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An alternative time-dependent wave-packet method for treating three-dimensional gas phase
reactive atom-diatom collisions is presented. The method employs a nonreactive body-frame wave-

packet propagation procedure, made possible by judicious use of absorbing optical potentials, a nov-

el scheme for interpolating the wave function from coordinates in one arrangement to those in

another and the fact that the time-dependent Schrodinger equation is an initial-value problem. The
last feature makes possible a computationally viable and accurate procedure for changing from one
arrangement's coordinates to another. In addition, the method allows the determination of S-
matrix elements over a wide range of energies from a single wave-packet propagation. The deter-
mination of scattering into any particular arrangement is effectively decoupled from that into other
arrangements by means of complex absorbing potentials. The method is illustrated by carrying out
detailed calculations of inelastic and reactive scattering in the H+H2 system using the Liu-
Siegbahn- Truhlar-Horowitz potential surface.

I. INTRODUCTION

Much effort has been expended over the last several
years to develop methods for performing molecular-
scattering calculations that exploit the powerful capabili-
ties of the present generation of supercomputers. The
majority of this work has concentrated on developing
efficient algorithms for solving the time-independent
Schrodinger equation. ' " The time-independent algo-
rithms have been (and continue to be) highly refined to
take full advantage of the large, high-speed core memory
and vectorizing capabilities of supercomputers such as
the Cray. The root of the efficiency of these algorithms is
that they reduce the solution of the Schrodinger equation
to a problem in linear algebra, for which many efficient
solution methods exist. However, the noniteratioe, time-
independent, matrix formulations that are commonly
used have an inherent problem, namely, the fact that for
sufficiently large problems (meaning those that require
large numbers of basis functions for a full description of
the system), the cost of obtaining the solution increases
approximately as the cube of the size of the algebraic
equations or coupled equations. Due to this rapid scaling
with problem size, even the most efficient of the currently
existing noniterative, time-independent algorithms
stretch the limits of the largest available computers, for
even moderate-sized problems.

Over the years, a substantial amount of effort has been
invested in solving the time-dependent Schrodinger equa-
tion' and recently it has been recognized that the
time-dependent formulation provides one way around the

scaling dilemma inherent in noniterative, time-
independent scattering formulations. This is due to the

initial-value nature of the time-dependent formulation,
which allows methods that scale as N or slower, where
N is the number of internal states needed to describe the
system. (Note that it is also possible to use time-
inde~endent iterative methods to circumvent this prob-
lem. This leads to methods scaling as N )Severa.l

promising time-dependent three-dimensional (3D) gas
phase methods have been developed. ' ' ' We
have numerically tested one method for performing
atom-rigid rotor-scattering calculations that scale as N
in the limit of large N. The scaling factor can be
reduced further to N log2N with appropriate
modifications. In order for the time-dependent (TD)
methods to be competitive with the time-independent
(TI) techniques, two criteria must be met. First, the rela-
tively slow scaling of the TD method must be manifested
for small enough problems that it becomes a practical ad-
vantage. Second, the TD method must be capable of pro-
viding as much detailed information as the TI methods.
In particular, a TD method should be able to generate a
complete column of the S matrix for a range of energies
for a reactive collision system. In this paper we report a
new TD method that meets both of these criteria—
namely, it produces a complete column of the reactive S
matrix and does so efficiently. It also provides the corre-
sponding inelastic S-matrix elements.

Wave-packet methods also have a number of conceptu-
al advantages that give them an appeal over and above
that of their efficiency. Most obviously, because reactions
really happen in the time domain, watching the evolution
of a wave packet can be a great aid in helping us under-
stand the physics of the collision. Additionally, wave-
packet calculations can be made to correspond to a
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molecular-beam experiment where molecules in a few ini-
tial internal states are allowed to collide. In contrast, a
noniterative, time-independent calculation provides infor-
mation on all initial conditions, most of which are experi-
mentally uninteresting for simulating molecular beams
formed by supersonic nozzle techniques.

A TD computational scheme for performing reactive
scattering calculations can be broken down into several
stages. (1) The initial wave function in the initial asymp-
totic configuration g(t =to) must be prescribed; (2) it
must be propagated into the interaction region and back
out again, yielding g(t = tf ); and (3) the final wave packet
must be analyzed to extract S-matrix elements in each of
the energetically accessible arrangement configurations.
The first step, prescription of the initial wave packet, is
straightforward and somewhat arbitrary. Step (2), the
propagation of the wave packet, is the source of most of
the computational cost and must be done as efficiently as
possible. A very efficient method has been developed by
Kosloff and co-workers. ' In their method, the wave
function at time tf is written as

f(tf ) =exp[ iH(tf —t, )/R]g—(t, ),
where H is the full Hamiltonian operator. The propaga-
tor

exp[ iH (tf ——to)/A']

is approximated as a sum of Chebyshev polynomials,
yielding a propagation scheme that is unitary and of high
global accuracy. By combining the Chebyshev scheme
with the fast Fourier transform (FFT) method' for cal-
culating the action of the derivative operators in H, one
obtains a general and efficient propagation scheme. For
an atom-diatom system, the efficiency can be increased by
using a body-frame coordinate representa-
tion. ' ' ' The third step of the calculation, the
problem of extracting the 5 matrix from g(tf } in all ar-
rangernents has until now been unsolved. There are two
facets of the problem. First, the methods currently used
for calculating S-matrix elements from the wave packet
require knowing the value of the wave function at all
points in each asymptotic arrangement. For an atom-
diatom system, one straightforward way to get this infor-
mation is to represent the wave function as
P(R&&, R&C, RC&, t), where R;, is the distance between
atoms i and j. This function is propagated until there is
no probability for all three atoms being close together
and then the final analysis is carried out. However, the
representation of this function would require a three-
dirnensional array with each of the dimensions extending
from very small to very large distances. Such an array
would be prohibitively large to store and manipulate. A
partial solution to the "representation-size" problem has
recently been tested. It is based on the observation
that certain state-to-state transitions are substantially
complete long before the wave function has reached the
asymptotic region. In particular, if one analyzes the
wave function for scattered fluxes just on the reactive
product side of the interaction region, it is possible to cal-
culate converged vibrationally resolved probabilities
(though not S-matrix elements). Moving the analysis

point further out would also allow the calculation of rota-
tionally and vibrationally resolved probabilities. Once
the fluxes are computed, the reactive wave is absorbed by
means of a complex potential so that it need not be pro-
pagated further. This method reduces the propaga-
tion region from the full (R „s,R~&, RC„}space to the re-
gion needed to describe the initial asymptotic arrange-
ment plus a relatively small extension in the directions of
the reactive asymptotic arrangements. As reported, this
method was relatively inefficient because it required pack-
ets narrow in momentum space and so a separate propa-
gation was required for each energy. This particular
problem is not fundamental to the method and has been
overcome. However, phase information is lost, which
can be a drawback (e.g. , if one desires di8'erential cross
sections).

In this paper we present an alternate scheme for cir-
cumventing the representation-size problem, while still
allowing the calculation of individual S-matrix elements.
We choose the initial wave packet to be narrow enough
in configuration space that over some period in time it
can be localized in the strong interaction region (all R's
small). Our method uses the fact that knowledge of the
wave function expressed in the coordinates appropriate
to the initial inelastic arrangement (in which the incom-
ing propagation was carried out} can be used to deter-
mine the wave function expressed in the coordinates ap-
propriate to any other arrangement. In particular, we
can take the function f(R, r, y, t;„,), where a desig-
nates the initial arrangement and t;„, the time when the
wave packet is localized in the interaction region, and
can calculate P(Rt3, rt3, yt3, t;„,), which is the same wave
packet, but now represented in terms of the inelastic
coordinates appropriate to the reactive arrangement P.
The advantage of this approach is that instead of
representing the wave function on a single three-
dimensional grid with all three dimensions large, we
represent it on three three-dimensional grids but where
each of these has only one dimension that is large. Com-
plex absorbing potentials are placed appropriately in the
arrangements for which we do not desire the scattering
information. As a result, these grids are in practice
found to be only slightly larger than those needed to per-
forrn purely nonreactive calculations. If the wave func-
tion at t;„, is saved, one can calculate the scattering in
each arrangement successively. We employ packets that
are narrow in configuration space so that one computa-
tion yields scattering information at many energies.

Because the wave function expressed in terms of one
arrangement's coordinates at a time t can be used to
determine accurately the wave function in another
arrangement's coordinates at the same time, we only need
to carry out nonreactive wave-packet propagations, thus
greatly simplifying the problem. Furthermore, this pro-
cedure avoids all of the problems encountered in earlier
time-independent approaches to reactive scattering that
required matching the wave function and its directional
derivatives determined by nonreactive propagation
methods in each of the arrangements. The present
success is directly due to the initial-value nature of the
time-dependent approach, as opposed to the boundary-
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value nature of time-independent methods. The initial-
value nature of the time-dependent equations, combined
with the present procedure involving purely nonreactive
wave-packet propagations, also avoids difficulties with
"nonlocal" operators when rearrangements occur and
one uses Jacobi-type coordinates appropriate to each ar-
rangement.

This paper is arranged as follows: In Sec. II we present
the theory for atom-diatom scattering in the body frame,
in addition to techniques needed to transform the wave
function from one arrangement representation to anoth-
er. In Sec. III we describe the computational algorithm
used to incorporate reaction. In Sec. IV we present the
results of a numerical example, H+H2 (J =0). Section
V gives a brief discussion.

II. THEORY

In this section we present the equations needed for per-
forming time-dependent scattering calculations for an
atom-diatom system in three dimensions. In our scheme
for performing reactiue scattering calculations (described
more fully in Sec. III), the wave function is always pro-
pagated and analyzed in terms of inelastic body-frame
coordinates (R,r, y ) for arrangement a, where a can
equal 1, 2, or 3. Here, r is the diatom internuclear sepa-
ration, R is the distance from the atom to the diatom
center of mass, and y is the angle between R and P. It is
then necessary to have equations of motion, initial condi-
tions, etc. , known in terms of these inelastic arrangement
coordinates. In Sec. II A we derive the body-frame equa-
tions of motion for the coupled-channel wave packets in a
single arrangement. This is a direct extension of the
atom-rigid rotor formalism presented earlier. ' The
form of the equations of motion is identical in a11 ar-
rangements and, consequently, we wi11 only label quanti-
ties by arrangement when confusion might otherwise
arise. The convention we use for designating the arrange-
ment number is arrangement 1 corresponds to A +BC,
arrangement 2 corresponds to 8 +CA, and arrangement
3 corresponds to C+ AB. These are illustrated in Fig. 1.
In Sec, II B we prescribe appropriate initial conditions for
the wave packets and in Sec. IIC we describe how to
form parity-conserving wave packets. The method for
calculating S-matrix elements for any process from the
wave packet at long times is described in Sec. II D.

This material is sufficient for performing calculations
on nonreactive systems. Two additional items are needed
to incorporate reaction. First, we need to be able to take
the wave function expressed in terms of the inelastic
coordinates appropriate to one arrangement and re-
express it in terms of the inelastic coordinates appropri-
ate to another. A new method for doing this is given in
Sec. IIE. Secondly, because the reactive portion of the
wave packet will eventually move out of the region
covered by the numerical nonreactive grid (and likewise
the nonreactive portion will move out of the region de-
scribed by the reactive grid), we must prevent it from
rejecting unphysically off the grid boundary. In Sec. II F
we describe the use of an optical potential to absorb
those portions of the wave packet that will move off the

FIG. 1. An illustration of the coordinates used.

edge of a particular grid. This is a direct extension of the
procedure presented earlier in methods for calculating vi-

brationally resolved reactive probabilities for col-
linear ' and for three-dimensional atom-diatom
scat tering problems.

A. Equations of motion

The physical wave packet for the A +BC arrangement
can be expanded in a body-fixed reference frame

27, 34 —39

%(kp, np, jp, mp~R, r, r)

2 (&J+I)tDn (k ~ 0))"I;n(X 0)
rR J

Xy (jA~npjpmp~R, r, t) . (2.I)

i% %(kp, npj—p, mp~R, r, t)=HV(kp np Jp mp~R r, t),
Bt

with the Hamiltonian being given by

Here, J is the total angular momentum quantum number,

j is the diatomic rotational quantum number, 0 is the
projection of j on the body-frame z axis (defined to be R ),
no and jo are the initial diatom vibrational and rotational
quantum numbers, and mo is the initial projection of j
and J on the space-fixed z axis. We have chosen the ini-
tial conditions so that at t =0, the relative momentum
vector k is parallel to both the space-fixed and body-fixed
z axes. ' The factor 1/(rR} is included to simplify the
equations of motion of the channel wave packets g by el-
iminating all first derivative terms. The projection quan-
tum number 0 ranges from —min( J,j) to +min( J,j).
The function [Dn ((,0,()]* is a Wigner rotation

0

matrix element ' and I' n(y, 0) is a spherical harmonic.
The total wave function obeys the time-dependent
Schrodinger equation
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1 8 fi 1H= — — 2R — — 2r+ I
2}M R QR2 2m r Qr2 2IJ,Ri

f2
+ j + V(R, r, y),

2mr
(2.3)

ately in arrangements 2 and 3.) By substituting Eqs. (2.1}
and (2.3) into Eq. (2.2) and projecting out the rotation
matrices and spherical harmonics, we can arrive at a set
of coupled equations for the channel wave packets,

where (in arrangement 1) m =mtimc/(ms+me) and

p= m„( ms+me) /( m„+ms+m c) .

(The reduced masses m and p must be changed appropri-

iA y—(j 'Q'lnojomolR, r, t}
dt

= gH (j'Q'ljQ)y (jQlnojomolR, r, t), (2.4)
jO

where the channel Hamiltonians are given by

fi 8H (j 'Q'lj Q)= —
2

+ [J(J+1)—2Q +j(j +1)]— i + j(j +1)+v(r) 5JJ'5nn
2p M. 2m Br 2mr

2

+ V"(j'Ij IR,r)5nn, — [k+(JQ')k+(jQ')5n. +& n5JJ +k (JQ')A, (jQ')5n i n5 ']
2pR

(2.5)

and where

V"(j'lj R, r) =2nfd .(cosy) Y'n(y, 0)

X[V(R,r, y) —v(r)]

X Y'n(y, 0),
v(r)= lim V(R, r, y),

g ~ oo

k+(JQ) =[(J+Q+ 1)(J+Q)]'i2 .

(2.6)

(2.7)

(2.8)

B. Initial conditions

It is important, both for efficiency of propagation and
for the method we use to incorporate reaction, that each
of the wave-packet components

y (jQlnojomolR, r, t)

The form of the body-frame Hamiltonian allows us to
propagate the wave packets very efficiently. This is due
to the kinetic energy being tridiagonal at worst and the
potential being diagonal in Q. Because the propagation
in each arrangement is carried out in the appropriate in-
elastic coordinates, we retain these advantages even when
we treat reaction. The wave packet is propagated using
the Chebyshev method of Tal-Ezer and Kosloff, ' as has
been described elsewhere. See Ref. 27 for details of ap-
plying the method to body-frame wave packets. The
principal difference encountered when vibration is added
is that we must calculate the action of the kinetic-energy
operator in both non-Cartesian variables R and r. These
operations are performed as before using fast Fourier
transforms. ' ' The FFT procedure used for the radial
variables is that developed in Ref. 23. See Ref. 27 for a
more complete discussion of the body-frame treatment
and its scaling behavior with problem size. (Note that
the equations of motion that include vibration in a
space-frame treatment, which enter in the same way into
the body-frame equations, were reported earlier, but were
not tested numerically ).

=y„ 1 (r) J dkoA (ko)sf'' (koR)5. (2.9)

where the y„,(r) are eigenfunctions of the asymptotic dia-
tom Hamiltonian

irt 8 fi+ j(j+ 1)+ v (r) p„j(r)=e„jq&„J(r)
2m Br2 2mr2

(2.10)

and P' (kvR) is a body-frame Bessel function

that is the radial part of the eigenfunction of the free
Hamiltonian. We use the following definition which
differs slightly from that given in Ref. 27:

1/2

(kR)= 2
kR gi'(2l+1)( —1)

I

I j J t j J
0 m —m 0 m'

Xji(kR), (2.11)

where ji(kR) is a spherical Ricatti-Bessel function of
order l and the terms

l j J
0 m' —m' (2.12)

are 3 —j symbols. ' The stable Hankel transform method
given in Ref. 23 is used when performing the integral in
Eq. (2.9) and the equivalent ones that arise in the final-
state analysis. The 8 ' (kR) obey the orthogonality and
completeness relationship

g f dR [9 'n(kR)]'d"ni .(k'R)=5(k —k')5
n

(2.13)

I

be well localized throughout the propagation. Functions
that satisfy this criterion are given by

g (j Qlnvj vmo lR, r, t =0}
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g(R)=R [&—2no(cr +R p)]

Xexp[ —(R —Ro) l4o ik—oR] . (2.15)

Ro is the location of the peak of the coordinate represen-
tation wave packet and cr is its width. The packet peaks
in momentum space at ko =ko, where

ko= 2 Ro
(Eo e„)——

fi '' 4e (cr +R }

1/2

(2.16)

Eo is the corresponding total energy at the peak of the
momentum representation packet and e„, is the

eigenenergy of the initial diatom state, defined in Eq.
(2.10).

C. Symmetrization of the wave packet

Instead of propagating the full set of functions

g (jQInpjpmpIR, r, t)

given in Eq. (2.4}, we form linear combinations of these
having definite parity. Parity is conserved both within
and between arrangements so that functions of different
parity can be propagated separately. The symmetrized
functions are defined as

y+(j Q nIpj p m o RI, r, t )

1 [y'( JQIno JomoIR, r, r)

2

+g (j —QnIjporn pRI, r, t)] . (2.17)

The even and odd parity solutions obey the same set of
equations as the original channel wave packets, but
with different initial conditions specified by Eq.
(2.17). We only need to propagate the functions
g~(j QInpj pmpIR, r, i) for Q) 0. The corresPonding
functions for 0 (0 are given by

Equation (2.9) shows that the initial wave packet is the
product of a pure internal state times a superposition of
translational states weighted by A (k p ).

The function A (ko) in Eq. (2.9) gives the initial distri-
bution in momentum or energy space. As previously,
we choose this function to be given by

A(kp)= f dR g(R)Pop( kpR), (2.14)
0

where g (R ) is a normalized Gaussian,

D. Final-state analysis at long times

In this section we derive the formulas for calculating
S-matrix elements from the wave packets in a given ar-
rangement. This derivation closely follows the one given
earlier for the rigid rotor case. In the foHowing
analysis, the propagation is assumed to have started at a
time to when the wave packet was located well outside
the interaction region. (In practice, tp is set to zero. ) We
assume that wave packets that are narrow in
configuration space and hence broad in momentum space
will be used, as in earlier work. ' This enables us to ob-
tain S-matrix elements over a wide range of energies from
a single wave-packet propagation. For the analysis to be
valid, the propagation must proceed to a time tf when
the probability density in the interaction region is once
again vanishingly small. In particular, tf must be longer
than the lifetime of any resonance in the energy range
significantly sampled by the wave packet. [See the dis-
cussion after Eq. (2.43) below for more information on
this point. ] In our derivation, the initial arrangement is
denoted by a and the final arrangement by P, where P
may or may not equal a. The derivation is given mainly
in terms of abstract states parametrized by the energy E,
and the results are later translated into the coordinate
representation, parametrized by the wave number k. The
derivation uses the complete wave packets rather than
the parity-conserving linear combinations.

To begin, we denote the abstract eigenstates of the free
Hamiltonian in arrangement P by Igp„j„(E)), i.e.,

(E Hp)IPp„~n—(E))=0,
where the total Hamiltonian H can be factored as

(2.19)

H =Hp+ Vp (/3=1, 2, 3)

and where

(2.20)

Hp= lim H .
gp~ oo

(2.21)

Pp
d"gn (kR p)q)P (rp), (2.22)

where

Therefore Vp= H Hp and i—t fol—lows that the perturba-
tion Vp tends to zero as Rp~ ~. In the mixed represen-
tation we are using, the free Harniltonian eigenfunctions
are given by

( [J'Q'R, r]pI Pp„n(E) )
' 1/2

X+(j Q
I
n pg pm p I R, r—, r ) =+y+(1Q

I
n p1pm p I R, r, r ) . Rkz = +up

2Pp
(2.23)

The complete solutions can be reformed using the formu-
la

y (j QInpj pmpIR, r, t)= [y+(j IQn j ppmIRp, r, t)v'2

+y' (j QI n pj pm p IR, r, r)] .

(2.18)

( y „,„(E)I y „,J, , ( E') ) =5„„6,,'5 „5(E—E') (2.24)

To extract the long-time scattering information, we
calculate the projection of the P arrangement free Hamil-

The asymptotic vibrational eigenfunctions P (rp) and ei-
genvalues ep were defined in Eq. (2.10). This leads to the
normalization [see Eq. (2.13)]
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I& (njQlnojomolE)

= lim (Ptt„„(E)lf„i (t))
f

= lim (Pti„„(E)l
t+lf

Xexp[ iH—(t tp—)IA]lg„, (tp))

{2.25a)

(2.25b)

where lg„(t)) is the time-dependent wave packet
OJO~O

whose representation in arrangement P is,

tonian eigenstate on the full wave packet that has pro-
pagated into the asymptotic region (t ) tI ):

lg„, ,(t, ) &=fdE~(E, )lg'.„„,,(E,)) . (2.27)

If we substitute Eq. {2.27) into Eq. (2.25b), we arrive at

( fj QRr]ttlp i (t)) =y&(jQlnpj pmplRtt, r&, t),

(2.26)

where

Pgj Q I n pj pm p I
R p rp t)

was defined in Eq. (2.1). The initial wave packet
( to ) ) is given by [see Eq. (2.9)]

I tt.(njOlnpjpmplE)= »m fdE~(Eo)(pt't„„(E)lexp[ iH(t—t p)/—A'] l{{)„(Eo))
f

= lim fdE~(Ep)exp( iEt—/R)exp(iEptp/A)(p~&„, „(E)lQtt' (t, tp}lpJ„,. (Eo}),
f

(2.28)

where 0 z (t, tp) is the time evolution operator in the in-
teraction picture

We then substitute Eq. (2.32) into Eq. (2.28) and integrate
Over E0 tO get

0 ~z (t, to) =exP(iH&t /ir!)exP[ iH (t —to )IR]—

Xexp( iH tolls) —.

The S-matrix operator is defined as

(2.29}

(2.30)
or

t & tI (2.33)

I ti (njQlnpjpmplE)

=A(E)exP[ iE(t —to)IA]Sit—(nj Qlnpj omolE),

Due to energy conservation, there are no transitions be-
tween different energy states, i.e.,

»m (yp., (E)10'' (t, to)l{{'..„, ,(Ep) & =o
f

unless E =Ep . (2.31}

We therefore define the on-shell S-matrix as

S& (njQlnpjomplE)5(E —Ep)

= lim (Pit„„(E)l0~ (t, t )lP (E )) .
f

Sti (njQlnpjpmplE}= I tt (njQlnojomolE)

Xexp[iE(t to)/il], t )—tI .

(2.34)

In order to convert this expression to one that makes use
of our coordinate representation wave packet, we insert
the identity in the form

1= g f dR& f dr&i(j'O'Rr)tt)((j'O'Rr)&l (2.35)
0 0

(2.32) into Eq. (2.25a), which yields

I& (njQlnpjomplE)= lim g f dRtt f drtt(hatt„in(E)l(j'O'Rr)tt)((j'O'Rr)ttlg„(t)) .
t tf '~l 0 0

(2.36)

This can be modified by using the relations given in Eqs. (2.22) and (2.26) to give

I (n jQlnp jpmp lE) = lim
fi k g f dRtt f drtt[d g&.(kRtt}]'p~(rtt)p&(j Q'lnpj pmplRtt, r&, t)

n 0
(2.37)

' 1/2
pp
%2k

Ipa(njOInojomolk) . (2.38)
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If we compare Eqs. (2.9) and (2.27) and recall that

fi2k 2

E = +e„
2p

we can make the identification
' 1/2

A(E)=
Ako

A(kp) . (2.39)

This leads to the final working expression for the S-
matrix elements,

1/2
koPp 1

Sp (nj Q~npJpmp~k)=
kp, A kp

Ak
Xexp i +e„(t to)/A'—

2p

Xip. (~jQlnojpmolk), (2.40)

fp (nj Qk~nojomo~Rp)

g(2j+1)Dn (Rp)Tp (njQ~nojomo~k),
2+kko

(2.41)

where the T-matrix elements are defined by the equation

Tp (njQ~npjomp~k)=5„„5 5n

where Ip (nj Q npj pmp ~k) was defined in Eq. (2.38).
Using the Sp (njQ~nojomo~k), we can write exPres-

sions for the differential scattering amplitudes and cross
sections. The differential scattering amplitude is given by y(R)=

R
(2.45)

where the transition from zero to one starts at R and 8'R
is the width of the transition region. The value of R must
be greater than R~ and 8'z should typically be 1—2 A.
The function f is then defined as

0, y(R) &0

f(R)= 10y —15y +6y', 0&y(R) &1 (2.46)

1, y(R))1 .

mediate region. (We define the dividing line between the
interaction and asymptotic regions as R z, where the in-
teraction potential is practically zero for R )Rv. ) The
portion of the wave function f (R )P(R, t, ) has completely
left the interaction region so we can calculate and save its
contribution to the S matrix [using Eq. (2.40)] and then
discard f (R)g(R, t, ). The remaining portion of the wave
function, [1 f (R—)]g(R, t, ), is next propagated for
another time step and broken up again using f and
(1 f).—The asymptotic region component is analyzed
and its contribution to the S matrix is added to the previ-
ously calculated piece. This process is repeated until all
of the wave function has been analyzed.

The function f (R) has to satisfy two requirements.
First, it must be smooth enough so that it does not intro-
duce spurious high-frequency components into the S ma-
trix when we analyze f (R)g(R, t). Second, the transition
region must be relatively narrow so that we do not have
to use long grids to capture a significant region where

f (R ) = 1. The following function works well in prac-
tice. ' We make the definition

Sp (nj —Q~nojomp~k) .

(2.42)
K. Transformation between arrangements

The state-to-state differential cross section is given by

«Pa k
(re Qk~nojomo)= Ifp, (~j Qk~npJpmo~Rp) '.

d(Rp) ko

(2.43)

A potential problem that arises when resonances are
present is that part of the wave packet may have pro-
pagated quite far down the asymptotic channel before the
parts caught in the resonance Anally leave the interaction
region. Methods that avoid having to use large grids in
this situation have been developed by Metiu and co-
workers ' and Neuhauser and Baer. We take advantage
of the linear nature of the Schrodinger equation in the
following way: We propagate the wave function P(R, t)
to a time t; when it has started to leave the interaction re-
gion. The wave function is broken up into two pieces as
follows:

g(R, t, ) =f (R )f(R, t; )+ [ I f (R )]$(R, t, ), (2.4—4)

where f (R ) is a function that takes the value zero in the
interaction region, the value one in the far asymptotic re-
gion, and smoothly goes from zero to one in some inter-

In this section we show how to calculate the channel
wave packets

gp(j', Q'~npjomo R', r', t)

in arrangement P, given the corresponding functions

Jt' (j,Q~npj pmp~R, r, t)

in arrangement a. In practice, a always designates the
initial arrangement. To simplify notation, we will drop
the dependence on the initial state (nojomo) in the fol-
lowing derivation. Additionally, coordinates in the P ar-
rangement are primed and those in the a arrangement
are unprimed. The formulas derived here are valid for ei-
ther the symmetrized or the unsymmetrized channel
wave packets. In the following equations, 0 ranges over
both positive and negative values. The details of rotating
coordinates from one set of axes to another were con-
sidered by many people. A very clear discussion of the
relevant coordinate transformations has been given by
Miller. However, in that context, it leads to coupled
integro-differential equations that are not easily propagat-
ed by standard time-independent close coupling (CC)
methods. In the present approach, we simply wish to use
the wave packet at time t as the initial condition to con-
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gjn(R, r, y, t)= g Y „(y,0)p(j Ql(R, r, t),
J

(2.47a)

where the y, (j,Q ~)R, r, t ) and )(tr "(R,r, y, t ) are quantized
along the a arrangement body-frame axis. The full

I

tinue propagating using the Jacobi coordinates of the
product arrangement. Thus, one simply interpolates
from one grid to another, and no nonlocal matrix ele-
ments are produced.

We first make the following definitions: The full coor-
dinate representation wave packets in arrangement a are
given by

center-of-mass-frame wave function in arrangement a is
given by

g QJ (R, r, y, t)[Dn ($,8,()], (2.47b)
rR

where the 4 '(R, r, y((, 8,$(t) are quantized along the
space-fixed axis and are expressed in terms of the a ar-
rangement coordinates. The full coordinate representa-
tion wave packets in arrangement P are given by

P&" (R', r', y', t) =r'R' f dg' f d (cos8') f d g'Dn. (g', 8', g'}4& '(R', r', y'~g', 8', g'~(t), (2.47c)

Jm0
where the (p& '(R', r', y'~g', 8', g') t) are also quantized along the space-fixed axis but are expressed in terms of the p ar-
rangement coordinates. The factors (rR) and (r'R') are a consequence of the same term in Eq. (2.1). The rotational
close-coupled channel wave packets in arrangement P are given by

y&(j', Q'~R', r', t) =2m f d (cosy' ) YJ n(y', 0)g& (R', r', y', t), (2.47d)—1

where the gt)" (R', r', y', t) and y&(j', Q'~R', r', t) are quantized along the p arrangement body-frame axis. Notice that
Eq. (2.47d) is the inverse of (2.47a) and that (2.47c} is the inverse of (2.47b) except for the arrangement number. The im-

portant point to note is that the functions (p '(R, r, y~(, 8,g~t) and (p& '(R', r', y'~g', 8', g'(t) are identical when
(R, r, y, (,8, g} and (R ', r', y', g', 8', g' } describe the same point in space. Therefore, Eqs. (2.47) constitute a scheme for
calculating y&(j ', Q'~R', r', t), given y (j,Q)R, r, t). However, it is never necessary to explicitly calculate the function

Jm0
, as we now show. Equation (2.47b} can be rewritten as

+p '(R' "' y'~k' 8' 0'~r)= X 0 "(R "y r)[Dn (4 8 &)]'l((t,.rye')= , z;l. e,g'), ', ',
0

g'." (R, r, y& )l &(, „,, =)&(,„,, ) g [Dn-, (g', 8', g')]'[Dn ((,8, ( )]', (2.48)

(R, r, y, (,8, $)=(R', r', y', g', 8', g')

means that the functions of the unprimed coordinates
will be evaluated at the point in space specified by the
primed coordinates. Here, ((,8,() transforms (g', 8',f )
into ($,8,g). One can show that ($,8,()=(0,8,0) and
that 0 only depends on the internal coordinates and
therefore is independent of the (g', 8', g') that rotate the
plane of the atoms with respect to the space-fixed coordi-
nate axes. Refer to Fig. 1. Now, if we combine Eq. (2.48)
with (2.47c) and use the orthogonality property of the
Wigner rotation matrices, we arrive at the following
identity:

Xdnn (8) . (2.49)

where in the second step, we have made use of the closure
property of the Wigner rotation matrices. The notation

We next substitute Eq. (2.47a} into (2.49) to yield

(R', r', y', t)

r'R '

g Yjn(y 0)p(j, QIR, r, &)l(g, r)=(g, , )

jO

xd„„(8) . (2.50)

Equations (2.50) and (2.47d} provide a scheme for trans-
forming from the a to the P representation of the channel
wave packets.

Next, we need an accurate, efficient algorithm for
evaluating the functions p(j, Q)R, r, t} at points corre-
sponding to (R', r', y'). The channel packets are known

only on a grid of points (R„,rz } that do not line up with

the corresponding grid of points in the reactive arrange-
ments, forcing us to interpolate. Because we will subse-
quently propagate the P arrangement channel packets,
they must be calculated accurately in both configuration
and momentum space. We use Fourier-transform inter-
polation because it best satisfies these dual accuracy re-
quirernents. (A possible alternative is the interpolation
method of Bisseling and Kosloff. ) We could do the in-
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terpolation in both R and r simultaneously, but this
proves to be expensive numerically. We instead factor
the evaluation of Eq. (2.50} into several steps, which pro-
duces an algorithm that scales linearly with problem size.

We first fast Fourier transform y (j,Q~R, r, t) in the R
coordinate only to produce the functions

(j,Q ~ K„,r~, t) = g exp(iK„R, )g (j,Q ~R„r,t) .

(2.51)

We next transform to a new set of functions given by

(r, r', p )

I
fbi

g Y)n(y, O}
N~

X g exp( iK„—R )j' (j,Q
~ K„,r, t ),

(2.52)

where p is the angle between 9 and 9 '. The 4 "functions
are calculated on a grid of points (r~, r~,p ) correspond-
ing to the r grid points in arrangement a, and the r' grid
points in arrangement P. The p points are chosen ap-
propriately for performing Gauss-Legendre quadrature.
The variables R and y are the values of R and y that cor-
respond to the point (r, rz, p~ ). The factor r' IR is the
transformation Jacobian between the coordinates (R, r, y )

and (r, r', p). The 4 functions are now expanded in
Legendre polynomials as follows:

(L~r~, r~ )= d(cosp)PL(cosp)Jg, 2I. +1 +&

—1

(j,Q) states be the same in arrangements n and l3. In
fact, these quantities will in general differ from one ar-
rangement to another, being adjusted to best treat the
atom-diatom pair corresponding to that arrangement.

F. Absorbing potentials

H (j'Q'~j Q)~H (j'Q'~j Q)+V, , (r)5 5nn, ,'

where

(2.56)

V,p, (r)=
~max—iV, , 1—

hr

0, otherwise,

—A
~max ~ —~ —~max

(2.57)

and where V, , gives the strength of the absorbing poten-
tial in units of energy and Ar gives its range. This simple
linear form is found to work quite well for relatively
small values of V, , and hr. Values for these parameters
can be estimated from the inequality

As mentioned above, reactive portions of the wave
packet will eventually move off the numerical grid used
to describe the nonreactive asymptotic arrangement (and
vice versa). If no special precautions are taken, the por-
tions of the wave packet that reach the edge of the grid
will be unphysically reflected back onto the inelastic grid,
invalidating the results of the calculation. This problem
is easily solved by employing an imaginary, optical poten-
tial that will absorb any part of the wave packet that ap-
proaches the grid boundary. In the present work, we use
the method of Neuhauser and Baer that is described more
fully in Ref. 28. We simply add an extra diagonal term to
the channel Hamiltonian

X4 (r, r'. ,p} (2.53) Ett /(hr&8p) ( V, , ((br&8@)E„ (2.58)

and then Fourier transformed from r to k as follows:

4 Jn(L~k&, r' )= g exp(ik&r )4 (L r~, r~ ) .
P

(2.54)

The final step in the transformation that produces the
desired function PtJ (R,', , r~. , y', t) is

I I I

g&" (R,', r', y', t)= g d„n (8) g PL(cosp)
I'R

X g exp( iktr )4 (L~kj,—r'. ),
N„

(2.55)

where r, R, and p are the values of r, R, and p corre-
sponding to the point (R,'. , r~, , y» ) As before, . the y~ ~

points are chosen to be appropriate for performing
Gauss-Legendre quadrature. [Note that in Eqs. (2.55)
and (2.52) because the target R or r points are not uni-
formly spaced, a fast Fourier transform cannot be used. ]
We can now substitute g& into Eq. (2.47d) to calculate the
P arrangement channel packets on the appropriate nu-
merical grid.

Notice that there is no requirement that the range of
the grids, the number of grid points, or the number of

where F.„ is the translational energy in the r direction.
Note that Eq. (2.58) can only be used as an estimate be-
cause the wave packets we are using contain a wide range
of energies. Typical values for the calculations reported
here are V, , =1 eV and hr = 1 A.

III. COMPUTATIONAL SCHEME

In Sec. II we described the tools needed to form, prop-
agate, and analyze wave packets in the three different in-
elastic arrangements. By inelastic, we specifically mean
that the wave packet is described by the variables R, r,
and y, where R may extend to large values but where the
range of r is restricted. Hence, a large number of grid
points is needed in one dimension only. In contrast, in
order to simultaneously describe the full reactive prob-
lem, large numbers of grid points are needed in at least
two dimensions, greatly increasing the sizes of the arrays
needed to describe the potential and the wave packets. In
this section we describe how to combine the tools
developed in Sec. II for inelastic scattering into an algo-
rithm for performing reactive scattering calculations.

The first step is to calculate the initial (t =0) parity-
conserving channel wave packets for the initial arrange-
ment, using the equations given in Secs. IIB and IIC.
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These are calculated on a uniform rectangular grid in R
and r, where R extends from R;„ to R,„and r extends
from r;„ to r,„. R;„ is set to zero. Although most of
the wave function is excluded from the small R region
due to the highly repulsive potential, the collinear sym-
metric stretch configuration will be sampled by the l =0
component of the wave packet. The value of r;„ is
chosen small enough so that the wave function will never
sample smaller values due to the highly repulsive poten-
tial. R,„ is chosen to be far enough beyond the point
where f (R) reaches the value one (see Sec. II D) to fit a
significant portion of the wave function. We will describe
shortly how the value of r,„ is chosen. Once the initial
channel wave packets are calculated, they are propagated
into the interaction region using the methods described in
Sec. IIA. Typically, the propagation is broken up into
between 20 and 40 time steps.

The next step is the crucial one for incorporating reac-
tion. We define the "grid overlap region" as that volume
of (R, r, y ) space that is simultaneously included in the in-
elastic grids for each of the three arrangements. The
overlap region will include the strong interaction region
plus some portion of the near asymptotic channel for
each arrangement. (Notice that the wave packets and the
Hamiltonian are expressed in terms of the quantum num-
bers j and 0 rather than the angle y, but this is unimpor-
tant for the present discussion. The range of y in each
arrangement is 0 ~ y & m. ) We choose the grids (and
hence the overlap region) to be large enough so that over
some interval in time, the entire wave function will fit in
the overlap region. Once the channel wave packets (nu-
merically stored on the grid corresponding to the initial
arrangement) are completely contained in the overlap re-
gion, they are written to disk and saved. The nonreactive
S-matrix elements are calculated by performing the out-
going propagation on the initial arrangement grid and
carrying out the final-state analysis described in Sec. II D.
The optical potential absorbs all parts of the wave packet
that move into the reactive arrangement channels. In the
next stage of the calculation, the previously stored wave
function (which lies completely in the overlap region) is
read back from disk and transformed so that it is ex-
pressed in terms of the coordinates for one of the reactive
arrangements, using the method of Sec. II E. The outgo-
ing propagation in that arrangement is then performed,
using the Hamiltonian appropriate to that arrangement,
and the reactive S-matrix elements are calculated. If the
two reactive arrangements are not identical, this pro-
cedure is repeated for the other arrangement.

There are several comments we need to make about
fitting the wave packets into the grid overlap region prior
to the transformation step. The fact that the wave func-
tion must lie completely within the overlap region sets a
lower bound on the value of r,„. This bound, of course,
depends on the size of the wave packet when it enters the
interaction region, which in turn depends on factors such
as the initial width of the wave packet and the nature of
the potential. An additional requirement is that no part
of the wave packet should lie in a region where the opti-
cal potential for any arrangement is nonzero. This forces
a further increase in the value of r,„. Finally, to make

the algorithm some~hat more robust, the "good" overlap
region (total region minus that where the optical poten-
tials are nonzero) should be large enough to contain fully
the wave function for two or three time steps. This
necessitates a further increase in r,„. Once the grid size
has been fixed, however, deciding when to perform the
coordinate transformation is relatively simple. At each
time step, we calculate the fraction of the wave function
in the good overlap region and when this value exceeds
some predetermined limit (typically 0.999), the wave
function is saved.

It is tempting to use extremely narrow wave packets to
reduce the volume that must be included in the overlap
region, but there are both theoretical and practical re-
strictions on how far it is possible to go in this direction.
The major theoretical problem is that a narrow spatial
wave packet will be broad in momentum space and there-
fore will spread very rapidly, negating its intended utility.
In addition, this packet will contain large-momentum
components, requiring that the maximum value of the
momentum to be sampled be large. This value is m. jb,R,
where hR is the grid spacing. Hence, small spacings in
the configuration space grid would be required. Another
way of saying this is that the wave packet must spread
over enough grid points so that its numerical representa-
tion is smooth. Otherwise, numerical instabilities will
occur. A very narrow wave packet would then require a
correspondingly fine grid spacing.

This method for incorporating reaction is exact in
principle. However, errors can be introduced in the fol-
lowing way: Parts of the wave packet that will eventually
end up in arrangement P can in principle pass through
the interaction region, travel some distance in the direc-
tion of the P ' arrangement, turn around and re-enter the
interaction region, and finally exit permanently into the I3
arrangement. If the inelastic grid for the P arrangement
does not extend sufficiently far in the P ' direction to cap-
ture the momentary excursion of the wave packet in that
direction, then part of the contribution to the 13 arrange-
ment S matrix will be lost. Notice that this fact implies a
lower bound on the value of r,„ that may be different
from that described above. For the test calculation we
describe in Sec. IV, we found that the lower bound forced
on us by the requirement that the entire wave packet fit

in the overlap region was much more stringent than that
required to capture these "indirect" pieces of the wave
packet. (Note that the size of our overlap region is relat-
ed to the idea of a "point of no return" in transition-state
theory. There exists a minimal surface in configuration
space surrounding the interaction region that has the
property that any part of the wave function that crosses
it will never return to the interaction region. )

We can compare the effort required to perform the
complete inelastic-plus-reactive calculation with that
needed to perform a completely inelastic calculation. In
the latter, we must perform one incoming propagation
and one outgoing, that are of roughly identical cost,
which we designate P;„. The Anal-state analysis must be
performed once, at a cost of F;„. For an atorn-
hornonuclear diatom reactive calculation, we must per-
form the incoming propagation (JV„„=P„),the outgoing
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nonreactive propagation (JV„„=P„),the outgoing reac-
tive propagation (A„„=2P,), an interpolation

(JV„„=I&) and the final-state analysis in the nonreac-
tive arrangement (JV„st=F„), and the reactive arrange-
ment (A;„,=2F„). The factors of 2 in the reactive chan-

nel are due to the fact that a homonuclear diatom in the
nonreactive arrangement can only be in either even or
odd j states, but in the reactive arrangement, both even

and odd states will be populated. To summarize, the cost
of the inelastic calculation is approximately

JV„„(2)-2P,„+F;„
\

and the cost of the reactive calculation is approximately

A;„,(R)—4P„+2F,+I p .

The half-propagation in the reactive case (P, ) will be on

the order of twice that of the inelastic calculation because
the grid in r must extend on the order of twice as far to
insure that the wave packet can be enclosed in the over-

lap region. Except for small calculations, the propaga-
tion step dominates, so that the total reactive calculation
will be on the order of four times more expensive than
the purely inelastic calculation (for the identical system).
One can easily show that this factor of 4 also holds true
for the case where all three atoms are dissimilar.

IV. NUMERICAL TEST

In this section we present the results of a sample calcu-
lation using the method described in the previous sec-
tions. The system we examine is H+H2 (J =0) on the
Liu-Siegbahn-Truhlar-Horowitz (LSTH) potential-energy
surface. The state-to-state transition probabilities for
this system are well known, ' ' so these calculations pro-
vide a good check on the accuracy of our method.

A number of parameters are used in the calculation
and we will discuss the most important ones here. The
values used are summarized in Table I. They have not
been optimized for speed of execution, and the basis set
and grids in particular are probably considerably larger
than they need to be. To begin, the grids are determined
by the number of grid points, X„ in the R direction and

N„ in the r direction. We use N„=256 and N„=64. The
R grid extends from 0 to 20 A, and the r grid from 0.15
to 4.5 A. The maximum value of j used in the expansion
of the wave function (designated j,„) was set equal to
22, which allows for several closed channels at the
highest energies in the wave packet. The width of the ini-
tial wave packet, cr, was set equal to 0.55 A. This was
suSciently narrow so that the entire wave function fit
into the overlap region between the inelastic and reactive
grids over a reasonably long period of time. The center
energy of the wave packet, Eo, was set to 1.0 eV for the
high-energy run and 0.75 eV for the low-energy run and
the initial vibration-rotation state was no= j0=0. The
corresponding momentum wave packet was quite broad
so that from a single run (Eo =1.0 eV), we were able to
get accurate probabilities over the entire energy range,
0.8 eV & E & 1.3 eV. The packet was initially centered at
R0=8.9 A. The time step used was approximately
0.5 X 10 ' s and the total propagation time was
25 X 10 ' s. The wave packet was stopped at
5.0X10 ' s for the interpolation, at which time the frac-
tion of the wave packet in the overlap region was equal to
0.99993.

After the interpolation, the norm of the wave packet
on the reactive grid was 0.99992, indicating that the in-
terpolation error is small. The final-state analysis was
started at 10X10 ' s. As would be expected, the com-
ponents of the S matrix for high kinetic energy (high E,
low n, j) converged faster in time because they reached
the asymptotic region sooner.

In Table II we give the probabilities summed over j for
several energies and compare them with the previously
reported values. ' ' The comparison is good at most en-
ergies. In Table III we give our results as a function of n

and j for several energies. Except for numbers that have
very small size, our values agree with the previous ones to
about 8% in most cases, which is within the previous er-
ror estimate. In Fig. 2 we show the inelastic, and in Fig.
3, the reactive results (suinmed over j) as a function of
energy and compare them with the results of Ref. 2(b).
We should emphasize that the entire curve, made up of
better than 250 individual energies from 0.5 to 1.3 eV,

TABLE I. Typical physical and numerical run parameters.

Variable

jmax

jo
no

mo

R m&n

R max

N„
min

rmax

CT

Ro

Value

0
22
0
0
0
256
0.0 A
20.0 A
64
0.15 A
4.80 A
0.55 A
1.0 eV
8.9 A

Description

Total angular momentum
Maximum value of j used
Initial rotor quantum number
Initial vibrational quantum number
Initial projection quantum number
Number of points in the R grid
Minimum value of the R grid
Maximum value of the R grid
Number of points in the r grid
Minimum value of the r grid
Maximum value of the r grid
Width of the initial wave packet
Initial mean energy of the wave packet
Location of center of wave packet at t =0
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TABLE II. H+H2 transition probabilities {Poo O, POO ] ) for several energies at selected energies
compared with previously published results. Values after the semicolon denote Poo

Energy {eV)

0.50
0.55
0.575
0.60
0.625
0.65
0.70
0.80
0.85
0.90
0.95
0.96
0.98
1.00
1.05
1.10
1.20
1.30

'4( —4) denotes 4X 10

Inelastic
[Ref. 2(b)]

0.633;4(—4)'

0.521;4(—4)

0.485;0.046

0.423;0.019
0.395;0.048

This work

0.999
0.997
0.988
0.962
0.902
0.794
0.653
0.634;1(—7)
0.589;2(—5)
0.524;5( —4)
0.512;0.010
0.513;0.020
0.510;0.047
0.482;0.044
0.459;0.017
0.430;0.018
0.395;0.044
0.338;0.035

Reactive
[Ref. 2(b)]

2( —4)
0.003
0.011
0.036
0.10
0.20
0.34
0.36;6(—6}
0 41'3(—6)
0 47'3( —4)
0.47;0.011
0.44;0.023
0.37;0.066
0.39;0.077
0.44;0.061
0.50;0.051
0.45;0.10
0.50;0.10

This work

1(—4)
0.003
0.012
0.038
0.098
0.206
0.342
0.359;3(—6)
0.405;7(—5)
0.479;3(—4)
0.469;0.010
0.449;0.022
0.377;0.072
0.394;0.078
0.466;0.052
0.491;0.060
0.441;0.109
0.492;0.110

TABLE III. Transition probabilities at selected energies. Numbers in parentheses are as follows: (arrangement number, vibra-
tional state, rotational state). The initial state was (1,0,0), J=0.

Final state'

(1,0,0)
(1,0,2)

(1,0,4)
(1,0,6)
(1,0,8)

(1,0,10)

(1,1,0)
(1,1,2)
(1,1,4)
(1,1,6)

(2,0,0)
(2,0,1)
{2,0,2)
(2,0,3)
(2,0,4}
(2,0,5}
(2,0,6)
(2,0,7)
(2,0,8)

(2,0,9)
(2,0,10)

(2, 1,0)
(2,1,1}
(2,1,2)

(2,1,3)
(2,1,4)
(2,1,5)
(2,1,6)
(2,1,7)

Etot =0.80

3.51(—1)
1.78( —1)
1.04( —1)
2.45( —3)
4.10(—6)

1.34(—5)

2.38(—2)
S.43(—2)
5.31(—2)
3.29(—2)
1.2S(—2)
2.58( —3)
2.46(—4)
6.71(—6)
2.73(—9)

1.40{—8)

E,o, =0.90

2.38(—1)
1.31(—1)
1.32 ( —1)
2.26{—2)
2.45(—5)

2.93{—4)
2.04( —4)

4.10(—2)
7.89(—2)
5.44( —2)
2.97(—2)
2.11(—2)
1.14(—2)
2.89(—3)
2.46( —4)
3.52( —6)
9.33(—10)

3.57(—5}
6.73(—5)
2.67(—5)
8.57(—7)

E,o, =1.00

2.34(—1)
1.27(—1)
7.61(—2)
4.48( —2)
6.23(—4)

2.31(—2)
2.10(—2}
1.95(—4)

4.20(—2)
7.33(—2)
3.73(—2)
8.74( —3)
1.10{—2)
1.59(—2)
7.S2(—3)
1.66(—3)
1.00(—4)
7.21(—7}

1.08(—2)
1.72{—2)
9.16(—3)
1.67(—3)
5.86( —5)
1.75(—8)

E„,=1.10

1.92(—1)
8.58(—2)
8.43(—2)
6.07(—2)
6.55(—3)
6.03(—8)

3.86(—3)
1.11(—2}
3.36(—3)
6.79(—7)

5.60(—2)
9.41(—2)
3.62( —2)
7.17(—3)
1.52{—2)
1.69(—2)
1.27( —2)
5.93(—3)
1.12(—3)
4.46( —5)
1.37(—7)

5.97{—3}
9.44( —3)
9.S4( —3)
4.0S(—3)
1.12{—3)
6.88( —5)
1.74( —8)

Etot = 1.20

1.94(—1)
6.56(—2)
7.99(—2)
4.25(—2)
1.32(—2}
4.28(—5)

7.34(—3)
1.37(—2)
2.21(—2)
6.45(—4)

5.59(—2)
&.31(—2)
2.19(—2)
4.26( —3)
2.31(—2)
1.82( —2)
6.74( —3)
4.60(—3)
2.37(—3)
4.06(—4)
1.01(—5)

1.23(—2)
1.57(—2}
5.49(—3)
8.52{—3)
9.10(—3)
3.12(—3)
2.04(—4)
z.s6( —7)

' All energies are in eV.
3.51(—1}denotes 3.51 X 10
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FIG. 2. Inelastic scattering probabilities P;„(uo,jv~v~E) for
the H+H2 system (J=O), summed over rotational quantum
number j, as a function of total energy in eV. The LSTH (Ref.
43) potential surface was used. The initial state was jo=0,
Up =0. The upper curve gives the results for v =0 and the lower
curve for v =1. The plus signs give the previously calculated
converged results from Ref. 2(b).

gy for j +3.
In order to accurately capture the resonance in this

calculation, it was necessary to insure that the wave
packet was propagated for a sufficiently long time. In
Fig. 6 we show the reactive probability (n =0, summed
over j) at the resonance minimum (0.987 eV) as a func-
tion of time step after the final analysis started. The reso-
nance gets progressively deeper as time goes on, but final-

ly levels off. Further propagation would deepen the reso-
nance a slight bit more; however, the value had con-
verged to well below our level of numerical error. In Fig.
7 we show the probability as a function of energy at three
times (step 11, dotted curve; step 21, dashed curve; step
31, solid curve). From these curves, one can see that the
resonance steepens at the same time that it deepens, just
as one would expect.

As we have stated, the parameters used in these calcu-
lations and the code itself have not been optimized for
speed. However, it is useful to look at the computational

04

0.3

was calculated in only two runs. The agreement in the vi-

cinity of the 0.98-eV resonance is especially good. In Fig.
4 we show the n, j resolved inelastic probabilities as a
function of energy for several representative states and
compare them with the previous reported values. The
curves are very oscillatory, but all of this structure ap-
pears to be real, as evidenced by the good agreement with
the known values. The corresponding reactive results are
shown in Fig. 5. An interesting point about this figure is
that only the states j =0, 1, and 2 participate in the reso-
nance at 0.98 eV. No special features occur at that ener-

0.6
,

0.8

0.0
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/
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(b)
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FIG. 3. Reactive scattering probabilities P„(v&&,jo~u~E) cor-
responding to the inelastic results in Fig. 2. Note the good
agreement with the previous results in the vicinity of the 0.987-
eV resonance.

FIG. 4. (a) Rotationally resolved inelastic probabilities for
v =0, P;„(v&&, jv ~ u =0,j~E). The different j states are indicated

as follows: (j =0), , o; (j =2), ———,X's; (j =4),
——.—., 0; (j =6), , A. The continuous curves give the

results of the present calculation and the symbols give the re-

sults from Ref. 2(b). (b) The same as in 4(a), except for U = 1.
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FIG. 7. An illustration of the shape of the 0.987-eV reso-
nance as a function of time. The dotted curve is for time step
11, the dashed curve for step 21, and the solid curve for step 31.
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FIG. 5. (a) Rotationally resolved reactive probabilities for
v =0, P, (vo,jo~v =O, j~E). The symbols are the same as in

Fig. 4. (b) The same as in 5(a), except for u =1.
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FIG. 6. An illustration of the convergence in time of the

v =0 reactive probability, P„(vo,jo v =0 Ej, at the bottom of
the 0.987-eV resonance. A single time step equals 0.5X10
sec, so, e.g. , a total of 1 X 10 "sec has elapsed by time step 20.

effort involved as it gives an upper limit on what will be
needed for similar calculations with an optimized code.
A typical inelastic propagation took approximately 5500
s on a Cray-2 (NASA-Ames) and the corresponding reac-
tive propagation took 7500 s. These two calculations
yield the S-matrix elements out of a single initial state at
any energy in the range from 0.8 to 1.2 eV. Most of the
CPU time is used in calculating the action of the Hamil-
tonian on the wave function in the Chebyshev propaga-
tion method. The numbers of terms in the Chebyshev ex-
pansion of the propagator were about 6500 and 7000 for
the inelastic and reactive runs, respectively. Note that
the number of expansion terms is more or less fixed and
that efforts at optimization should be directed at decreas-
ing the cost of the action of the Hamiltonian operator.
Substantial reductions can be achieved by making use of
the fact that outside the strong interaction zone, greatly
reduced numbers of vibrational and rotational states are
required compared to the numbers used inside the strong
interaction region. As discussed in Sec. V, this means
that the close-coupling wave-packet (CCWP) method can
be used in the outer regions, leaving only a wave-packet
propagation in one variable. Due to the decreased cou-
pling in this region, the matrix Hamiltonian is small
enough to reduce the effort of applying the Harniltonian.

V. DISCUSSION

In this paper we have developed and demonstrated an
alternative time-dependent method for efficiently per-
forrning three-dimensional reactive scattering calcula-
tions. As the problem size grows, our scheme should be-
come even more efficient due to the slow scaling of wave-
packet methods. Even now, we are able to perform pure-
ly inelastic calculations on heavy systems such as 0+Nz
(J =0). We are also examining a number of
modifications to our technique that should make it even
more efficient. The projection operator approach can
be combined with the methods of this paper to allow us
to reduce the size of the (R, r) grids we currently use,
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thereby decreasing the propagation cost. It is also possi-
ble to perform the final-state analysis by Fourier analyz-

ing the wave function in time at one point in R (which
could be placed just as the interaction potential goes to
zero) as opposed to integrating over space at one point in

time. ' This would allow us to cut off the reactive grid
at very short distances. If one only desires vibrationally
resolved probabilities, it is possible to move the analysis

point in further yet. Every decrease that can be made in

the size of the space grids needed for performing the
propagation yields a corresponding decrease in the cost
of the propagation. The rotational close-coupling body-
frame formalism we currently use scales as N, where X
is the number of (j,A) states. By explicitly propagating
in the y variables, the overall scaling can be reduced to
N lnN. This modification is currently being tested for in-

elastic scattering. It is also possible to use other propa-

gation techniques that could in principle be faster than
the Chebyshev-FFT method used here. It has been
hoped for a number of years that time-dependent wave-
packet methods ~ould provide a practical alternative to
the costly time-independent methods for performing
reactive scattering calculations, and we believe that
methods such as ours will soon fulfill these hopes.
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