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Charged polymer in an electric field

Bernard Gaveau
Departement des Mathematiques, UniUersite Pierre et Marie Curie, Tour 45-46, Cinquieme Etage, 4 place Jussieu,

75252 Paris CEDEX 05, France

L. S. Schulman
Physics Department, Clarkson Uniuersity, Potsdam, New York 13699-5820

(Received 26 February 1990)

The Brownian motion random-walk model of a polymer gives unphysical results for the case of a

charged polymer in an electric field. To avoid these difficulties we use two stochastic processes in

which the finiteness of the monomer size is retained. For a continuum model we use Kac s telegra-

pher process. The relation of this to the Brownian motion picture corresponds to the relation be-

tween a Poisson process and its corresponding Wiener process. In both cases idealized and unrealis-

tic properties of the Wiener process are avoided. Explicit results in any dimension are obtained by

going over to a completely discrete process. By both methods, and in contrast to Brownian motion

predictions, physically reasonable O(N') dependence is found for the mean-squared extension of the
size-N polymer. We also examine the breakdown of the Brownian motion approach by considering
the effect of the electric field on the usual limiting process by which the discrete model becomes
Brownian motion.

I. INTRODUCTION

In this article we calculate the effect of an external
electric field on a polymer comprised of charged mono-
mers. The field induces an energetic Boltzmann factor,
and the computation proceeds by choosing an entropic
factor to count the configurations of the free polymer
chain. In a continuum model of a polymer chain of N
monomers, one can take as an entropic factor the Wiener
measure on the paths tx(s) ~0 ~s « L I (where L =Nl, and
I is the monomer length), as suggested by Edwards' and
used by many authors. For this model the computa-
tion is reduced to the evaluation of the heat propagator
in an external potential, ' which in our case is a linear
potential, and can be done explicitly.

In this model one obtains an unphysical result for
(x(L) ), namely, that this quantity varies like L for
large L. We believe that the excessive growth arises from
the absence of a microscopic distance scale for the
nonrectifiable Brownian motion paths. For this reason
we will consider two alternative entropic factors. For the
first, we retain the continuum model but in a way that
does contain a microscopic distance scale, in effect, the
basic monomer length. This is done by using the random
telegrapher process of Kac (introduced in Ref. 9 and also
recently used in Ref. 10 to study the Dirac equation in
]+I dimensions). The random telegrapher process is
based on Poisson statistics instead of Gaussian statistics,
and it reduces to the Wiener process when the flipping
rate tends to infinity. For finite flip rate, the telegrapher
process has a persistence length that, as we shall see
below, plays the role of finite monomer length. In the
Dirac equation context, this is related to Zitterbewegung,
and the flip rate is the particle mass.

Explicit results are obtained for a second choice of en-

tropic factor. Following the strictures of Kac, ' we con-
sider a discrete random walk in any number of dimen-
sions with equal length steps, arbitrarily oriented. We ig-
nore excluded volume effects (an approximation made
throughout) and obtain an explicit formula for a generat-
ing function in the presence of the electric field. This in
turn gives expressions for the mean-square end-to-end
distance. These are contained in Eqs. (25)—(28) below.
These results were obtained in three dimensions by
Mansfield, ' who used a gravitational rather than an elec-
trical metaphor. For the case we study, extension by an
electric field, neglect of excluded volume effects should be
relatively innocuous, because the field itself tends to puli
the monomers away from each other. In particular, we
will see that end-to-end distance grows linearly in the
number of monomers, more rapidly than the length of a
Brownian motion path, and also faster than a self-
avoiding walk.

The simplification obtained by discretizing suggests
that this procedure be tried in other problems, and
indeed many results have been derived in this way. ' An
open problem for the discrete approach is the calculation
of the winding number (n) distribution function P„. We
expect it to be different from what one obtains" in the
continuum treatment; in particular, for large n the
dropoff should be more rapid. Another problem of in-
terest is the relation of the idealization studied here,
equally charged monomers in a uniform field, to the gen-
eral problem of polymers in force fields, and especially
the relevance to electrophoresis. '

In Sec. II we reproduce the calculation showing that
using Wiener measure the mean-squared end-to-end dis-
tance grows like L . In Secs. III and IV, we develop the
telegrapher equation method of imposing a microscopic
distance scale on the entropic factor. Finally, in Sec. V
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we obtain results using the discrete entropic factor, re-

sults that are explicit and hold in any number of dimen-

sions.

II. MODEL OF A POLYMER CHAIN
USING WIENER MEASURE

A polymer chain can be modeled by Wiener measure

by considering it to be a path [x(s)]o,& t . In this ideali-

zation, the orientations of successive monomers are arbi-
trary and mutually independent. If we assume that the
length of each monomer is distributed as a Gaussian ran-
dom variable, then the probability distribution of a path
x(s) is given by the Wiener measure

Now, switch on a uniform electric field E in the x
direction. Let the charge on each monomer be q. We in-
troduce a Boltzmann factor

qE
exp f x (s)ds

I o

and the weight of a path x( ) is

exp ——f ~x(s)~ ds+ f x(s)ds 2)x( ) .
1 t, PqE

21 o I o

P(x( ))= exp ——f ~x(s)~ ds 2)x( )
2l o

where l is a given constant and 2)x( ) contains the nor-
rnalization factors as usual. Here it is understood that
one extremity of the chain x(0) is fixed at 0. It is then
clear that

Let us now consider ( x (L ) ) . If we sum (3) over all
paths, such that x(0)=a and x(L) =b, the result is the
propagator G(b, L~a) of a quantum particle of mass
m =1/I in a uniform field, provided that we change the
—1 in front of the quadratic term into an i. For conveni-
ence we go to one space dimension and obtain

f exp ——f [x(s)] ds+(13qE/1) f x(s)ds 2)x( )

x(L)=b
' 1/2

e — ——'(p E/l)(b+ )L —(pqE/l) L I

2/L 24

=G(b, L~a) .

For a chain such that x (0)=a, we see that

f (b —a) G(b, L~a)db
([x(L)—x(0)]') =

G(b, L~a)db

and we obtain the exact result

2E21 4

([x(L)—x(0)] ) =IL+
24(ks T)

This implies that the external field gives a correction
-I. . If L is proportional to the number of rnonomers,
this is certainly unphysical (see also Ref. 12). What we
believe is happening is that the nonrectifiable Brownian
motion path has no underlying fundamental length scale.
Therefore the sensible upper bound on the growth rate
for (x ), L, is not implicit in the formalism. We pro-
pose below other models that lead to a more plausible re-
sult.

III. MODEL OF A POLYMER USING POISSON
MEASURE: NO EXTERNAL FIELD

In this section we propose the use of a Poisson process
for the study of polymers. This method has the advan-
tage of allowing the use of a continuum theory, but at the
same time there is an underlying fundamental length
scale to help avoid the unphysical result demonstrated in
Sec. II.

We consider a polymer to be a path [x(s)]o«r and
we want to obtain the statistical distribution for the x
component of this path, [x (s)]o«, r. Both x and T have
dimensions of length. In this section we assume that
there is no field. Again, we consider the polymer to be
formed by a large sequence of small monorners that can
orient freely with respect to each other, and we consider
the projections of these rnonomers on the x axis. We thus
concentrate on the projection of the polymer on the x
axis and idealize the direction-changing motion of the
end point as the random motion that Kac uses in his
study of the one-dimensional process for the telegrapher
equation. Let us start at a point 0 and follow the se-
quence of monorners. The first monomer has a projection
on the x axis that has sign +1 with probability ( —,', —,

' ). Let
us assume that we start in the + direction on the x axis.
We continue to move forward in the x direction until we
find a monomer that makes an angle greater than m/2
with the x axis; at that point, we begin to move backward
with respect to the x axis.

Let t, be the first time that we hit a monomer that
makes an angle greater than m. /2 with the x axis. Our as-
sumption is that t, has an exponential law

Prob(t, ) t ) =e

where a is a flipping rate. We arbitrarily assign our ve-
locity (in this fictitious time) along the x axis to be +1.
This means that all dimensional constants are built into
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a, which will (in the absence of an external field) be relat-
ed to the inverse monomer length. Continuing to follow
the polymer chain, we can write the x component of the
motion at time t as

x(t)= f (
—1) 'ds,

0

where N (s) is a Poisson process with rate a; i.e.,

Prob[N(s +ds) =N (s)+ 1]=a ds,

Prob[N(s+ds)=N(s)]=1 —a ds,

and the increments of N(s) are all independent randoin
variables. The process (7) was introduced by Kac and
has been used' ' to solve the Dirac equation. The prop-
agator for this process is

f(t)=b exp x(t)
Bx

where 8 is the expectation over the random process. It
was proved in Ref. 9 that f (t) satisfies the telegrapher
equation

a'f af a'f
Qt2 Qt Q~ 2

As in Ref. 10, we can consider a more general situation in
which a/ax is replaced by an operator A. Thus
f ( t) = 8( exp[x ( t) A ]). The initial conditions are

f(0)=1, " =8((—1) ' ')A =0d.~
dt

[if we assume that the velocity at time t =0 has probabili-
ty ( —,', —,

'
) to be +1],so that

IV. MODEL OF A POLYMER USING POISSON
MEASURE IN AN EXTERNAL FIELD

Consider the polymer model of Sec. III, but turn on a
constant field F in the direction of the x axis. We pick up
a Boltzmann factor exp[FP f o x(s)ds] as in Sec. II, but
now the statistics of the path x (s) are given by the Pois-
son process of Sec. III. We again want to compute

T
6 x(T) exp FP f x(s)ds

(x(Z)') =
exp FP f x(s)ds

0

(12)

but in the limit of small a, where E denotes mathematical
expectation over the Poisson process [and at time 0 we
start with velocity +1, with probability ( —,', —,')]. Recall
that a is the flipping frequency of the velocity so that
small a implies few changes of velocity. The field, which
we assume to be strong, is therefore affecting (x ) in two
ways: through its explicit appearance in the Boltzmann
weight, and through its implicit reduction of a. For
sufficiently small a, formula (12) need only be computed
for the contributions arising from the paths with no
change of velocity or with one change of velocity. The
paths with no change of velocity are the paths x (s)=+s.

First, we consider the path x (s)=+s in the direction
of the field. This has probability —,'e '

( —,
' arises from the

choice of the speed + 1, and e ' is the probability of no
iiip during [O, T]). The contribution of this path to the
numerator of (12) is thus

the Wiener-measure model, with I /a playing the role of
monomer length. For small T we have O(T ) depen-
dence.

f (t) =e " cosht(a + A ~)'~~
~
T exp

FPT
2

QTe (13)+, sinht(a + A )'~
(a +A )'

(9)

([x(~)]')=
a=0

Note the difference from the formula given in Ref. 10, as
a result of having taken different initial conditions.

For the polymer chain, we are interested in computing
( Ix( &)I ) =3( [x( r)] ). But it is clear from (8) that

The contribution to the denominator of (12) is the same,
divided by T .

Next, we consider paths with only one flip and positive
velocity. Call t, the fiipping time (0~ t, ~ T). The path
1s

s if s~t, ,
x(s)= ' —s+2t, if t, s&T,

so that

and using (9) we obtain

([x(n]')

=—e ' T sinhaT ——sinhaT+ T coshaT1,g . 1

a a

In particular, we see that

T2 for T~O,
(x(Z)') - Z

for T~ ~,
a

(10)

f T
x (s )ds = —

—,
' T +2t, T t i

=
—,
' T ——( t, —r) (14)

QT
T'

—,'e ' f a dt exp PF —(t, —r)

FT=—'e ' exp a f exp( PFu )du—
0

——e ' exp(/3FT /2)&n/PF, .1 —.T
4

The contribution of this kind of path (initial velocity +1
and one fiip) to the denominator of (12) is

so that for large T we reproduce the result (2) given by and the contribution to the numerator of (12) is
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T 2 2 2 —aT 2
—,'e 'f a dtt(T 2 t, ) exp[))F( —,'T —+2)tT —t t)]=—,'e ' a exp(ftFT /2) f (2u —T) exp( Ptu—)du

T2——'e ' a ex (PFT /2) — — + ™
(PF)3i2 f3F 2 v't3F

(16)

Finally, there is the case of paths with initial velocity
—1 and one Hip. These paths are given by f x(s)ds = ,' T——+-(t,—T)

so that

—s ifs t,
s —2t, if t, s(T,

This will give the same contribution as the preceding one,
at least asymptotically. Finally, combining (13), (15), and
(16) (the last two being multiplied by 2), we obtain in (12)
the following:

T'+ 2a —,
' T'

(x(T)') =

' 1/2

1+a

2T+
PF PsF

u

' 1/2

+O(a )

1/2

+O(a )

or f (P,F, w)

(x(T) ) =T 1— +O(a ) . (17)FT (PF )312T2

= g exp PHD(x, ,
—. . . , xtv)

This expression is valid for small a, up to an exponential-
ly small correction of the form exp( PFT ). —

The salient feature of Eq. (17) is the sensible 0 ( T ) be-
havior of (x ). In general, one can consider a Poisson
process to be a microscopic version of a Wiener process
(so that if you look at the Poisson process for the telegra-
pher equation on a long time scale, it will look like the
Wiener process, Brownian motion). Equation (17) shows
that when one does look closely at the random walk for
the polymer —closely enough to go below the Wiener
process limit —it is free from the unphysical T depen-
dence for (x ). In using the first correction, our order
a term, it should be borne in mind that a is an implicit
function of both the field strength and the fundamental
monomer length.

We remark that the limit for small a is different from
the limit considered in Ref. 10. In that note, we con-
sidered the nonrelativistic limit of the Dirac equation,
which is the limit for large a. For small a the telegrapher
equation becomes the wave equation. For large a it be-
comes the heat equation.

(19)

f(P, F, w)= g f do exp[(lw PklF) o—], .
0

(20)

where 0 is the v —1 sphere (for v=1, f„do means

+, ). Let r be the magnitude of the v vector x. Then

The energy H0 describes the free polymer, preferred an-

gles, self-avoidance, monomer-monomer interactions, etc.
The vector F is the electric Geld times the monomer
charge. We will take Ho to be zero, so that in the ab-
sence of the field our polymer would be governed by en-
tropic factors alone. Thus we will treat the 0's as ran-
dom variables, uniformly distributed on the v —1 sphere
(or on [ + 1, —1] for v = 1). The inverse temperature is P.
The external force is the v vector F [ =(electric
field)X(charge)]. Finally, w is a v vector. The term

Xk =ixk is equal to I 2k=i kerr k+i Because —we are
assuming that HO=0, f takes the form of a product, and
we have

V. DISCRETE POLYMER MODEL

xN —l(o, + +o~) t (18)

where o k (k =1, . . . , N) is a v vector with o k
= 1. For

v= 1 we take 0 k =+1. The properties of the polymer can
be calculated from the generating function

A polymer in v dimensions is modeled as a sequence of
monomers, each of length l. One end point of the poly-
mer is held at the origin, and the other is at

g (r)= f do exp(x. o)
0

is independent of the direction of x. It follows that

g&(r)=2coshr,

and, for v& 1,

g„(r)=const X f d8(sin8) exp(r cos8)
0

const XI„(r)

(21)

(22)

(23)
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with I„(r) the Bessel function, and p =
—,
' v —l. In particu-

lar, g 3(r)=4m(sinhr)/r. To evaluate (xz) we take w

along the direction of F. Thus

it follows that the general result for the mean-square ex-
tension is

1(x~) = f(P,F,sP)
Bs s=0

(24)
( 2 ) 12 N2 (v —1)N lnN +O(N)XN (29)

with P a unit vector in the Fdirection. Therefore

( 2) 8 lnf Blnf
N

=I g [lng(pkl IF I)]"
k=1

+ g [lng(Pkl IF I
)l'

k=1

'2

(25)

In particular, we have the following explicit results: For
v=1,

so that v=1 is the only case without the logarithmic
term.

It is also of interest to explore the breakdown of the
functional integral method for this problem. As
remarked earlier, since Brownian motion does not have
an underlying scale length, the external field is able to
stretch it more than the maximal length of the system
(the polymer) that it is modeling. In any case, with ap-
propriate (but unphysical) limits our formulas can be
made to yield the N behavior. A quick way to see this is
to hold F fixed and allow I to tend to 0 (which means A,

tends to 0). We obtain

N

(x ) =I' g + g tanhkk
k-1 cosh Ak

and, for v=3,

(26)
I N

3

(30)

1 1

sinh A,k (A, k }

(27}

with A, =pl IFI. The result (27) is substantially contained
in Ref. 12. For zero field it is easy to see that one recov-
ers the O(N) growth of (xN ). On the other hand, for
large F in three dimensions we have

(28)

which coincides with formula (5) for the Brownian case
(up to a factor for changed dimensions).

The same effect can be studied in more detail by going
to a random-walk model underlying the Wiener process.
In fact, the model is the discrete walk we are already us-
ing, but we will scale it so as to recover the Wiener pro-
cess. This will allow us to show how the rescaling of the
fundamental lengths and of the field gives the unphysical
result (5). Consider

xN=(bx) g 0, ,
j=1

For any nonzero field the O(N ) behavior eventually
takes over, and it follows that the neglect of self-
avoidance effects is unimportant (with regard to this par-
ticular asymptotic effect), since those effects could only
have enhanced the already maximal growth rate. Note
that the logarithmic terms in (28) are absent in one di-
mension.

The qualitative N-dependence features just described
hold for general v. As in one and three dimensions,
terms in (xz ) that grow more rapidly than N arise from
the (lng) contributions. Using Bessel function identities,
one obtains

g'(kA, ) + I„+i

, g(kA, ) k, I„

where o =+1 with probability ( —,', —,
' ), and we do the usu-

al rescaling on "space" and "time":

I.
N =—(L fixed, I given, e dimensionless, E~O),

le

bx =l&e, b,s =le .

The quantity A, was defined as pIFII To rescale. it we
note that it should scale in the same way as the term in
the Boltzmann factor pF gk & xk, from which it has its
origin. In the continuum limit, this becomes
(PqE/I) Jo x(s)ds, which scales like

From the asymptotic formula

4u —1 + o ~ ~

Sr

P b,xb,s-P I e
E E
I I

We therefore replace A, by PqEIE ~2. When all of these
changes are made in (26), we get
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(x )—:(x(L) )

N

=(b,x) g + g (tanhA, k)
&

cosh Ak

=I e X+ g tanhA, k tanhA. k'
krak'

-/L+l e g A, kk'
krak'

-11.+ I 2p2L, 4
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