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Statistical properties of fractal dendrites and anisotropic diÃusion-limited aggregates
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Crystalline dendrites, growing in a two-dimensional diffusion field at small Peclet numbers, are in-

vestigated, It is shown that, far from the tip, the distribution in size of the side branches gives them
a fractal structure of dimension dI = 1.58+0.03. In spite of the fluctuations, their overall area is the
same as the underlying stable parabola observed at the tip. Similarly, anisotropic diffusion-limited

aggregation patterns grown in a strip have a mean occupancy profile with a parabolic tip and a
selection mechanism similar to that of stable anomalous Saffman-Taylor fingers.

Diffusion-controlled pattern-forming systems have
been recent centers of interest. ' Among them, dendritic
crystal growth, viscous fingering, and diffusion-limited
aggregation (DLA) have received the most attention.
The fields in which the two latter patterns grow are La-
placian, while the former is a finite-range diffusive field.
Experimental and theoretical efforts have been focused in
two directions. On the one hand, the shape and selection
mechanism of nonlinear stable curved fronts were investi-
gated and analytical solutions were found. Notable ex-
amples are the parabolic needle crystal' and the
Saffman-Taylor (ST) fingers in linear' and sector-shaped
channels. On the other hand, the very unstable patterns
have been mainly considered from the point of view of
their fractal structure. ' '

Roughly two different types of pattern morphologies
are observed corresponding to isotropic and anisotropic
growths. The aim of the present work is to study the
structure of complex anisotropic patterns obtained in the
three experiments listed above and to compare them to
the stable solutions. Anisotropic growths are character-
ized by the existence of preferential directions of growth.
The term must be used with care as the anisotropy of
growth of the pattern is not necessarily due to general mi-
croscopic anisotropy of the physical properties of the sys-
tem; local effects can generate preferential directions of
growth. '

The rough growth of monocrystals in an undercooled
solution gives rise to the characteristic crystalline den-
drites. These grow along the main axis of the crystal and
have a parabolic tip. Their sides destabilize into lateral
branches which compete and, far from the tip, form a
complex pattern. The anisotropy of the growth is due to
the anisotropy of the surface tension of the crystalline
structure. Experimental' ' and theoretical efforts' have
resulted in the understanding of the selection mechanism

of the parabola. The characteristic length scale lMs of
the instability of a planar crystallization front growing at
velocity V is given by the linear analysis of Mullins and
Sekerka, "'

!Ms 0- (doD/V ),where D is a diff'usion con-
stant and do a capillary length. The radius of curvature p
of parabolic dendrites is proportional to lMs (so that

p V=const); the proportionality coeScient is a decreas-
ing function of e, the surface tension anisotropy. '

Our first aim here is to study the general structure of
an experimentally obtained complex dendrite, from the
point of view of its fractal structure and of its relation to
the analytical parabola. We will limit ourselves to the sit-
uation where the impurity diffusion field has a length
scale (lD =D/V), large when compared to the observed
region of the dendrite. The screening-off between
different branches is then the same as in a Laplacian field.
However, ID remains small as compared to the distance
to the lateral walls of the cell so that the medium can be
considered infinite.

We grew ammonium bromide crystals in conditions
similar to those described in Ref. 10, but from a solution
with a different concentration. As the thermal diffusivity
is three orders of magnitude larger than the mass
diffusivity, the system is limited by mass diffusion for
which D =2 X 10 m /s and we work at Peclet numbers

P, —10 . In the following, the indices 1 and 2 will refer
respectively to two dendrites, grown at velocity
V, =0.6 JMm/s and V&=2.6 pm/s, on which extensive
measurements were done. The impurity diffusion lengths
were lD =3.3 mm and IL, =0.78 mm. The cell thickness

1 2

E =30 pm was small compared to la, so that the
difFusion field could be considered as two dimensional.
Near the tip the situation remained three dimensional be-
cause the tip radius p & e. One single, well-oriented germ
(two [100] axes in the cell's plane) iriitiated the growth
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FIG. 1. (a) Tip region (of length 20p) of a dendrite showing its stable parabolic tip and the initial destabilization. (b) Photograph
of a region of length 500p of the same dendrite (here p =2.5 pm).

and we waited long enough to get a sufficiently developed
dendrite far away (more than a centimeter) from the
boundaries and from the other main arms grown from
the germ. " In the following the origin is at the tip, Ox is
along, and Oy across the dendrite. By means of a 35-mm
camera and a videocamera, we first recorded the detailed
shape of the dendrite tip [Fig. 1(a)]. In this region we
determined by image processing' the parabola which
was the best fit to the stable part of the profile extending
over a length hx -4p. We found p, =3.8+0. 1 pm and

p2
= 1.7+0. 1 pm, respectively. The corresponding values

p&V& =7.4+0.2 pm /s and pzVz=7. 5+0.2 pm /s are in
good agreement with each other. We simultaneously
recorded the unstable dendrite in a large region behind
the tip [Fig. 1(b)]. The hierarchy of sizes of the side
branches makes the dendrites fractal objects even though,
due to anisotropy, they are compact along their axis. '

We image processed a part of the dendrite far from the
tip, analyzed it by the box-counting method, and found a
fractal dimension df =1.58+0.03 in agreement with the
dimension (df = 1.57) found numerically for fourfold an-
isotropic DLA. ' ' Finally, we wanted to do statistical
measurements on the whole structure. We chose, for
each value of the distance xo to the tip, to measure the
dendrite area S(xo) from the tip to xo. Figure 2 shows a
logarithmic plot of S(xo) as a function of xo. Over three
orders of magnitude of length scales S(xo) vary as
(xo)', as would have been expected if the dendrites had
had a smooth parabolic shape. Furthermore, in the range
10p &xo & 1000p, the coefficient of proportionality gives

p, =3.7+0. 1 pm and p2=1.7+0. 1 pm, respectively, the
same values as for the stable tip. The mean parabolic
shape occupied by the unstable dendrite is thus the para-
bola of the stable tip. A parabolic dependence of the un-
stable dendrite could be expected from Ivantsov's simple
qualitative argument the tip of the dendrite moves at
constant velocity so that its position is proportional to
the time t; the growth of the lateral sides results from a
diffusive process and their position moves as t . How-
ever, there is more to our result. We find that the selected

solution for the mean of the fractal object and for the corn
pact one are the same (here a parabola with the same p).

To find this smooth average profile we would also mea-
sure a rate of mean occupancy r(x,y ) on many runs of
the same experiment. The stable parabola is then un-
covered by determining for each x the value y of y such
that
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FIG. 2. Logarithmic plot of the surface S(xo) of dendritic
patterns as a function of the distance xo to the tip. H, S&(xo);
(&, S2(xo}. The solid lines correspond to the surfaces of com-
pact parabolic dendrites with the same radius of curvature

p& =3.7 pm and p2= 1.7 pm as the fractal dendrites 1 and 2, re-
spectively.

y (x)= f r(x,y)dy,
max

where r,
„

is the maximum value of r(x,y ) along the
growth's axis Ox. This result can be compared' to that
obtained in a previous work in which we had shown that
isotropic fractal ST fingers and DLA clusters grown in
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linear and sector-shaped channels retained statistically
the structure and selection of the stable solution; in each
type of experiment, when a large number of runs was per-
formed, the region of the cell with large mean occupancy
had the width and shape of the stable ST finger in this
geometry.

We wish now to extend these results to unstable pat-
terns in ST fingering and DLA when a preferential direc-
tion of growth exists. The viscous fingering instability for

FIG. 3. Anisotropic patterns in linear cells. In both ST
fingers and DLA clusters, patterns with strong or weak anisot-
ropy differ by the stability of their tip. The pictures were
chosen so as to show the two situations: (a) and (d) have strong
anisotropy, (b) and (e) weak anisotropy. (a) Unstable ST finger
in a cell ( 8'= 10.5 cm, b =0.5 mm) when an axis of easy growth
is along the channel. (b) A noise-reduced (with m =3) DLA
cluster of 2000 particles grown in a strip of width 8'=64, the
lattice being parallel to the strip. (c) The points of the strip
where the occupancy rate is larger than R(y ) are represented
in gray. This repartition was obtained from the analysis of 250
aggregates of the type shown in {b). The continuous line is the
shape of the ST analytical solution of width A, =O.38. (d) Unsta-
ble ST finger in the same cell as in (a) when both easy axes are
45' off the direction of the channel axis. (e) A M=1600 noise-
reduced DLA aggregate (with m =3), the lattice being at 45'
from the axis of the strip (8'=64&2). {f) Points of the strip
with occupancy r ) r(y ) in the case of 250 aggregates of the
type shown in (e); the solid line corresponds to the analytical ST
solution of width X=0.77.

a front moving at velocity V is characterized by its capil-
lary length scale 1, ~(V) . Viscous fingering usually
creates isotropic patterns. Several global' and lo-
cal ' ' means have been used to create preferential
directions of growth. These are well observed in the cir-
cular configuration but their selective effect can be mea-
sured quantitatively in the linear cells' ' ""in which
they result into narrow ST fingers with a parabolic tip
scaled on I, . As for dendrites, the relation p V =const is
satisfied and the finger exhibits dendritic side branches.
In our experiment we used linear cells, giving one of their
plates a periodic structure in two perpendicular direc-
tions' by stretching over it a thin nylon tulle cloth of
thickness 0.2 mm. Typical unstable fingers are shown in
Figs. 3(a) and 3(d) when the direction of the weaving is
respectively along the cell axis or 45' away from it. The
results are similar to those of anisotropic DLA. We will
here limit ourselves to the presentation of the results for
DLA aggregates; they have exact counterparts in unsta-
ble ST growth.

A DLA front is instable at a scale given by the grid
unit size I„.No stable curved front is observed. From
the point of view of isotropy, DLA corresponds to a
specific situation. Previous results show that the system
has microscopic anisotropy because of the sticking rule of
the particles on the square lattice. But in the most usual
case the anisotropy is hidden by the large noise of the
random walk. If the noise of the system is reduced, ' the
resulting clusters do show preferential directions of
growth along the lattice axes. The resulting effective an-
isotropy is controlled by a noise-reducing parameter, but
is actually not known quantitatively. We computed DLA
clusters in strip geometries, introducing a noise-reducing
procedure: each lattice site adjacent to the cluster has a
counter and a random walker only sticks onto it when a
number m of visits has been reached. The larger m, the
larger the effective anisotropy of the medium. In a given
strip, we grew X aggregates with the same total number
M of particles. For instance, Fig. 3(b) shows one out of
250 aggregates of mass M=2000 grown in a channel of
width 8'=64 when the lattice is oriented along the cell's
axis. We then counted for each point of the grid how
many times it had been occupied by a particle of an ag-
gregate. This number, divided by N, gives r(x, y), the
mean occupancy of this point. All transverse occupancy
profiles have a maximum value r,„onthe axis of the
strip and decrease to zero at the walls (y=+W/2).
When the lattice is parallel to the cell's axis, the peak is
narrow and there is a large region on each side where
r=0. We determined the points y satisfying condition
(l). This procedure appears more general than the cut at
midheight' (r,„/2) originally used for unstable ST
fingers and DLA clusters grown in a strip. Unlike the
isotropic case, for a given m, the width of the region of
large occupancy depends on the width of the cell. For in-
stance for m =3 we find X=0.38+0.02 for 8'=64,
A, =0.27+0.02 for 8' = 128 and A, =0.21+0.02 for
W=256. Figure 3(c) shows all the points of a strip
W=64 where r is larger than r(y ). The limit of this re-
gion is well fitted by the ST solution of corresponding k.
The radius of curvature at the tip can thus be deduced
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from the analytical equation: ' ' ' p=(A, W)/rr(1 —
A, ).

In the three strips investigated we found (in lattice units)
p64=4. 6+0.5, p, &8=4.2+0.6, and p256=4. 6+0.8, respec-
tively, a constant value showing that, for a given effective
anisotropy, the width of large occupation is selected by its
radius of curvature at the tip This is precisely the main
characteristics of stable anomalous viscous fingers. ' '"'
Finally, experiments performed with different values of m
show that the selected radius of curvature is a decreasing
function of the noise-reducing parameter. We found
p=6.4+0.8, 4.6+0.5, 2.6+0.2, and 1.8+0.3, respective-
ly, for m =2, 3, 4, and 5. (At large values of m the
cutoff value induced by the grid mesh size is reached and
the aggregate, like a dendrite, is compact at its tip. ) Al-
though there is no surface tension in this problem, this
behavior is qualitatively similar to that induced by sur-
face tension anisotropy in crystal growth and gives a
quantitative support to the visual impression that an
effective anisotropy could be defined related to m.

Finally, it is worth investigating the case where anisot-
ropy is 45' off the cell axis. In both ST fingering [Fig.
3(d)] and DLA [Fig. 3(e)], the pattern occupies a large
portion of the cell. The limit of the region of large mean
occupancy can be fitted by the ST solutions of relative
width A. )0.5 [Fig. 3(Q], though the statistical noise is

here important. Comparison of these mean profiles with
a corresponding stable solution is not possible because
when the anisotropy is this direction, no stable finger is
observed.

Compact isotropic structures (ST fingers) and aniso-
tropic ones (dendrites and anomalous ST fingers) obey
different selection rules. The present paper and Ref. 7
show that both types of selections extend to unstable
fractal patterns. ' In the isotropic case, the mean solu-
tion is selected by the larger length scale of the system
(the channel width). In the anisotropic case, it is selected
by the radius of curvature at the tip of the mean profile.
This radius p is proportional to the small scale (1Ms, 1„
or 1„).The proportionality coefficient is a decreasing
function of an effective anisotropy. When it is large (den-
drites and DLA at large m), p is of the order of 1Ms, 1„
or 1„,and a stable region exists at the tip; the fractal
structure only results from the growth away from the tip.
When it is small, the noise-reduced DLA, the tip itself is
unstable; the selected radius of curvature is not observed
on a given realization, but it still exists as a statistical
property.
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