatives
in Eq. (2) may be neglected. Equation (2) may then be
solved giving

~ 2

b(g, r)= b0(g)lexp — f dr'5k'(g, r')
2cop p

The condition lc}b/c}rl « lcvobl implies lc'5k,'I(2cv0z)l« 1. For a plasma density perturbation 5n, this
condition implies lco 05n/(2co0n0)l «1. The condition
lc}b/c}gl « lco b/cl implies l f 'dr'(c}5k Id()c /(2cv0)l
«1 as well as l(db0/dg)c/(b0co0)l «1. The first of
these inequalities generally implies that the wave-number
shift must be small compared to cv0/c, while the second
inequality indicates that the initial envelope lb0(g)l must
be slowly varying compared to cup/c.

The total phase N( g, r ) of the radiation field may be
identified by writing a (g, r) = la (g, r)lexp[i4(g, r)]. It is
then possible to examine the evolution of the frequency as
well as the wave number of the radiation through the
definitions cv(g, r}=— "c}4/c}t= —(c}/c}r——vgc}/B()4 and
k(g, r)=—c}@/Bz=c}@/c}g. Using the above solution for
b(g, r) gives

2 2

cv(g, r)=cv0+ 5k (g, r) — f dr' 5k'((, r'),
2c00 2c00 0 c}g

{4a)

2

hcv= [5k'(g —b,vr) —5k (g}],
2cook U

Chk = [5k (g —bvr} —5k (g)] .
2~oh P

(Sa)

(Sb)

The above equations are valid for arbitrary variations
5k (g, r). [Recall, k =k 0n/(n0y) and the effects of y
become important for nonlinear relativistic plasma
waves. ' ] Provided b(g, r) remains slowly varying com-
pared to ~p, the amplitude of the normalized vector po-
tential lal does not change. That is, Eq. (3) indicates that
in the linear theory la = lb0(g) l

and, hence, the initial en-

velop of the vector potential is simply convected forward
at the group velocity v (amplitude changes in the vector
potential are high-order effects).

To illustrate the above theory, consider a plasma densi-
ty variation that is a function only of space. For exam-
ple, consider a radiation pulse entering a plasma
(co Icv0«1) from vacuum with a plasma density profile

5k~ =5k (z) for z& 0 and equal to zero for z & Q. Assume
that at t =0 the radiation pulse extends from
—crt (z &0, where c00rt &)1. Equations (4a) and (4b)
indicate that, as the pulse propagates, the frequency and
wave number evolve according to cv(z, t) = cv0 and
k (z, t) =k0 —c 5k (z) I(2v cv0). This is in agreement
with the well-known result' that as radiation propagates
into a plasma with spatial density variations the frequen-
cy remains constant, whereas the wave number changes
such that the dispersion relation cv =c (k +k~ ) remains
satisfied.

On the other hand, consider a plasma density variation
which is a function only of time. For example, consider a
radiation pulse (of length rt )& I /c00) propagating
through a long, uniform plasma column (where
cv /co0«1) in which the density is temporally changing,
5k& =5k&(t) Equati. ons (4a) and (4b) indicate that, as the
pulse propagates, the frequency and wave number evolve
according to cv(z, t) =cv0+c 5k (t)/(2c00} and k (z, t)
=kp. This is in agreement with the simulations of Ref. 4,
which indicate that as radiation propagates through a
plasma with temporal density variations the wave num-
ber remains constant, whereas the frequency changes
such that the dispersion relation cv =c ( k +k ) remains
satisfied. Alternatively, such a result may be intuitively
deduced from standard eikonal theory.

Equations (4a) and (4b) may also be used to examine
the case in which a plasma wave (with phase velocity
near c) is used to upshift the frequency of a laser
pulse, as suggested by the simulations of Ref. 5. (Here
the plasma variation is a function both of time and
space. ) Assuming a plasma wave with a phase velocity v

such that the plasma-wave quantities are functions of
only z v t implies 5k—(g, r) =5k (g bvr), where-
5k (g—Avr) has the form of a periodic oscillation and
AU Up Ug Defining the shift in frequency and in wave
number as bcv=co(g, r) co((,0) and A—k =k(g, r)—k ((,0), and using Eqs. (4a) and (4b), gives

2

k(g, r)=k0 — f dr' 5k (g, r') .
2cv0 0 Bg

{4b)
The above equations indicate that the frequency shift

will be maximum for the case U = U . For this
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case b,co= —(u rc /2coo)d5k /dg and b,k = —(c ~/
2coo)d5k /dg. Assuming a plasma wave (with u =u )

such that 5k (g)=k~~5n (g)/no, where 5n (g)
=5nosin(k og) is the plasma-wave density perturbation,
gives a frequency shift of

~ p 6np u z
cos(k 0(),

Mp "o ~p
(6)

PLASMA WAVE Sn (g )

LASER PULSE a(g)

where A, p=2m. /kpp Hence, a positive frequency shift
Aa&0 requires the laser pulse to be positioned properly
in the phase of the plasma wave such that d5n/dg&0.
This is illustrated in Fig. l. Equation (6) shows that hco
is a linear function of u ~, the distance that the pulse has
propagated through the plasma. In such a way ~bco~ will
increase until it becomes sufficiently large so that the ap-
proximation that b(g, r) is slowly varying is not longer
valid. For b (g, ~) to be slowly varying requires
~cb,co/(u coo)~ &&1. This gives a limit on the propaga-
tion distance cr&A, Ocoonol(nco~05no) for which Eq. (6)
remains valid. A convenient method for producing such
a plasma wave may be the laser wake field accelerator,
in which a driving laser pulse of frequency cop is used to
generate a plasma wave with up vg.

For the case u~Wug, ~hco~ is no longer a linearly in-
creasing function of cr. In fact, Eq. (5a) indicates that
Aco will oscillate as a function of c~. Consider a plasma
wave of the form 5k (g, r)=k 0~5n/no~cos[k„o(g—hue)]. Assuming the laser pulse (with a pulse length

cd «A~0) is initially centered about (=0, Eq. (Sa) indi-
cates that the maximum frequency shift is given by

~
kco ~ ~

=
cop oup

5n 0 /( coon o5u )
~

and occurs when er=~k~o/(2b, u)~. This value of cr is
the linear detuning distance, i.e., the distance it takes for
the laser pulse to phase slip a distance of A,~o/2 with
respect to the plasma wave. Furthermore, notice that

may either be positive or negative, depending on the
sign of b, u (for the present example, b,co )0 for u~ & us).
Again, the assumption that b(g, r) is slowly varying im-
plies ~chco /(Zu coo)~ &&1.

Physically, the frequency shifts induced in a radiation
pulse by a plasma wave may be understood as follows. A
plasma wave gives rise to variations in the plasma param-
eter k (g, r). This leads to variations in the "local" phase
velocity of the laser pulse. Heuristically, the "local"
dispersion relation for the radiation field is given by
co (g, r)=c k (g, r)+c k (g, r) F. or small cr, this gives
uz(g)/c =1+k On(g)/(kono). For example, the local
phase velocity near the front of the laser pulse (g=g+)
will be less than the local phase velocity near the back of
the pulse (g=g ) provided n(g+) &n(g ). Hence,
the individual phase peaks in the pulse a (z, r)
= ~a~exp(ikz ico—t) may move relative to one another
(i.e., closer together for the present example). In such a
way both the frequency and the wave number of the radi-
ation pulse will change, as is given by Eqs. (4a) and (4b).

It should be pointed out that due to the local nature of
the frequency shift (the dependence of Aco on g), a laser
pulse with a finite pulse length c~L will develop a spread
in frequency shifts. That is, the frequency shift at the
front of the pulse may be different from the frequency
shift at the back of the pulse. For example, consider
a plasma wave with u = u of the form 5k
=k ~(05n /0n )Osin(k og) and a laser pulse centered about
(=a with err & A. o/2 (see Fig. 1). The difference in the
frequency shift at the center of the pulse with a point 5g
away is given by

~[bco(g) —bco(g+5g)]/hco(g)~ =1—cos(5() .

This spread in frequency shift may be quite significant.

III. NONLINEAR THEORY

It is possible to calculate nonlinear frequency shifts
(b,co~co) analytically in the limit u =u =c. As is dis-
cussed below, this is a valid approximation when
co& /co « 1. Introducing the variables g=z ct and r=—t,
it is possible to calculate the nonlinear source current for
the wave equation by use of the quasistatic approxima-
tion. The quasistatic approximation may be used to
mode1 the interaction of a short laser pulse with a plasma
provided that the laser pulse evolution time ~, is long
compared to the transit time of the plasma electrons
through the pulse. Typically, r, -(co/co )/co~, hence the
quasistatic approximation is valid for laser pulse lengths
rL «(co/co&)/co~. Within the quasistatic approximation,
cold ffuid equations for the plasma electrons may be used
to calculate the transverse current. In 1D, it may be
shown J~ = ena~/y = enoa~/( I+—(—t ), where P=eP„/
mc is the normalized electrostatic potential of the plas-
ma. Hence, the transverse wave equation is given by

2 0 1 8 3
k

aa=k p =k a.,~ ar ar ~'(I+y)

FIG. 1. Schematic of upshifting the laser pulse frequency by
a plasma wave with v~ =u . Positive frequency shifts require
the laser pulse to be centered about regions of the wave with a
decreasing density.

In applying the above equation to the frequency shifts in-
duced in a short laser pulse c~~ & A. /2 by a large ampli-
tude plasma wave, P represents the electrostatic potential
of the plasma wave (with u =c), which is assumed to be
known and independent of the vector potentia1 of the
short laser pulse.
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tion field is a function of g, v~(g)/c =1—kz(g)/(2k ),
the local group velocity at the leading edge of the pulse
will be different from the local group velocity at the trail-
ing edge of the pulse, hence the pulse length will change.
The evolution of the pulse length may be estimated as fol-
lows. Consider a laser pulse with a square profile of ini-
tial length crI p

=2gp, 'centered about g =0, where
k ((=0)=k~p. The difference between the group veloci-
ty at the leading edge and the group velocity at the trail-
ing edge, bug =u (gp) —

ug(
—5(p), is bv~/c =@'pkzo/

( ~L~k ), where L &0 has been assumed. The pulse length
is given by crL =crLo+ f pdrb, vg and, using Eq. (9a), one
finds

To calculate the nonlinear frequency shifts induced by
such a plasma wave, the laser pulse vector potential is
written a(g, r) =apexp[i4(g, r)], where ap is a constant.
Assuming ~a4/ag~ && ~aC&/a(cr)

~
(which is shown below

to be valid when co /cu « 1), the wave equation becomes

ac ae
ag ar

+'
agar

The above equation describes the nonlinear evolution of
the complex phase 4 of the radiation field. Furthermore,
when a4/ag~ )) a4/a(cr) ~, the pulse frequency is
given by co(g, r}=caRe(4)/ag=ck(g, r), where Re(4)
is the real part of 4.

For the case in which the plasma gradient may be ade-
quately approximated by its first-order Taylor expansion,
k~ =kzp+(a(k~ }/aj, the above equation may be solved
analytically. Assuming a solution of the form
C (g, r)=k (r)(+8(r), one finds

k(r)=kp 1— (9a)
k,'

crL =crLo[1+ln(k/kp)] .

The total energy in the laser pulse may be estimated by
U —crL~aa/ag . The change in the pulse energy
b, U=U(r) —Uo is then b, U/Up-—ln(k/ko) and, thus,
the pulse energy increases as k (r) increases. The analysis
presented in Ref. 5 assumes that the number of photons
( —U/k) in the laser pulse remains constant. The above
results indicate that U/k —(kp/k)ln(k/kp). Hence, it is

only for small frequency shifts k =ko+ 5k, where
5k/kp~ &&1, for which U/k may be assumed to be con-

stant.
Equation (9a) indicates that asymptotically, for large

cr»~L~(ko/kzp), the frequency scales as co=co p(cr/
~L )'~, where cr represents the distance the pulse has
propagated through the plasma. Notice that frequency
shifts b,co=coo require cr= ~L~(kp/kzo) =)(,z(kp/k~p)/
(2m.gp), which can be quite a large propagation distance
when kp /k p )) 1 and Pp « 1. In principle, Eq. (9a) indi-
cates that there is no upper limit to how far the frequency
may be upshifted (assuming that the plasma wave and
laser pulse may be sustained over a sufficiently large dis-
tance within the plasma), however this is a result of as-
suming U =Ug =c. In practice, the phase velocity of the
plasma wave U will not be equal to the group velocity of
the laser pulse u . The fact that u Wu~ implies that the
laser pulse will "phase slip" out of the region of the plas-
ma wave for which ap/ag&0 and thus will no longer be
frequency upshifted. The detuning distance c~d, defined
to be the propagation distance required for the pulse
center to phase slip a distance A, /2 with respect to the
position on the plasma wave for which /=0, is given by
1, /2=~ f„"dr(u —v ) . Assuming v =c and v /c=l
—k p/(2k ), where k =k (r) is given by Eq. (9a), gives

8(r) =L (k —k )+i 1n(k/kp)+8p, (9b}

where kp=k(r=0), 8p=8(r=0), and
a(k~ )/a/=—k~p/L. Equation (9a) indicates that upshift-
ing the frequency requires L&0. Furthermore, Eq. (9a)
shows that asymptotically, for large cr, co=ck —&cr.
Recalling that k =k p(1+/) ' and expanding about
(=0 (chosen such that /=0 at (=0) gives
k =k' =k' (1—(aJ/a(). Thus, L '= —aQ/a(. As-
suming P=Ppsink g gives L '= —k~Pp. In the limit

Pp~ && 1, one has Pp
———

5np /n p, where 5np /n p is the
normalized amplitude of the density perturbation
5n =5npsink g. This indicates that in order to have fre-

quency upshifts, L (0, the pulse must be located in a re-
gion of increasing P(g), which corresponds to a region of
decreasing 5n (g).

Using the above expressions for k (r) and 8(r), the
vector potential of the laser field may be written as

aoko
a(g, r)= exp[ikg+iL(k —kp)+i8p] .

k(r} (10)

ko
cr~ = - —[exp(2mgp) —1],

2~ o k,'p
(12)

where ~L '~ =k Pp has been used. Inserting this into Eq.
(9a) gives a maximum frequency upshift of

k (rd ) =koexp(argo) . (13)

Notice, in the limit 2~go &1, one has crd ——k~(kp/k&p)
and k(rd)=kp(1+~go) Clearly, to ach. ieve large fre-

quency shifts b,k ( ~d }& ko, a large-amplitude plasma
wave 2rrgo& 1 (with peak ' ~5n~ )no) is required.

Notice that now the amplitude of the laser pulse evolves
as a function of ~, in addition to the phase, such that the
power of the laser pulse P- ~aa/a(~ is constant in r In.
order to upshift the laser frequency co(r)=ck(r), it is
necessary for L (0, which implies that the amplitude of
the vector potential ~a~ decreases. Furthermore, notice
that ~a4/a(cr)~/~a4/ag~ =k p/2k . Hence, validity of
the above theory requires k p/k «1. [Notice that by
using the definition co=(ca/ag —a/ar)4 along with Eqs.
(9a) and (9b), one finds co=ck(1+k /2k ) and, hence,
co=ck to order k /k «1.] For the case L&0, which
corresponds to decreasing the pulse frequency, Eq. (9a)
becomes invalid when k(r) decreases to the point where
k -k

pO

Although Eq. (10) indicates that the pulse power
P —~aa/ag~ is constant in r, the total energy in the pulse
is not constant. This is true because the pulse length will

evolve in ~. Since the local group velocity of the radia-
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The above nonlinear analysis has assumed that the
background ambient plasma density is uniform. Howev-
er, if the ambient density is a slowly increasing function
of the propagation distance c~, then it may be possible to
increase the detuning distance. The above results may
be readily modified to include the ~ dependence in the
quantities k o(r) and L (w). One finds that k (r) and 8(r)
are given by

k(r) 1—
ko

' 1/2
c ~, k,o(r')

d~' '
o L (r') (14a)

where Lo =L (0). In terms of the normalized electrostat-
ic potential of the wake field P, Eq. (14a) may be used to
give an expression for the laser frequency co as a function
of the propagation distance c~,

2

1 — J d(cr) (1+/)
coo ~o 0 a(

1 /2

(14c)

where coo=co(r=0).
As the background plasma density increases, several

effects occur: (i) the plasma wavelength decreases, (ii) the
rate at which the laser frequency evolves is changed, and
(iii) the group velocity of the laser pulse decreases. To ac-
count for these effects, it is necessary to consider the evo-
lution of the relative distance b, g between the center of
the laser pulse and the position on the plasma wave for
which /=0. The rate of change of b, g as a function of
the propagation distance is given by

a~g ax,=1 —(v —v ),
a1 ar

(15)

where l is the number of plasma periods behind the end
of the driving beam (producing the wake field with wave-
length A. =2m/k ) at wh. ich the laser pulse is located.
Furthermore, it will be assumed that the phase velocity of
the plasma wave is constant u~

=
u~o and uz /c = 1

—k /(2k ), where k is given by Eq. (14a). Assuming a
small linear increase in the ambient density,
k (r)=k o(1+ex/L„), and assuming that the frequency
shift remains small, k =ko+5k, Eq. (15) may be solved
to determine the conditions required to have no phase
slippage, i.e., aug/ar=O. Setting aug/ar=O implies the
following two conditions (assuming 1= 1):

(16a)

A,~oL„'/2= l —u o/c —k o/(2ko) . (16b)

Equation (16a) gives the rate at which the ambient densi-

ty must be linearly increased, L„)0. (Recall that L &0
corresponds to frequency upshifting of the laser pulse. )

Equation (16b) indicates the restrictions necessary on the
plasma wave "equilibrium" in order for there to be
no phase slippage. For example, the limit

vzo/c = 1 —
kzo /k implies that L = —A, o (where

L '= —ap/ag). Satisfying both Eqs. (16a) and (16b) to
achieve no slippage may not be possible in practice.

8(r) =Lk Lk——J dr kaL /as+i ln(k /ko)+8o,

(14b)

However, such an increase in density may result in an in-

crease in the detuning distance and thus a larger frequen-
cy upshift.

As a final remark, it should be noted that a large am-
plitude plasma wave may be used not only to upshift the
frequency of a trailing laser pulse, but also to optically
guide a trailing pulse. The diffractive properties of a
laser pulse in a plasma wave are determined by the
effective index of refraction ii= 1 —(k o/2k )(1+/)
(this expression assumes that the radial profiles of the
plasma wave and laser pulse are broad compared to A, ).
For optical guiding to be possible, it is necessary for the
radial profile of g to exhibit a maximum on axis,
ail/ar &0. This is the case if the laser pulse is located at
a position on the plasma wave at which P) 0 (assuming
aplar &0). Hence, it may be possible for a plasma wave
to simultaneously upshift the frequency and optically
guide the laser pulse provided the pulse is phased at a po-
sition where ap/ag) 0 and p )0.

IV. DISCUSSION

The analytic theory presented above describes how a
laser pulse becomes modified due to variations in the
plasma through which the pulse propagates. In particu-
lar, this theory is used to examine the process by which a
plasma wave wake field upshifts the frequency of a laser
pulse. The linear theory presented in Sec. II describes
how arbitrary variations in the plasma parameter k (g, r)P
lead to shifts in both the frequency and wave number, as
indicated by Eqs. (4a) and (4b). The validity of the linear
theory requires that these shifts are sufficiently small in
comparison to the initial frequency and wave number. It
was shown that temporal plasma variations lead to fre-
quency shifts, whereas spatial plasma variations lead to
wave-number shifts. The possibility of upshifting the fre-
quency of the laser pulse using a plasma wave has been
examined and it is found that maximum frequency shifts
result when vp vg Positive frequency shifts require
phasing the laser pulse such that it is centered at a posi-
tion of decreasing density or, more precisely, at a position
where a5k /a( & 0. Physically, these shifts may be inter-
preted as arising from variations in the local phase veloci-
ty of the radiation field. Local phase velocity variations
allow the individual phase peaks in the radiation field to
move relative to one another, thus changing the radiation
frequency and wave number.

The nonlinear theory presented in Sec. III is valid for
large frequency shifts occurring in laser pulses propaga-
ting in underdense plasmas (k /k «1). In the region
where the gradient in the electrostatic potential of the
plasma wave is approximately linear, the evolution of the
laser frequency is given by Eq. (14c). The amplitude of
the radiation field evolves in such a manner as to keep the
laser power constant as the pulse propagates. The pulse
energy increases logarithmically with increasing frequen-
cy, as a result of the pulse length increasing. For a uni-
form plasma (P independent of r), the frequency co(r)
asymptotically scales as the square root of the propaga-
tion distance. Large frequency shifts A~~coo require
propagation over large distances cr & A, coo/(2rrgoco~o).
Assuming that the laser pulse and the plasma wave may
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be maintained over a sufficiently long distance, the pro-
cess of frequency upshifting is limited by phase detuning.
It may be possible to increase the detuning distance by
slowly increasing the ambient plasma density as a func-
tion of the propagating distance. Furthermore, it may be
possible to phase the laser pulse at a position on the plas-
ma wave (where OPIA() 0 and P) 0) such that the plas-

ma wave both upshifts the laser frequency and optically
guides the laser pulse.
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