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We propose an approximate method for studying steady-state properties and linear stability of
the dendritic arrays that are formed in directional solidification of alloys. Our analysis is valid at
high growth rates where the primary spacing between dendrites is larger than the velocity-
dependent solutal diffusion length. We compute a neutral stability boundary and find that, in the
situations where we expect our results to be valid, the experimental data of Somboonsuk, Mason,
and Trivedi [Metall. Trans. A 15A, 967 (1984)] lie in the stable region, well away from the boundary.

I. INTRODUCTION

One of the original metallurgical motives for the study
of dendritic crystal growth was the need to predict and
control the microstructures of cast alloys.! Now that we
have what appears to be a reliable theory of the behavior
of individual dendrites,2~* it should be possible to answer
questions about the collective properties of the large den-
dritic arrays that occur in many practical casting pro-
cesses. The work to be described here is part of an effort
to bring the modern developments in dendrite theory
back to the applications with which it started.

The leading edge of the solidification front can be visu-
alized as an array of dendritic tips advancing, in parallel
to one another, into a supersaturated melt. The partially
solidified region between the tips of the dendrites and the
fully solidified material is called the mushy zone, and it is
within this zone that the microstructural properities of
the alloy are established. In particular, the dendritic pat-
tern in the mushy zone determines the pattern of solute
segregation in the cast solid; the latter pattern, in turn,
determines the mechanical properties of the material and
its behavior under further processing.

Figure 1 is a schematic illustration of the front of the
mushy zone. One feature of this pattern that is of special
interest for metallurgical applications is the average spac-
ing between the primary dendrites, denoted here by A,.
It is also important, especially if one is looking ahead to-
ward accurate numerical simulations of casting processes,
to know the temperature and solute concentrations at the
leading edge of the zone and thus to know the parameters
which determine the shape of the primary dendrites, the
initial spacing of the secondary sidebranches, and the
volume fraction of the solid and the associated solute
concentration as functions of distance behind this edge.
These are all interrelated quantities.

The primary spacing problem has long been of interest
within the metallurgical community, and various at-
tempts to solve it have appeared in the literature. We do
not find any of these attempts entirely convincing, largely
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because each of them —in one way or another —has tried
to find a unique primary spacing A, that depends only on
the current growth conditions and not on the way those
conditions were achieved, and each has done this by mak-
ing some ad hoc assumption about the shapes of the den-
drites. For example, Kurz and Fisher® assumed that the
envelope of primary dendritic structure is an ellipse
whose semiminor axis is A; and whose semimajor axis is
the thickness of the mushy zone. Hunt,® on the other
hand, used a spherical approximation for the front of the
dendrite and coupled this with the assumption (due to
Schiel) that the solute concentration in the melt, in the
bulk of the mushy zone, varies only in the direction of
growth.

In what follows, we propose to take a different point of
view. First, we are going to argue that there is no unique
primary spacing at fixed growth conditions—that, in
general, there exists a continuous range (possibly very
narrow) of physically allowable states (i.e., primary spac-
ings), and that the selected state depends upon the se-
quence of events by which the system has been set into
motion. This notion of no sharp selection is consistent
with a growing body of theoretical and experimental evi-
dence regarding cellular spacings in directional
solidification,”® and we see no reason to suspect that this
situation will change abruptly when the cells become den-
drites.

Second, given the assumption of a band of allowed
spacings, we do not need to look for additional ad hoc
selection condition, and can focus, instead, on the dy-
namic properties of arbitrarily chosen arrays. In particu-
lar, we shall examine the morphological stability of the
leading edge of the mushy zone in the hope that the dy-
namic information obtained in this way will provide clues
about history-dependent pattern selection. More
specifically, our scheme for the present investigation is to
test experimental data to see whether measured spacings
are consistent with the stability criterion and, if so, how
far they might be from the limit of stability. Such a
theoretical test can be meaningful, however, only if the
experiments have been carried out in such a way that all
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of the system parameters required by the theory are in-
dependently determined —there should be no adjustable
constants. So far as we know, the only experiment that
fits this criterion is that of Somboonsuk, Mason, and
Trivedi,’ who measured primary spacings of two-
dimensional arrays of dendrites growing in dilute solu-
tions of acetone in succinonitrile. As we shall see, their
results are quite interesting from a theoretical point of
view.

II. A MODEL FOR DENDRITIC DIRECTIONAL
SOLIDIFICATION

The basic model of directional solidification to be used
here is described in Ref. 10. Hydrodynamic degrees of
freedom are neglected; all transport is assumed to be
diffusive. In addition, the latent heat of fusion is assumed
to be sufficiently small and thermal conductivities of the
liquid and solid sufficiently large and close to one another
that the temperature throughout the system can be taken
to be

T(z2)=T,+Gz , 2.1

independent of the position or shape of the solidification
front. As shown in Fig. 1, z measures displacement
parallel to the direction of motion in a frame moving at
velocity v. The temperature T, is the melting tempera-
ture of the pure material, and G is the thermal gradient
which is taken to be a constant under control of the ex-
perimentalist. Note that, because the tips of the den-
drites must be undercooled, this choice of position for
z=0 means that the entire solidification front will be in
the region z <0.

It is convenient, but not essential for the kind of
analysis to be described here, to assume that the alloy is
sufficiently dilute that we can make linear approxima-
tions for the liquidus and solidus in the equilibrium phase
diagram. (That approximation is accurate for the alloys
used in the experiments of Somboonsuk et al.) Let m
and m' be, respectively, the liquidus and solidus slopes
(dT /dc). The symbol ¢ denotes the concentration of the
solute; and the ratio m/m’'=K <1 is the partition
coefficient. The initial concentration of the liquid, that is,
the concentration infinitely far ahead of the solidification
front,isc .

P

FIG. 1. Schematic illustration of dendritic tips at the front of
the mushy zone. The point z=0, at which the temperature is
equal to the melting temperature of the pure material, is moving
upwards (in the positive z direction) at speed v.
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The starting point for this analysis is the diffusion
equation for the solute concentration c(r,?) as a function
of position r=(r,z) and time ¢ in the moving frame

LT S
FYRLr DV?c igoe?,-(r,t).

(2.2)
Here D is the solutal diffusion constant in the fluid. This
equation is valid, of course, only in the fluid phase; no
diffusion occurs in the solid. The symbol §; denotes the
source strength associated with the ith dendrite, that is,
the rate at which the solute is being rejected into the fluid
at positions r along the solidification front. Equation
(2.2) has the formal solution

crt)=c,+3 fdr’f_' dr'S(r,t|r,t")S;(r',t') , (2.3)

where ¢ is the Green’s function for the operator on the
left-hand side of (2.2). Strictly speaking, § is a very com-
plicated function because of the one-sided boundary con-
ditions at the solidification front. For present
purposes—in anticipation of the approximations to be in-
troduced shortly—it needs not be written out explicitly.

Our strategy is to use Eq. (2.3) to write an equation of
motion, not for the entire solidification front, but only for
the positions z;(¢) of the tips of the dendrites. To do this,
we need to make a number of serious assumptions,
several of which are very specific to dendritic—as op-
posed to cellular —situations. These are the following.

(i) Quasistationarity. The explicit time dependence of
&, in (2.3) may be neglected because the motion of the
solidification front relative to the moving frame is slow
compared to the rate at which the diffusion field adjusts
to changes in the front. The source strength &; still de-
pends implicitly on the time, however, because it is a
function of the instantaneous growth rate v; and the ra-
dius of curvature of the tip p;.

(ii) Slender, three-dimensional dendrites. The tip of
each dendrite is assumed to be well separated both from
all other tips and from the walls of the container. That
is, the tip radii p; are all much smaller than the interden-
dritic spacing A, and the smallest dimension, say W, of
the channel in which the solidification is taking place.

(iii) Local equilibrium. The concentration ¢; at the po-
sition z; of the ith tip is fixed by the liquidus on the phase
diagram, that is,

G

G=——z . (2.4)
m

Note that we are omitting the Gibbs-Thomson correction
here. Capillarity plays a role only in the next of these as-
sumptions.

(iv) Solvability. The instantaneous growth rate v; of
the ith tip is determined by a solvability condition of the
form

2Dd,
UiPl2

Here d, is the capillary length

o* . 2.5)
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T, T,
do=—12 ro (2.6)

" (Ac)Lm  (1-K)LGz, ’

where L is the latent heat per unit volume and
Ac;=—(1—K)Gz; /m is the jump in equilibrium concen-
tration of solute between the solid and liquid phases at a
temperature T+ Gz; [see Ref. 10, Eq. (3.5) and the asso-
ciated footnote].

In writing (2.5) we implicitly assume that o* is in-
dependent of the solutal Péclet number

P
pl 2D

For the well-separated dendrites of interest to us p; will
be small, of order 102 or less, and the limit p;, —0 almost
certainly is accurate enough for our purposes. A more
serious assumption, especially for growth conditions near
the cell-to-dendrite transition, is that the solvability con-
dition does not depend on the spacing A,. In general, we
must expect that when A, is less than the diffusion length
1=2D /v, the dendritic tips will interact so strongly with
each other that their shapes will be deformed and, there-
fore, the solvability mechanism for velocity selection will
be significantly altered. In short, we are making the
strong assumption that the properties of any dendritic tip
on our array are the same as those of an isolated dendrite
growing slowly in a homogeneous melt.

For pure succinonitrile solidifying under conditions of
thermal control, where the symmetric model with equal
thermal diffusivities in both the solid and liquid phases is
appropriate, o * is known to be about 0.02. The value of
o™ should be twice as large for the one-sided model as it
is for the symmetric model, thus, we shall assume
o * =~0.04 for succinonitrile with solutal control.

The next step is to evaluate each term in Eq. (2.3) at
the tip of, say, the ith dendrite. Consider first the contri-
bution to the sum in (2.3) from the jth dendrite with j#i.
Denote this contribution by the symbol &¢c;;. According
to assumption (ii), the region near the tip of this dendrite
should look like a one dimensional source of solute when
observed from distances of order A,>>p;. Thus with
quasistationarity (i) and the assumption of a paraboloidal
tipz=—ri/2p;,

2.7)

&j(r,t)dr—>é°j(z)82(rlj—rl)dz ,

$i(z2)=[Ac;(2)v;27r, | —— |dz

=[Ac;(2)]v;2mp;dz ,

where z is the position along the axis of the jth dendrite
and r is the radial distance away from this axis. In this
three-dimensional situation, &; depends on 2z only
through the factor Ac;(z)=—(1—K)Gz /m plus the con-
dition that &; vanishes for z > z;.

It seems reasonable when considering the contributions
from distant line sources to neglect perturbations of the
diffusion field caused by neighboring or intervening den-
drites and, accordingly, to approximate § in (2.3) by 9,
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the Green’s function for diffusion in free space. The for-
mula that is needed is

z+|r|
l

S dtSr,l0,00= =r(rl,2),

47D|r| P
2.9)

where [=2D /v is the diffusion length. The resulting
contribution to the sum in (2.3) is

ac,-j:::fﬁjwdz'r[d,-j(zl),zi—z']AC(Z')Zﬂpjvj , (2.10)

where
dy(z')=[A} +(z;—2')]'"%, 2.11)

and A;; is the distance, in the plane perpendicular to the
growth direction, between the ith and jth dendrites. Car-
rying out the integration in (2.10), we find

Gp:(1—K)
&c;;= P
m
/ Ay dj
X —_ —_—— —_
P R e Y
A2 d..
|, i ij
Z, 21 1 l 3 (2.12)

where d;;=d;;(z;) in (2.11) and E, is the exponential in-
tegral

e—l

E\(x)=["*—ar. (2.13)

Approximating §&; by a line source is not appropriate
for the term 8c¢;, where the point r at which c(r) is being
evaluated is the tip of the paraboloidal surface from
which solute is being rejected. In this case, we must re-
place kfj in (2.11) by r2 =2p,(z; —z’) to obtain the correct
distance between a source at z’, r,(z’), and the tip. Once
again, the integration can be carried out without further
approximation, and the result is

G(1—K)p;

m

Cii

2

Pi

4o+ —
zl pl 2[

Pi

l

l
X2 ] E,

1+&\_

(2.14)

This is the familiar Ivantsov relation generalized to the
case of a free solutally controlled dendrite growing in the
direction of a temperature gradient. Note, however, that
p;/1is not quite the same as the Peclét number p; because
the diffusion length /=2D /v is computed at the fixed
growth speed v and not at the instantaneous growth rate
v; of the ith tip.

Combining the formal solution of the diffusion equa-
tion (2.3) evaluated at the tip of the ith dendrite, with the
boundary condition (2.4) and the specific results (2.12)
and (2.14), we find
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2
2i 72y p /1 Pi Pi Pi Pi
=p;e" "B, |~ | |z +pi+ = | — = [1+ 55
(1—K) 2@ S| [ |F7PT |7 I
2 y i 2
+3p; Zi—“y_ E, — = 1=
pa J 21 1 2 ld;;
Here

= = (2.16)

z,= G .

is the position along the z axis at which solidification
might first occur and, thus, is a first approximation for
the leading edge of the mushy zone and a reasonable
reference point from which to measure the tip positions
z;.

Equation (2.15) provides us with one set of relations be-
tween the quantities z; and p; for fixed relative positions
of the dendrites, that is, for fixed separations A;;. Note
that the velocities v; which occur in the Péclet numbers

p; are related to z; via

dz;

!
v,=v+— .

dt (2.17)

Therefore the solvability condition (2.5) is the second set
of relations needed for a mathematically complete set of
equations of motion for this system. As expected, these
equations make sense—at least formally—for any
geometrical arrangement of the dendrites; the spacings
A;; are parameters which describe a continuous family of
growth patterns. The existence of a family is actually a
necessary consequence of the point of view we have taken
J

lz|—lz.. |

= p
(1—k) PeEap)

|ZI—p~£23

To study linear stability, we assume that all small
departures from steady state grow (or decay) with an
amplification rate w. For example,

z;—z=06z;e”, v,—v=0wbz;e”,... . (2.20)
Then from the solvability condition, we find
sp=L2 |- L+ 2|5, (2.21)
2 0lzl  w
and
1 ()
sp, =L | ——2 - .
Pi=" T 6z, (2.22)

We also have

+L(1+p)+p S
2 i#j
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exp (2.15)

—‘%H

here. We know that the combination of a solvability con-
dition (2.5) plus Ivantsov relation (2.14) is sufficient to
determine uniquely the growth rates and tip radii of iso-
lated dendrites. The full equation (2.15) reduces to (2.14)
in the limit of large spacings A;; because the coupling
terms (for /%)) vanish in this limit. Thus we clearly have
a family of—not necessarily stable—steady-state solu-
tions at large separations; and we must expect that family
to persist at least for weakly interacting arrays of den-
drites.

As outlined in the Introduction, our procedure from
this point is to compute steady-state solutions of (2.5) and
(2.15), and then to examine their stability. This pro-
cedure is completely straightforward. In the remainder
of this section, we shall simply write down the relevant
equations and then, in Sec. III, we shall use these formu-
las to interpret the data of Somboonsuk, Mason, and
Trivedi.’

The steady-state versions of (2.5) and (2.15) are ob-
tained by assuming a completely uniform, flat, front of
the mushy zone: v;=v, z;=z=—|z|, p;=p, and
p;=p/l=pv /2D =p. We then have

2Dy T,

f

=0, (2.18)
(1—K)LGvp?®|z|
and
adia B U B T _ D
|z|+ 5] E, ] +2 7 1 |exp H .
(2.19)
I
‘ 8p;
SE, L3 =——e"i, (2.23)
I p
d; exp(—A; /1)
8E, |— |=— (8z;—8z;) , (2.24)
! Ay J
and
d;; exp(—A;; /1)
Sexp | —— =——p%(82,-—82j). (2.25)

The linearized version of (2.15) can now be written in
the form of an eigenvalue equation for w:
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©3 A,52;= 3 B;bz; , (2.26) A; =A%, +(1-8,)4)",
J J —p _ (1)
where with
2
A‘O’——-Jz% e’E,(p) Izl(l—p)+—l;L(3+p) +lz|+é(1—2P“P2) ) (2.28)
A A 1 Aj;
Alh=~L +-LE, | =L |+ (=2, - 2
0=y |z 51 B | 2(1 ;j )exp ] , (2.29)
B'Y=—————+4peE (p) i(l—p)+—*’i 2+5—“’+A‘Lz
(1—-K) P 2 2|z| 2 2
/ i |z| Ajj
+2 P (1+4p+p2)+ —L 4 Zlexp | ——L .
5 4|21( p+p”°) p% E, ] }\Uexp ; , (2.30)
2
ij ij 1 |z| A,
B=—L 2|+ 2L |E, | =L |+p |- (A, — 1) — -2 e .
4 201 F1 TR, p 4|z|( =D Ay exp ; (2.31)

Finally, if the array of dendrites is periodic, (2.26) can be solved by Fourier transformation, yielding a dispersion rela-

tion for w as a function of wave vector q:
o(q)=

where

A(q)=3 4,exp(—iq-Aij); B(q)=
j

and the Aij are the lattice vectors of length A ;.

III. COMPARISONS WITH EXPERIMENT

In the experiments of Somboonsuk, Mason, and
Trivedi,’ a 5% molar solution of acetone in succinonitrile
was directionally solidified in the gap between parallel
glass plates. The system was accelerated abruptly to
speed v so that the initially flat interface underwent a
series of instabilities and settled, ultimately, into a dendri-
tic array. Measurements were made of the average spac-

TABLE 1. Physical properties of succinonitrile and
succinonitrile-acetone solutions [from Somboonsuk, Mason, and
Trivedi (Ref. 9)].

Succinonitrile

331.24 K

11.21 J/mol K
1.016 X 10* kg/m’?
0.970X 10 kg/m?
0.224 J/msK
0.223 J/msK
8.95X1073 J/m?

Melting point

Entropy of fusion

Density of solid

Density of liquid

Thermal conductivity of solid

Thermal conductivity of liquid

Surface energy
Succinonitrile-Acetone

Diffusion coefficient

Liquidus slope

Equilibrium partition ratio

127X 107° cm?/s
—2.22 K/mol % acetone
0.10

> Bjexp(—iq-Aij),
J

(2.32)

(2.33)

f

ing A, and also the average tip radii and secondary spac-
ings of the sidebranches, for sequences of different values
of speed v and temperature gradient G. Values of the
physical constants relevant to this system are shown in
Table I.

These experiments were carried out in such a way that
the spacing between the plates, denoted here by W, was
generally much smaller than the primary spacing A, but
much larger than the tip radius p. Thus the pattern gen-

FIG. 2. Transverse section of dendrites growing in a narrow
gap between parallel plates. The growth direction is perpendic-
ular to the plane of the paper. The plates are indicated by dark
bars. The physical dendritic tips (between the plates) and their
images (outside) form a two-dimensional array of spacing A, in
the x direction and W in the y direction.
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TABLE II. Experimental data of Somboonsuk, Mason, and Trivedi (Ref. 9) (first five columns) and
theoretical predictions of steady-state tip radii (last column).
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V (um/s) G (K/cm) A (um) A/l Pexplpm) Prheor(tm)
1.17 67.0 472.0 0.22 23.0 6.019
2.15 65.0 377.0 0.32 13.6 7.428
3.97 67.0 328.0 0.51 10.3 7.563
3.97 67.0 324.0 0.51 9.8 7.570

10.7 66.7 240.5 1.01 6.2 5.479
10.7 67.0 240.0 1.01 6.3 5.479
255 66.7 174.2 1.75 4.0 3.603
65.6 65.6 125.2 3.23 2.3 2.216
100 67.0 96.8 3.81 1.8,2.2 1.777
65.3 29.6 182.0,180.0 4.68,4.63 2.86 2.222,2.222
65.8 42.4 144.0,156.0 3.73,4.04 2.56 2.213,2.213
65.9 52.0 144.0,142.0 3.74,3.68 2.30 2.213,2.213
65.0 65.6 125.0,134.6 3.20,3.44 2.6,2.31 2.227,2.227
64.3 77.0 116.7,123.0 2.95,3.11 2.3,2.5 2.240,2.240
10.6 29.9 370.0 1.54 5.25 5.530
10.6 41.0 3325 1.39 5.73 5.517
10.6 46.7 262.0,268.0 1.09,1.12 5.27 5.512,5.512
10.5 63.7 240.5,250.0 0.99,1.03 5.4 5.523,5.526
10.8 77.0 209.9,202.0 0.98.0.86 5.73 5.454,5.455

erated was a two-dimensional array of dendrites whose
tips were effectively three dimensional. The zero-flux
boundary condition at the plates is achieved mathemati-
cally by extending this two-dimensional array periodical-
ly into a third dimension perpendicular to the plates. A
transverse section of the resulting system of dendrites and
their images is shown in Fig. 2. To perform the sums in
the wvarious formulas in Sec. II, we write
Ajj=n;Ae,+m;We,, where n; and m,; are integers
and e, and e, are unit vectors as shown in the figure. For
this situation, the wave vector q introduced in (2.32) and
(2.33) must be chosen to be in the x direction.

Our first objective is to use the available data to check
the validity of the steady-state equations (2.18) and (2.19).
These equations can be solved numerically to obtain |z|
and p as functions of the growth parameters v and G, but
one needs the spacing A, in order to do this. Our results
are shown in Table II where, for various values of v, G,
and A, we list both the experimental and theoretical
values of p. We also show the values of the ratio A,/!
which, as argued previously, is a measure of the strength
of the coupling between dendrites. All results shown
here are for spacing W =150 um.

It is clear from this table that the agreement between
experiment and theory is quite good at the higher growth
rates where A, is greater than /. At slower speeds, howev-
er, A, is less than / and observed tip radii are appreciably
larger than predicted. This trend is qualitatively con-
sistent with the fact that, at the smallest speeds shown
here, the system is undergoing a transition from a cellular
pattern with relatively flat fronts and sharp grooves to
the dendritic pattern with sharp paraboloidal tips and
sidebranches.

We turn next to the stability theory summarized by
Egs. (2.32) and (2.33). The characteristic form of the ei-
genvalue w(q) is illustrated in Fig. 3. Here we have plot-

ted  as a function of gA,, in the interval —7<gA, <,
for v=20.0, G=67.0 K/cm, W=150.0 um, and three
different values of A,. The system is clearly stable for
A;=200.0 um, unstable for A;=125.0 um, and just neu-
trally stable for A, =166.529 um. In every case that we
have examined so far, the most dangerous mode, that is,
the Fourier mode for which w(q) has an absolute max-
imum, occurs at the Brillouin-zone boundary ¢ =*m/A,.
In other words, the dominant instability is one in which
every other dendrite grows at the expense of its nearest
neighbors. The locus of points A;=A,(v,G) for which
o(7/A{)=0 is the neutral stability boundary in the space
of variables v, G, A,.

Portions of our theoretical function Ay(v,G) are shown
in Figs. 4 and 5 along with the experimental data of Som-

amplification rate w (sec™')
/
;o
y.
/ 1

1 0
scaled wave number gX,/m

FIG. 3. Characteristic forms of the amplification rate o as a
function of the scaled wave number gA, /7.
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FIG. 4. Neutral stability curve A, as a function of growth ve-
locity v for G=67.0 K/cm and W=150.0 um. The experimen-
tal points of Somboonsuk, Mason, and Trivedi (Ref. 9) are indi-
cated by solid triangles.

boonsuk, Mason, and Trivedi® listed in Table II. The
A0 plane is shown in Fig. 4 for G=67.0 K/cm, and
W=150.0 um. The function Ay(v) is shown as a solid
line for Ay> ! and as a dotted line for Ay </. We already
know that our calculation is quantitatively incorrect for
the latter case; here it appears to be qualitatively wrong
in that it implies that the experimental points are on the
unstable side of the stability boundary for slower growth
speeds. What is more interesting, however, is that the ex-
perimental points are well inside the stable region at the
higher speeds where we believe the calculation to be ac-
curate. The G dependence of A, is shown in Fig. 5 for
two different values of v. The fact that the distance be-
tween the experimental points and the stability boundary
is very nearly insensitive to G is consistent with our ex-
pectation that the controlling variable is the ratio A,//,
which depends only on v.
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FIG. 5. Neutral stability curves A, as functions of tempera-
ture gradient G for two different growth speeds: v=10.7
pm/sec (upper curve) and v =65.0 um/sec (lower curve). Ex-
perimental points are indicated, respectively, by circles and tri-
angles.
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FIG. 6. Neutral stability curves for two different plate sepa-
rations: W =50.0 um (dashed curve) and W=150.0 um (solid
curve) for G=67.0 K/cm. Experimental points are indicated,
respectively, by open circles and solid squares.

Finally, it is interesting to note that our predicted vari-
ation of A, with spacing W seems qualitatively consistent
with the observed variations of A,. In Fig. 6, we show A,
as a function of v for W=50.0 and 150.0 um, along with
the corresponding experimental values of A,. Both the
sign of the effect—A, increases as W decreases—and its
approximate magnitude are in agreement with theory.

IV. DISCUSSION

In summary, we find that our model of dendritic arrays
seems sensible so long as the dendrites are coupled only
weakly, that is, so long as the spacing A, is larger than
the diffusion length /=2D /v. Under these conditions,
the values of A selected in the experiments of Somboon-
suk, Mason, and Trivedi are well within the region of sta-
bility; no marginal stability mechanism seems to be
operative.

These results suggest two important directions for fur-
ther investigation. The first is experimental. It should be
a relatively simple matter to determine the stability
boundary experimentally by setting the system in motion
as was done by Somboonsuk, Mason, Trivedi’ and then
reducing the pulling speed v in small steps until the insta-
bility occurs. This procedure would provide a quantita-
tive test of our function Ay(G,v) and, in a more funda-
mental sense, would check our argument about the ex-
istence of a continuous family of stable, steady-state pat-
terns.

The second direction is theoretical. If the assumption
of a continuous family of patterns can be verified as sug-
gested in the previous paragraph, it becomes very impor-
tant to understand how the observed patterns were actu-
ally achieved in the experiments. In this kind of situa-
tion, pattern selection must be history dependent. The
ultimate value of A, chosen by the system must be deter-
mined by the way in which it is prepared initially, and by
the sequence of pulling speeds which is imposed on it. A
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theoretical description of these processes would require
that the equations of motion derived here be generalized
is such a way that A, becomes a dynamical variable. If
such a generalization could be achieved, it would provide
a crucial ingredient in numerical methods for simulating
the formation of microstructures in the casting of alloys.
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