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A phenomenological theory of polar structures in chiral biaxial liquid crystals is constructed ex-
ploiting the properties of a symmetric and traceless tensor order parameter field Q p(r) and of a po-
lar field P (r). Full advantage is taken of the symmetry of the order parameters by systematic use of
the method of integrity bases, which allows us to establish an expansion of the most general SO(3)-
invariant free-energy density to arbitrary powers in the components Q & and P . A coordinate-
independent parametrization of the invariants is introduced that yields a classification of local polar
structures and some predictions about possible topologies of phase diagrams without the necessity
of performing numerical calculations. As one prominent result, the theory predicts a polar, chiral
biaxial state that exists due to a piezoelectric coupling of a chiral biaxial tensor field and the polar-
ization field and which disappears if tensor is uniaxial. We then provide a general theory of flexopo-
larization in biaxial systems. A general biaxial system is described by 12 fundamental flexopolariza-
tion modes. Special cases, obtained by imposing symmetry restrictions to the tensor field Q, reduce
the number of modes. Finally, the theory is applied to chiral phases. Simple polar chiral structures
including cholesteric and smectic-C* liquid crystals are analyzed. In particular, it is shown that if
the smectic-C* phase is stabilized due to the piezoelectric coupling between Q, P, and a density
wave, then it must be described as a biaxial uniform spiral with at least two nonvanishing commens-
urate harmonics. The minimization of the quadratic part of the Landau-de Gennes energy supple-
mented by (flexo)polarization terms may give rise to incommensurate two- or three-dimensional po-
lar structures that can be stabilized by cubic terms.

I. INTRODUCTION

The transition between phases of different symmetry is
described in terms of an order parameter representing the
extent to which the average configuration of the mole-
cules in the less symmetrical phase differs from that in

the more symmetrical one. ' In general, many order pa-
rameters are needed to characterize the orientational
properties of a liquid crystal. However, from a set of
order parameters we may always select primary ones
which govern the others. A standard way of determining
these primary order parameters is to analyze the one-
particle distribution function or the macroscopic
response functions of the material, such as the dielectric
permittivity or the diamagnetic susceptibility. ' The ap-
proach based on response functions is quite attractive as
it makes phenomenological theories independent of as-
sumptions about the constituent molecules. "'

Consider, for instance, the relation between the mag-
netic moment M (due to the molecular diamagnetism)
and the magnetic field H:

M =g pHp, a,P= y,xz

where y p are the Cartesian components of the sym-
metric susceptibility tensor g. In the isotropic phase it
has a simple diagonal form,

Zap +0'Sap (la)

where

~Xap Zap 3 ~apery

and where Ay „is the maximal anisotropy that would
be observed for a perfectly ordered phase.

The standard parametrization is of the form

Q p=S(n np, i6 p)+b(m mp —
—,'5 p), (lc)

where n, m (and n Xm) are the orthonormal eigenvectors
of Q corresponding to the eigenvalues —', S—,

' b, —
—

—,'S+ —,'b, —
—,'S —

—,'b, respectively, and where the direc-
tor n is the eigenvector of Q with the largest nondegen-

Here 5 p is the Kronecker symbol. Thus the tensor order
parameter Q is defined with elements

(lb)
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crate eigenvalue.
By definition, the tensor vanishes in the isotropic phase

(S=b =0). In the more ordered phases (the uniaxial
nematic, smectic-A, etc.) Q has a cylinder symmetry, i.e.,
S+0, b =0 or S =0, bAO, or S =b. This condition is
written in coordinate-independent form as

lished. Section IV is devoted to some applications of the
results of Secs. II and III. In particular, a theory of flex-
oelectric effects is developed for biaxial liquid crystals
and polar, chiral biaxial structures, like Sm-C -liquid
crystals, are considered. Section V contains a summary.

6(TrQ ) =(TrQ ) (ld)
II. INTEGRITY BASKS: SIMPLE EXAMPLES

FOR LIQUID CRYSTALS

In the most general case Q(r) has five independent com-
ponents, as Q,&=Q& and TrQ=O, and describes the so-
called general biaxial phase. '

Note that Q does not include any long-range polar or-
der, the situation encountered in most liquid crystal
phases. Recently, however, a considerable amount of
evidence has become available that strong permanent di-
pole moments lead to new phenomena, like antiferroelec-
tric smectic-A phases or reentrant phase transitions.
Polar effects are also induced by gradients of Q (fiexoelec-
tric effects ) or by the coupling of a chiral molecular
orientation field and dipole moments as in the smectic-C*
phase. This evidence motivates the introduction of a
secondary order parameter in the description of orienta-
tional properties of liquid crystals —namely, the polariza-
tion density P(r) of components P, (r).

Theoretical studies of polar effects in terms of the po-
larization density were initiated by Meyer with his as-
sumption of shape-induced flexoelectricity in nematics.
Recently, Meyer's theory was extended by Barber o
et al. to include effects at solid-liquid crystal interfaces.

A number of articles are also devoted to the spontane-
ous ferroelectricity in chiral' and nematics" systems.
Out of them we particularly mention the paper by
Khachaturyan, " which discusses the structure of a hy-
pothetical ferroelectric nematic phase with locally helical
molecular configurations and with a polarization vector
parallel to the director. Although it has been recognized
that, apart from Q, a polarization field is an important
order parameter in liquid crystals, no major studies of its
influence have been performed so far.

Here we analyze general properties of polar liquid crys-
tals characterized by Q and P in a systematic way. This
is done by writing the phenomenological free energy in
terms of an integrity basis, i.e., by a finite number of ele-
mentary tensorial polynomials through which all other
tensor-valued functions are expressed as well-defined and
simple products. The method of integrity bases offers
fou)' important advantages:

(i) Any polynomial expansion of scalar and tensorial
functions is immediately available to arbitrary order in Q
and P,

(ii) the algebraic' independence of the various invari-
ant or covariant polynomials is evident,

(iii) a natural classification is offered of possible local
structures of ferroelectric liquid crystals, and

(iv) a very convenient parametrization is given of the
free energy.

The organization of this paper is as follows: In Sec. II
basic rules for the calculation of an integrity basis for
liquid crystals along with some simple applications are
provided. In Sec. III the relation between local polar
structures and the integrity basis in Q and P is estab-

Q'+2 = —
—,'(Q„„Qyy +—2iQ„y },

QYI =+(Q.,+iQy, »
(2) 3Q(2) —

(Q +Q )
6

(2a)

In the spherical representation the constraints Q &
=Q&,

TrQ=0 are automatically taken notice of.
The spherical components of the vector field P form an

L =1 dipole tensor P"' of components P"' (m =+1,0),
where

p'"=a', .o

(2b)

From the components T"' and S' ' of two spherical
tensors of ranks 1 and q, respectively, one can form via
the standard Clebsch-Gor dan coupling the
(21+1}(2k + 1 } irreducible components of a product ten-
sor transforming according to the angular momentum
quantum numbers L E I 1+k, 1 +k —1, . . . , ~

1 —k~ J

[T(l)@S(k) ](1.)

ml, m&

l k L
y (I) S(k)

m, m2 M (2c)

The mathematical concept of integrity bases was intro-
duced by Molien' and Hilbert about a century ago to
characterize the algebra of invariants of a finite group. It
was shown that a finite number of (algebraically) indepen-
dent invariant polynomials in the components of an irre-
ducible representation of a finite group can be construct-
ed (comprising the integrity basis) such that all other in-
variants are written as polynomials of these basic invari-
ants. This very elegant group theoretical method has re-
cently been extended to compact Lie groups by Judd
et al. ,

' " Gaskell et al. ' ' ' and Bistricky et al. ' "'
Some results for SU(2) symmetry are collected in Refs.
]4

In this section by some simple examples the theory of
integrity bases is applied to the topology of phase dia-
grams in molecular and Landau theories of liquid crys-
tals. For the sake of clarity, we discuss polynomials in P
and in Q separately and postpone the coupling between
the order parameters to Sec. III.

The discussion of the integrity basis for the symmetric
and traceless tensor field Q and for the polarization field
P becomes simpler if we switch from the Cartesian repre-
sentation to the spherical one. The latter defines the irre-
ducible representations of SO(3).

The spherical components of Q form an L =2 quadru-
pole tensor Q' ' with components Q' ' (m =+2,+1,0),
where
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where

I k L
m1 m2 m

like components of an irreducible representation of SO(3),
can be composed by only two tensors —namely,

I(1) P(1)
1,0=

are Clebsch-Gordan coefficients. To the product
[T("S'"']' ' one can couple a third tensor R,(P' to form a
spherical tensor

and

$(0) —[p(1)g p(1)](0) p2 — p p1
t 3

[[T(l)I3) S(k) ](L)(3)R(P) ](K)

etc.
An important problem is to determine all linearly in-

dependent tensors which transform according to an irre-
ducible representation of the group SO(3) and whose
components are homogeneous polynomials in Q' ' or
P„"'. These we denote "irreducible tensors. " Note that
any tensorial function, which is analytical in the com-
ponents T'" and S' ' of spherical tensors and transforms
itself like a spherical harmonic L, can be written as a
linear combination of irreducible tensors, transforming
like the harmonic L, each. In particular, molecular, Lan-
dau, or elastic energies of liquid crystals can be viewed as
linear combinations of SO(3) invariant polynomials, i.e.,
spherical products with total momentum L =0.

The explicit form of the irreducible tensors is quickly
established through an integrity basis' which we deter-
mine in the following way:

First we note the following theorem The total num-
ber m„J of linearly independent tensorial polynomials of
a given degree n, which transform according to an irre-
ducible representation of SO(3) of momentum J, can be
extracted from a generating function Q(q, A).

This generating function is a rational expression whose
numerator and denominator are polynomials in q and A.
The power-series expansion of Q(q, A) contains only posi-
tive integer coefficients —namely, the numbers m„J ..

via Clebsch-Gordan coupling of P"' with itself to the
highest possible total momentum. The resulting polyno-
mials can additionally be multiplied by an arbitrary
power of P to yield

(p2)n[. . . [[p())p(1)](2)p(1)](3). . . ](m) (4c)

The two basic tensorial polynomial fields P"' and P are
the integrity basis for functions in the variable P"'. Note
that Clebsch-Gordan coupling to the highest possible
momentum is particularly simple as the sequence of the
factors is irrelevant.

Quadrupole tensors (L=2) For. Q' ' the generating
function is

g( )
1+q A

(1 —qA )(1—
q A )(1—

q )(1—
q )

=1+qA +q (A +A +A )

(sa)

+q (A +A +A +A +A )+, (5b)

The rational form of the generating function (4a) now
provides important information about the structure of
the integrity basis from the factors in denominator and
numerator one reads off that the integrity basis consists
of five "elementary" tensors IO&, whose degrees N and
momenta L are the powers of q and A, namely,
(N, L)=(1,2), (2,2), (2,0), (3,0), (3,3). These tensors can be
unambiguously identified as'

Q(q, A) = g m„zq "A (3) 1(2) Q(2) 1(2) —[Q(2)(3,Q(2)](2)
t t

Q(p, A)= 1

(1—p )(1—pA)

(p2)n y pLAL

(4a)

(4b)
n=0 L=0

From the rational form of Q(p, A) it follows' that poly-
nomials in the variable P'" exclusively, which transform

From the rational forin of 0 one can derive the integrity
basis as shown below.

The construction of Q(q, A) is based on the orthogonal-
ity theorems for characters of products of irreducible rep-
resentations of SU(2). ' The generating functions for ten-
sors of momentum L ~ —", are collected in Ref. 14(c).
Beware, however, of a misprint in formula (2.3) of Ref.
14(c): The term U there should read A . De-
tailed calculations for L =6 are found in Ref. 15. Here
we list the generating functions and integrity bases for
vectors (L = 1) and for symmetric and traceless tensors
(L =2).

Vectors (L=1). For the vector field P"' the generating
function Q(p, A) reads

1(0) [Q(2)@Q(2)](0) Q2 TrQ 21
0, 2 (6a)

1(0) [1(2)@1(2) ](0)—(
12 )) /2TrQ 3

and

1(3)—[1(2)g 1(2) ](3)
0, 3 0, 1 0, 2

[Q(2)@[Q(2)@Q(2) ](4)](3)
v'5
v'2 (6b)

(7a)

Again, any irreducible tensorial polynomial in the
components of Q' ' can be formed by all possible prod-
ucts of the basis tensors (6a) coupled according to
Clebsch-Gordan to the highest possible total momenta.
The tensor I0 3, Eq. (6b), associated with the term q'A in
the numerator of Eq. (5a), can appear only linearly. A
thorough discussion of this method is found in Ref. 16.

Before going to implications for physical phenomena,
let us first interpret the integrity basis elements. The Io 2

invariant is the square of the norm of the order parame-
ter Q"'

1(0)= ~Q(2)~ =Q2
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The invariant I0 3 is the scalar product of two members

of the integrity basis-namely, I0 1
and I0 2. These we view

as five-component vectors, and (I03) as their scalar
product:

' 1/2

~

I(3)
~

[I(3)@I(3) ](0)
) t

(I(0) )3 (I(0) )2
0, 2 0, 3

1/2

I(0) )2 ( [I(2)N
I(2) ](0) )2

g6 os(y)2 & g6 (7b)

where p is the "angle"' between vectors I0,' and I022'.

The uniaxiality condition (ld) can be written in terms of
I02 and I03 as

10(I' ') =7v'5(I )

which means that the uniaxial phase corresponds to the
case of / =0 (prolate uniaxial phase) or n (oblate uniaxial
phase). Thus the value of cos(P) is a measure for the de-

gree of uniaxiality of a given phase while the sign of
cos((Ii) distinguishes between the oblate and the prolate
case. A natural, coordinate-independent, parametriza-
tion of the Landau theory of nematics phases is obtained,
if the integrity basis elements I0 2 and I0 3 are replaced by
the pair [Q, w=cos(P)] of variables. The allowed values
of I02' and I03 (equivalently Trg and Trg or Q and w)

are depicted in Fig. 1.
The I0 3 element of the integrity basis has a qualitative-

ly difFerent interpretation. For uniaxial phases the vec-
tors I0 I and I0 2 are either parallel (/=0) or antiparallel
(P=rr). From Eqs. (6), (7a), and (7b) it follows that

1/2

—Q(1—w)
7v'7

g cos
3

—,'( —1+y) 0 (7f)

where

(7g)

with cos(P) =w and

1

7v'7 [(TrQ )
—6(TrQ ) ], (7e)

is proportional to [(1—w )]'~ and provides a measure of
biaxiality. Maximal biaxiality is present for w =0, i.e.,
for I0 3

=TrQ =0.
The deviation of Q from the uniaxial form is frequently

expressed by a biaxiality parameter y (0&y & 1), defined
for the diagonal form of Q,

' (/2

[Qld;.,=

I(0)I(2) +I(0)I(2)
0, 2 0, 2 —0, 3 0, 1

1/2

I(3) —y0, 3 gw [Q(2)8 Q(2) ](3) 0

so that I0 3 vanishes. Its norm,

Consequently, for uniaxial symmetry we find

(7c)

(7d)

w =6(Trg ) /(Trg )

Now we demonstrate how the integrity-basis approach
simplifies the study of topologies of phase diagrams. This
subject has been extensively treated in our article on the
Landau theory of the nematic-isotropic phase transition
in Ref. 4(c) (see also Ref. 17), of which we repeat the most
important arguments.

The internal symtnetry of Q, if expressed by the invari-
ants I0 2 I0 3 reveals (1) a first-order phase transition from
the isotropic to the uniaxial nematic phase (I~NU ) and
(2) the existence of a biaxial nematic phase.

These statements follow from the expansion of the
Landau free energy Fb„1k in powers of
(I0 2 I0 3):—(Trg, TrQ ) or ( Q, w),

0[:

Fb„)k=A Trg +8Trg +C[TrQ ] +D[TrQ ][TrQ ]

+E[TrQ ] +E'[TrQ ] +. . .

=ag +Pg w+yg +5Q w+EQ +e'Q w + ' ' ',

Tr(G )

FIG. 1. Allowed variation of the independent degrees of free-
dom TrQ and TrQ (shaded area) and identification of the cor-
responding phases.

where —1 & w 1, Q 0; here A =a (T — T)~ a, 8 ~P,
ture and T* is the spinodal.

The minimization of expansion (8) is simple in the in-
dependent variables (Q ~ 0, —1 & w & 1), and even

without numerical calculations the following results are
obvious:

(i) For a quartic free energy [C)0, D =E =E'=0 in
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Eq. (8)], the free energy is a linear function of w, and the
minimum always is taken at the extremal values of m-
namely, +1 for p(0 and —1 for p&0. Consequently,
there is only one low-temperature phase, i.e., the oblate
uniaxial phase (N + ) or the prolate uniaxial phase (N )

with D „symmetry, accessible from the isotropic phase
through a first-order phase transition, if 8%0, or, if
8 =0, a continuous transition at the Landau point
(3 =8=0).

(ii) The biaxial phase Ns of symmetry D2 can be a
minimum of the free energy provided at least one term
proportional to m is present (E'%0). For the expansion
to be positive definite ("stable" ) in the absence of higher-
order terms it is required that E )0 and E' & 0.

In spite of the known limitations of the Landau theory,
the conclusions from Eq. (8) agree with experiment. +"
All observed nematic phases "" are classified properly
and the topologies of phase diagrams are reproduced
correctly. '"' As the Landau theory is phenomenologi-
cal, it contains several free parameters. These can, in
principle, be fitted to various experimental data' and
provide a semiquantitative description of order parame-
ter, specific heat, entropy, etc. Some of these parameters
even have a simpler molecular interpretation. In particu-
lar, the parameter 8 measures molecular fatness, being
positive for the rodlike molecules and negative for disk-
like ones as for these signs the minimum of the quartic
free energy is obtained for a prolate and an oblate tensor
order parameter [see (i) and (ii) above and Fig. 1]. Analo-
gously, the coefficient E' is a measure for the deviation of
an averaged molecular shape from axial symmetry, i.e., of
intrinsic (molecular) biaxiality.

III. INTEGRITY BASIS FOR POLAR
LIQUID CRYSTALS

In Sec. II we have demonstrated how to construct all
linearly independent, irreducible tensors built out of Q' '

and P separately. Here we concentrate on polar nemat-(1)

ic liquid crystals described by a free energy, which is
polynomial in both Q' ' and P'". A similar analysis
could, in principle, be applied to an expansion into any
set of tensors transforming according to one or several ir-
reducible representations of a compact Lie group.

In order to establish the integrity basis for irreducible
tensorial polynomials in two order parameters P'" andQ, we first construct the generating function Q(q, p, A)

(2)

with the help of those for vector (L =1) and tensor
(L =2) fields of Sec. II [see Eqs. (4a) and (5a)]. The func-
tion

V(A, , Ai, A)=[(1—A', A' )(1—A'~ A' )

X(1—A,'"A,'")]-'

= t+ A'"A'"+ A'"A'"
1 2

+A', A' (1+A)+ (9a)

is a generating function for the SU(2) Clebsch-Gordan
series in the following sense: The presence of the term
A', A2 A" indicates that the tensor product of two SU(2)
representations of the momenta I and m contains the rep-
resentation of momentum n. If we now multiply the gen-
erating functions Q(p, A, ) for P'" and Q(q, A2 } for Q' ' by
the generating function P(A, ', Az ', A) and retain only
the terms not containing A, and A2, we obtain the gen-

erating function for linearly independent polynomials in
the components of two irreducible tensors of momenta 1

and 2, which transform according to components of irre-
ducible representations of SO(3}. Explicitly (we replace
A;, A by A;, A to avoid noninteger exponents,

Q(p, q, A )=P„~ [Q(p, A, ,L =1)V(A, , A2 ,iA)~Q(
q,

A~2L =2)],

(1—q')(1-q')(1 —p')

nl, . . . , n6 —o
2n —n —n =0

1 2 4—n —n +4n +4n =0
3 4 5 6

2 n3 1
n5+2n6

p
nl, . . . , n6 —0

2n
1 2 4

6—n3 —n4+4n5 +4n6 =0

n2+n3 nl n5+2n6+3
A p q (9b)

where P„A A I ] means the part of the expansion in brackets that is independent of A, and A2. For invariants com-
1 2

posed of P"' and Q„' I we get

1+p q

( 1 —
q )( 1 —

q )( 1 —p )( 1 —p q )( 1 —p q )
(9c)

The generating function (9c) for invariants of both P'" and Q' ' has a form similar to the one for Q' ' [Eq. (5a)].
Here, however, the interpretation of the terms is different. It may be interpreted in terms of six basic invariants I'&,
(a,p) =(0,2), (0,3), (2,0), (2, 1), (3,3), of degree a and p in the components of P" ' and Q' ', respectively. The invariants
in the spherical and Cartesian form are identified as
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I(0) g2 — TrQ 2 I(0)—1

t

1/2
2v'S

g 3w —
(

12
) (r2TrQ

7 35

I(0) [p(1)p(l)](0) p2 p p1

3

I(o) [[p(1)(ep(1)](2) I(2) ](o) [p(2)@I(2) ](0)

]/2

=
~

P I() 1 ~ cosp) = 2&S
P Qw,

5

(10a)

—P Q pp{3= IS[(P n)' —
—,'P P ]+b[(P m)' —

—,
'P P, ]I,

I(0) [[p(1) p(1)](2) I(2) ](0) [p(2) I(2) ](0)
t

=/P' '/ I' )/cos(I) = p2g22

7

=( —,", )' [P Q )3P)3
—

—,
' Tr(Q2)P P ]

=( —")'"[-,'(S' —2Sb)(p n)'+-'(b' —2sb)(P m)'

—9[(S b) 2S—b]P—P

and

I(0) —[[p(1)(ep())(Ip(1)](3) I(3) ](0) [p{3)@I(3) ](0)
t

= Ip' '~ ~I()'gcosp3= ' ' p3Q3w[6&15(l—w )~'
t 7 3

2&3 P Ppp E „„Q„pg

[Sb(S —b)(P n)(P m)(P [nXm])],2&3
7

(10b)

rvhere

~p(2)~2 p4 ~p{3)~2 6 21 p6
35

(10c)

and where we have introduced angles p, a=1,2, 3, between the "vectors" p'" and I(„~.) of cosines w = cos(y ). Any
other invariant formed by coupling of P"' and Q' ' can be expressed as a polynomial of invariants (10a) and (10b) in
which the invariant (10b) appears linearly, at most. The powers (I303)",with n & 1, are polynomials of (10a). In particu-
lar, one finds

(I33) =— 25&3&&
14 02 20 22 +

49 02( I21 I22

5&3 , , 5&3&S&7
42

(10d)

where I; stands for I'; '. For PWO and QWO relation
(10d) is reduced to one between the cosines w, w
(a=1,2, 3)

5+30ww, wz+ 30w iw 2 5w 20ww
&

15w

—10w2 —15w2 —9(1—w )w3=0. (10e)

Equations (10d) and (10e) demonstrate that the variables
w, w are not independent.

Further nonpolynomial relations between w, w&, wz,
and w3 are expected because the tensor field P' ' in I2&

and I22, Eqs. (10), is a product of P"' with itself and thus
not the most general tensor transforming according to
L =2.

The exact range of values for w, w„w2, and w3 has
been calculated in the parametrization (lc) for Q & and
with P decomposition of P in a right-handed Cartesian
coordinate system ( m, n Xm, n ) parallel to the eigenvec-
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tor tripod of Q &. We obtain

(rj —2)(ri+ 1)(2'—1)
2(g —ri+ 1)

3s, (1—g —sI )+2g —1
Wi =

2(rl —g+ 1)'

3s, [1 ri —
+ sI(2rj 1)]—+2rI 2'—1—

(1 lc)
2(rl —rI+ 1)

405(ri —1)rI (s/ —1)sI(s, —1)s,
(1—w )w3= (1 ld)

4(ri —ri+ 1)

where rI=S/b ( —~ & r) &+ 00 ), s, =[sin(6)],
sf [sin( 4 )],6 is the angle between n and P, and 4 is
the angle between m and the projection of P onto the
(m, n Xm) plane.

Analyzing Eqs. (11), we can state that w&, wz, and w

belong to a three-dimensional volume 0, embedded in a
cube (w, , wz, w) of edge length 2. A cross section of 0
for constant w, Fig. 2, is a triangle (shaded in Fig. 2)
whose sides fulfil the equation

(1 lb)

Wp=

wz= Aw&+(I —A )/2, (12a)

with three different values of A, which are the roots of
the equation

2w f —1 & wz &
—,'(w, + 1) . (12c)

The parabola D'CD, Figs. 2 and 3, is given by projecting
the edges

and

[w, w»wzI = I4w, —3w»w»2w& —1] (12d)

3Ni Wi Ni+1
N, N], Np =,l8), (12e)

onto the (w„wz ) plane (remember that in all these cases
w3 is zero). For nonzero w3, i.e., for a position
(w, w&, wz) in the interior of 0, the value of w3 is found

by Eq. (10e).
The relations (10) induce inequalities between the in-

variants in Cartesian form which we list here for com-
pleteness:

condition w3(BQ) =0. The transformation
(w, w~ )~( —w, —w, ) leaves Eq. (10e) and hence also 0
unchanged and expresses a symmetry between oblate and
prolate states.

The projection of 0 onto the (w„wz) plane, Fig. 3, is
an area enclosed by two parabolas,

w = A (3—A )/2, i A
i

& 2 . (12b)

In the limiting case of w = 1( —1) the triangle degenerates
to an interval wz=w, ( —w, ) where —0.5 & w, & 1( —1
&

w& &0.5). All points on the surface M of 0 satisfy the

6(TrQ ) (TrQ )

3(P Q &P&) &2(P P ) TrQ

9(P Q~&P&
—

—,
' TrQ P P ) &(P P )~(TrQ~)z,

(13)

Wp

w = 1 w = 0.75 w =0.5 30(P~PpP e „„Q„pO„)
& (P P ) [(TrQ )

—6(TrQ ) ] .

0 w

w= 025 w=0 w = -0.25

The inequalities (13) are useful for the stability analysis
of any expansion in terms of P and Q.

Wp

w = -0.5 w = -0.75 w = -1

-1
-1

Wi

FIG. 2. Allowed variation of the independent degrees of free-
dom w& and w& for fixed w. The accessible states belong to the
triangle inscribed into the area between two parabolas, Eqs.
(12).

FIG. 3. Accessible states {w, w l, wz ) projected onto the
(wl, w& ) plane. The identification of various points and arcs is
given in Table I. The continuous, bold line represents prolate
states.
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IV. APPLICATIONS

We now apply the results of Sec. III to identify all po-
lar states that folio~ from the minimization of an arbi-
trary invariant free-energy polynomial in the components
of Q' ' and P'". It is shown how the broken symmetry
states are selected by properties of the integrity basis. We
also develop a general theory of flexoelectricity and dis-
cuss the role played by integrity-basis elements in the for-
mation of chiral biaxial phases, in particular of Sm-C'
phase.

The analysis of Secs. IV A and IV 8 is restricted to the
case where only bulk invariants of P and Q are con-
sidered. Some aspects of the theory which includes elas-
tic deformations of the order parameters are given in
Secs. IV C and IV D (see also Ref. 20).

A. Local polar structures of chiral biaxial liquid crystals:
interpretation of integrity-basis invariants

We start our analysis by locating all different prolate
nematic (w ~0) and ferroelectric states in the admitted
range (Figs. 2 and 3). Corresponding statements are ob-
tained for oblate states by applying the symmetry opera-
tion (w, w~ )~( —w, —w, ).

The prolate nematic, ferroelectric states are divided
into two groups according to the equilibrium value of the
invariant I33 As upon the application of the inversion
operation, this invariant changes sign; the states with P
and —P have different free energy. Therefore, we denote
equilibrium states with I33%0 as chiral biaxial piezoelec-
tric. The cosine m3 is a measure of biaxial piezopolariza-
tlon.

E. Ferroelectric states with Iqq =0

All states (i.e., values of Q and P or Q, P, w ) with

I33 0 belong to the surface BQ of Q. We can distinguish
three groups (see Table I).

(i) A uniaxial, polar nematic state (FU&), corresponding
to points ID,F'I of Fig. 3. The polarization is parallel to
the local director.

(ii) A biaxial nematic state (F~l) with polarization
parallel to one of the main tensor directions. All states
with this property are located on arcs DE and CE' of
parabola D'CD, Fig. 3, with exclusion of points ID,F'I.

(iii) A biaxial, polar nematic state (F~ ) with polariza-
tion in a plane spanned by two eigenvectors of Q &.
These states cover the whole part of the surface BQ for

Identiftcation of polar states generated by the integrity basis, Eqs. (10). The arrowless lines represent nondegenerate
main directions of the tensor g. The arrows represent the orientation of the polarization vector P with respect to the main directions
of Q. Note that prolate states correspond to the case of w )0. Corresponding oblate states are obtained from prolate ones by apply-
ing the transformation which changes (w, w& ) onto ( —w, —

w& ).

Phase

Fvl

Values of angle variables

w =w, =+1,
w2=1, w3=0
w=+1, w3=0
Wl =+W2=+

2

—1

Localization of state
&n Fig. 3

Points ID, D'I

Points LF,F')

Graphical representation of state

Fv2

w —1, wl =w2,
w3=0&

2 &w& & 1

w — 1, wl= w2,
w3=0, —1& wl & —,

Interval (F',D)

Interval (FD')
Degenerate Fzg phase

(w, w&, wp) =(4w l-
3wl, wl, 2w, —1),

1 &wl &w, w3=0

Parabola (D'CD) with
exclusion of points ID, D', F,F'J

w2 = Aw, +(1—A 2)/2,
w = A(3 —A2)/2,
I &I &&, w3=0, where
(wi, w2) do not belong to
parabola (D', CD)

Interior of area restricted
by parabolas (D' AD)
and (D'CD)

Interior of volume 0; w3
is determined from Eq. (10e)

Interior of area restricted
by parabolas (D' AD)
and (D'CD)
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which w ~ 0 except the points of parabola D'CD. For the
open interval (F'D), the Fzg state degenerates to a uniax-

ial state, FU2, with polarization vector on a cone centered
around the director. In this case only the component of
P parallel to the director is contributing to a macroscopic
polarization.

2. Chiral piezoelectric biaxial states with I33%0

These states carry angle variable in the interior 0& BQ
of the volume 0, where the invariant I33 is nonzero, and
yield what we call the F,h phase. The polarization in the
F,h phase cannot be parallel to a plane spanned by the
eigenvectors of Q &, and thus this phase must necessarily
be biaxial [otherwise, as follows from Eq. (10b), the in-
variant I33 is zero].

For a fixed value of w, the piezopolarization of the F,h

state increases from the surface BQ towards the point
w =w

&

=w2 =0 (point 8 in Fig. 3). Maximal piezopolari-
zation (w3 ),„=—,

' is approached for w, = w2 =0 and

~
w %1 (point 8 in Fig. 3), where the polarization is paral-

lel to one of the directions +I+n Xm+n. States of iden-
tical piezopolarization form a closed loop around the
direction of maximal piezopolarization. As the free ener-

gy for the F,h state is not inversion invariant, it must be
supplemented by gradient terms. Consequently, Q and P
ought to be position dependent. This is the reason why
we denote the states discussed here as "local."

The invariant I33 which is interpreted as "chiral
strain, "may be caused by biaxial molecules or by induced
biaxialities and by chiral interactions. It is expected to be
relevant for "truly" biaxial chiral mesogenic molecules.

B. Minimization of the bulk free energy: simple example

As demonstrated in Sec. IVA the analysis of the in-
tegrity basis leads to a qualitative understanding of the
polar states that may appear in biaxial liquid crystals.
Moreover, it applies to any SO(3) symmetric free energy
expanded in terms of Q & and an arbitrary polar field,
which, for example, could also be an electric (E) or mag-
netic (H) field or a gradient of the mass density (B~). In
the former case one arrives at the Landau theory of the
nematic-isotropic phase transition in the presence of an
external field while the latter case describes smectic-A
and smectic-C phases (see Sec. IV D). Always the objec-
tive is to minimize a free energy with respect to P and

Q &. The process of minimization considerably simplifies
if the variables P, Q, w, and w ( a = 1,2, 3 ) are used.

From Sec. III we know that an arbitrary free-energy
expansion analytical in the components P and Q &

is a
polynomial in the integrity-basis elements I & and linear
function in I33 Higher powers of I33 are eliminated by
relation (10d). The analysis must take regard of the re-
strictions (12). Now, parametrizing the invariants (10) in
terms of the set of variables

consider a nematic liquid crystal in an external, static
magnetic field H of components H . The presence of the
field leads to extra terms in the free-energy expansion (8),
in lowest order to [see Eqs. (1)]

m z ~ymax max a pQap (14)

with

h = ( v'5/6) ' Ay, „H H

Due to the absence of w2 in the expansion (15), the
minimum is approached on the parabola D'CD of Fig. 3,
so the problem reduces to finding minima of

F(w, w& )=F(4w
&

—3w&, w, ),
where ~w, ~

& 1. For h )0 and for small Q the fifth- and
sixth-order terms are irrelevant and the minimum corre-
sponds to w =w

~
=1 (uniaxial prolate phase, point D in

Fig. 3). With increasing value of Q the term quadratic in
w (weighted by e') is responsible for the approach of
another, deeper minimum for w & 1, corresponding to the
states located on the arc DE of the parabola D'CD. Since
w &1, these states are biaxial, prolate phases with the
field parallel to the director (see Table I) and cover all the
cases known for liquid crystals with positive diamagnetic
susceptibility.

For negative by, „(h &0) and for small Q the
minimum is taken by the states represented by the point
D' in Fig. 3 (w, = —1) which is an oblate, field-induced
uniaxial nematic phase. With decreasing temperature
(lowering a), another minimum appears covering arc
DF'. The resulting structure is an oblate or prolate biaxi-
al phase.

Addition of higher-order terms in w, to the free-energy
expansion (15) does not change the results. The minima
still are localized on the parabola (D'CD). Thus, we can
conclude that the coupling term, Eq. (14) (or, equivalent-
ly, I2, ), is responsible for structures in which polarization
(or any other vector property) is parallel to one of the
tensor main axes. A similar analysis with the I22 invari-
ant shows that the preferred structure is the one de-
scribed as F~ . The presence of the I33 invariant gen-
erates a phase with the F,„structure at low temperatures.

C. Generalized theory of flexopolarization
in biaxial liquid crystals

where b,y,„can be both positive and negative. Assum-

ing that P= —1 and y=l in (8), which is equivalent to
fixing the scale for the free energy and for Q, the com-
plete free energy is

F=F(w, w, )

=aQ —Q w+Q +5Q w+EQ +e'Q w —hQw, ,

(15)

r=(Q O, P 0, —1&w &1,—1&w 1, a=1,2, 3

we can minimize the free energy with respect to I only
under constraints (10e) and (12). As an example let us

In this section and in Sec. IV D some implications of a
spatial dependence of Q and its consequences for form of
the polarization field are discussed. We restrict ourselves
to flexopolarization induced by a curvature of the molec-
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ular orientation pattern and again apply the concept of
integrity bases to construct systematically a general flexo-
polarization part of the free energy for biaxial systems.

As shown by Meyer, flexopolarization originates from
the coupling between splay or bend deformations and the
shape of the molecules. Alternatively, a polarization re-
quires a preferred orientation of the asymmetric mole-
cules, which induces splay or bend curvature. Another
possibility is that the polarization couples to the gradient
of the scalar order parameter, S ', as happens at the
solid-liquid interface or in the vicinity of defects.

Both cases can be generalized to biaxial liquid crystals
by assuming that the deformation-induced polarization
depends on Q~~ and its gradient 8 Q)3r at each point.
Since the e8'ect is linear in the deformations, only terms
linear in 8 Q& are relevant. The corresponding expan-
sion of the free energy must include the class of linearly
independent SO(3)-symmetric invariants built up from
the tensors

pq Q. . . Q(()q) p(1) Q(2)
(M)

(3) ()Q( L )

(0)

where

(16a)

()Q(L) [&())Q(2)](L) (16b)

Now, using the properties of the integrity basis (6) we
can compose the tensors

Q(2)
i = 1

(M)

by means of contractions with the Kronecker symbols
and the Levi-Civita tensors.

The tensors PQQ Q(BQ ) are written in spherical
tensor notation as

PQ Q ' ' Q(()Q) —=~gQ. Q, ' ' ' Q, ( Q„., „) from an infinite set of tensors of the form

( I()2 ) ( 1()3 )

n
&

I(2)
0, 1

t =1

(2n, )
n2

IQ 2j=1

(2n2)
' (2n) +2n2)

(16c)

(I()2) (I()2) I() 3(8)

n )

I(2)
0, 1

t =1

(2n& )
*

n (2n2) ', (2n& +2n2) (2n& +2n2+3)
n2

e e I,",'
j=1

(16d)

(2J) ~ (3J)
~ . . g A( J)g, A(J)g A( J)g A(J)

where m, n, n 1,n 2 run over the nonnegative integers and where
( nJ)

(nJ)

By substituting the results (16c) and (16d) into the rela-
tion (16a), one finds the following equivalent form of the
invariants (16a):

[p(l) [[Q(2)q(2)](4)gq(3)](1)](0)

For n =3, H9 H]Q H]1,

(Ip2) (Ip3) II cx= 1 2 3 (16e)

[p(1)(3)[[Q(2) [Q(2)Q(2)](2)](3) QQ(L)](1)](0) L 2 3

[p(1) [[Q(2) [Q(2) Q(2) ](2)](4) gq(3) ](1)](0)

where H are so-called irreducible invariants, i.e., they
cannot be expressed as polynomials of invariants of lower
order. %e can identify the following 12 of them:

For n =O, H1

[p(1)()q(1)](0)

For n = 1, H2, H3 H4,

[p(1) [Q(2) ()Q(L)] ()])()0L, —
1 p 3

For n =2, H5, . . . , II8,

[p(1)II [[Q(2)(IQ(2)](2)@()Q(L)](1)](0) L —
1 p 3

For n =4, H, 2,

[p(1) [[Q(2)Q(2)](2) [Q(2) Q(2)](2)](4)()Q(3)](1)](0)

In summary, the general flexopolarization free-energy
density of chiral biaxial liquid crystals is composed of 12
basic deformation modes expressed by the terms H
n = 1, . . . , 12. Those can be multiplied by arbitrary poly-
nomials in the invariants IQ2 and IQ3 which define
temperature-dependent flexocoefficients.

Special cases of the flexoelectric free-energy density are
obtained from the general expansion by imposing addi-
tional symmetry restrictions on the field Q. We follow
the scheme proposed in Ref. 16 and reduce the number of
independent flexopolarization modes H for "soft biaxial
nematic phases" by requiring
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&5I02=TrQ =const,

for biaxial nematic phases with

( —,", )' I03=TrQ =const

10&31 II, + 10&3&71 II —10&5&71 H

+20I H —5&3&71 H +5&5&71 II

—101„H,+21&3&SH„=O . (18f)

and for hard biaxial phases by requiring both.
Meyer's original free energy for uniaxial nematic

liquid crystals also is deduced from the general case by
taking regard of the uniaxiality condition (ld)

10(I()2) =7&5(I()3) (17a)

3

J= 1

With the conditions for the hard biaxial phase added, Eq.
(17a) further decreases the number of irreducible invari-
ants. The particular representation of Meyer in terms of
the director n is obtained if Q is expressed as in Eq. (lc)
with b =0.

From the symmetry requirements mentioned above, re-
lations between the derivatives of Q are deduced by form-
ing the derivatives of the position-independent integrity-
basis elements I02 and I03 and equating them to zero

A situation qualitatively different from above is ob-
tained if we require the phase to be uniaxial. Now, due to
the restriction (17a), which is equivalent to the conditions
(7c) and (7d), the number of analytically independent ele-
ments of the integrity basis for the field Q is reduced to I2
and I2 ' providing very simple relations between the irre-
ducible invariants H,

H 3=AH, a=2, 34

H9 II 10=0

H„=ZH„=W'll, ,

(19a)

where A=13/12. After that enormous reduction, we are
left with five H invariants:

H„. . . , H4, H8 . (19b)

Still, not all of them are independent. An additional rela-
tion comes from the fact that the most general uniaxial
field Q' ' is representable as

(17b) Q(2) —[y(1)g y(1) ](2) (20a)

p(1)@ Q(2)
i=1

=0,

where

where A =2, 3. The vector equations (17b) are equivalent
to the set of scalar equations

(M) ' (1) (0)
n

~ "10~

where V"' is an arbitrary vector field. Thus H invariants
of a general, uniaxial phase may be decomposed in the in-
tegrity basis of the invariants of a vector field, which
yields one extra relation

84&5V II, —210V II +70&3v'5V II

Q(2)
i=1

(M)
where

y —[y(1)@y(1)](0)

—20&3&7v„H,+ 1os rl, =o, (20b)

is given by Eqs. (16c) and (16d). Equations (17) lead to
three independent relations between H invariants for
each allowed value of A. They read as follows:

(i) For TrQ =const

and

2&S
02

5 02 '

V'3H, +&SH, +&7H, =O, (18a)

(ii) For TrQ =const

&3H, +&SH,+&7H, =O, (18d)

7&3&51 H, +5&3&71 H —5&5&71 H +10I H

+7&2&5&7H —7&5&7H, +21&3&5H„=O,

(18e)

2&3&5I H, +&3&5&7H —5&7H +2&5H

+6&3&5H()=0, (18b)

7&3&51 H, +5&3&71 II —5&5&71 H + 10I II

—7&2&5&7H +7&5&7H, +21&3&5H„=O .

(18c)

The relation (20b) eliminates the Hs invariant. Thus the
complete description of a general, uniaxial phase requires
only four H invariants.

Meyer's free energy is reproduced by assuming addi-
tionally that

[V"'(8 V "]' '=const,

which yields two more relations between the four in-
dependent invariants H„. . . , H4, obtained by combining
Eqs. (18), (19a), and (20b). Finally, we are left with only
two independent invariants H1 and H2 for a hard uniaxial
phase. The whole reduction scheme is displayed in Fig.
4, where, as a rule, the invariants with lowest possible in-
dices are retained.

Though the spherical representation readily helps to
solve the problem of number and form of flexoelectric in-
variants, in many calculations it is more convenient to
use the Cartesian representation, as the calculations of
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General Biaxial Phase
rI, , II

For a weak one-dimensional modulation as observed in
smectic- A, -C, and -C*, this mass density is expanded as

p(r)=po+2r exp[i (q r+P)]+c.c. , (22a)

Soft Biaxial Phase
Tr Q = const

II„.. . , rr„ II„.. . , rr„II„rr„,rr„

General Uniaxial Phase
(Trcl')' = 6(Trg')'

III, . . . , II4

where r is an amplitude, f an arbitrary phase, and q the
wave vector. A measure of the modulation is given by
the derivative

Biaxial Phase of TrQ = const
rr, , rr, rr, , rt o

dg(r) =2i~q„exp[i(q r+P)]+c c.
Since the free-energy expansion must be independent on

g, the lowest-order energy terms are proportional to a
uniaxial tensor,

Hard Biaxial Phase
II II II rI rI

T„„=[8~(r)][8~(r)]'~ Hq„q, + (22b)

Hard Uniaxial Phase
II rI

Clebsch-Gordan coefficients are avoided and the free en-

ergy is written in a most compact form. In the present
case the Cartesian form follows immediately from the re-
lation L =m between the momentum L of a spherical
product and the number of independent Cartesian indices
m of the Cartesian product. For example, this correspon-
dence yields

II, =P.a~Q.,
H~=PaQapdpQpp ~

(21a)

(21b)

or

11i2 =—P.f Q.r Q,s][Q„.Q,p]~„Qsp . (21c)

FIG. 4. The independent flexopolarization modes in various
nematic phases as derived from the general biaxial case by spe-
cial restrictions. Indicated are the independent irreducible H

invariants involved in the construction of the elastic free-energy
density for each phase. As a rule, only terms with the lowest

possible indices are retained.

where in case of modulation along the z axis
T„„=T„5„,5„, (for comparison see Refs. 22 and 23).

Note that for the Seld T only two algebraically in-
dependent cross-coupling invariants exists with Q, name-

ly, Tr(TQ) and Tr(TQQ). As seen by inspection of
Table I and Eqs. (10), the first invariant is responsible for
smectic-A ordering, while the second one may give rise
to srnectic-C ordering. These terms, however, do not de-
scribe the polar structure of the smectic-C' (Sm-C')
phase, for which we need at least one piezoelectric chiral
coupling term between T &, Q„„and P . The lowest-

order coupling term of piezoelectric properties has the
form

~apvTapQppPv

and its minimum selects the symmetry of the Srn-C'
phase. For purely uniaxia1 deformations a similar term
has been proposed in Ref. 23. Since the polarization in
the Sm-C* phase is perpendicular to the local director,
the biaxial piezoelectric coupling invariant I33 must also
vanish (see Table I).

An SO(3)-symmetric Landau-Ginzburg free energy of
the Srn-C* phase and of all higher-temperature phases is
now formulated in a standard way as an expansion in Q,
P, BQ, and T. In particular, the average quadratic part
of the free-energy density is given by

Fi= V ' Jdr[A TrQ +L, (B Q~~)(B Qpz)

D. Chiral phases with simple helical structure

In this section the structural properties of simple chiral
phases are investigated with the method of integrity bases
because, as in the case of the Sm-C* phases, chiral phases
may be polar. Due to long-range deformations they must
also be, at least weakly, biaxial, as has been demonstrated
for cholesteric liquid crystals and blue phases by Grebel
et al. ' and will be shown to hold also for the smectic-C'
phase.

To determine possible equilibrium structures of chiral
biaxial liquid crystals, we must minimize a free energy,
which is the volume integral of the bulk free-energy den-
sity, composed of the integrity-basis elements (10), and of
the elastic free-energy density involving gradients of P
and Q. In smectic liquid crystals, additionally, a density
modulation must be taken into account, which is intro-
duced by derivatives of the mass-density function, p(r).

+L2(~aQay)(~pQpr ) 2de prQ s~pQys

—a, P BpQ ii+a2P ], (24)

where, as usual 3 is proportional to a reduced ternpera-
ture [A =a(T —T*), a )0] and a2, L„Lz, d, and a4
are regarded as temperature-independent coefficients.
Since dipolar interactions in liquid crystals have antifer-
roelectric character, the parameter a2 is positive. The
gradient terms weighted by the elastic constants L &,L2
describe the elastic free energy. The term proportional
to d disappears in the absence of chiral interactions. This
term is, for example, responsible for the helicoidal struc-
ture of cholesteric liquid crystals and blue phases. For
stability of the helix of the smectic-C phase we addition-
ally need at least one piezoelectric term of the form (23).
The term weighted by a, is the lowest-order flexopolari-
zation invariant.
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Five linearly independent invariants containing T or
d P& and c),Q&r (Ref. 20) are disregarded since they ei-
ther do not influence the spatial dependence of Q or are
negligible in the limit of weak antiferroelectric interac-
tions. Note also that a possible coupling term Q &8+& is

equivalent (up to a full divergence) to the flexopolariza-
tion coupling term already included in the expansion (24).

In the free-energy expansion, gradient and bulk invari-
ants usually favor different structures and make the
identification of equilibrium structures extremely
difficult. Therefore we restrict our analysis to phases
with simple helicoidal structure.

We first introduce a parametrization of the order pa-
rameters that agrees with the symmetries of the observed
phases by expanding Q and P into plane waves of helicity

1

)1/2 Q(k) exp(ik r), (25a)
kc~k

where

2

Q(k)= g Q '-'(k)e '"
m = 2

(25b)

and where

Q."L(k)= IQ."L(k)
I exp(ig. k) . (25c)

Here k is taken out of a reciprocal lattice of a space
group G, where

'k= tk':k'=Sk, ISlt I CGJ

2

P(k) = g P 'Lk (k)e 'ik

m = 2

(26b)

and

P('Lk(k)= IP('Ik(k)l exp(ip k)=P (k) exp(ip k) .

(26c)

Here e '~& are the spherical basis vectors

e('&=k=(0, 0, l),
l1)e(+ l

k
= —( 1,+i, o) .

2

For chiral nematic liquid crystals (without external field)
essentially two types of wave vector sets have been used
in the past:

(a) A single wave vector (or set of parallel vectors).
The corresponding order-parameter field is the biaxial
spiral. This field describes exactly the cholesteric ' phase
and the Sm-C* phase.

(b) Wave vectors out of a cubic reciprocal lattice.
These enter the description of the cubic blue phases. '

As usual, the dominant contributions to the order-
parameter expansion in various phases are found by
studying the excitation spectrum of the quadratic part of
the free energy, Eq. (24), which for the expansions (25)
and (26) it is straightforward to evaluate

Fq= g Fq(m, o')= g [Fgg(m, o )Q (cr)
a, m

is the star of k, X+„ is the number of prongs of the star

IQ"Lk(k)I=Q (lkl)=Q (&) ~0
where

+2F&p(m, cr )Q (o )P (o )

+Fpp(m, cr)Pm(cr)], (27a)

—1

eok= e- 0[2j= '
6

0 0
—1 0
0 2

are variational parameters in the expansion, and, finally,

' 1/2
4—m

Fgp(m, k) = a, k&—cr (27b)

F&&(m, o )= A md&cr+—L&+ (4 m) A—: o,L2

0 0
e -=— 0 0t:2l

+1,k
1 +i

+i
m —m 2+2

Fpp(m, k) =a~
2

1 +i 0
et'~-=-' +i —1 0+2k 2

0 0 0

P(r)= g &&& g P(k) exp(ik r)
1

k k kE k
L

where

(26a)

are spin L =2 tensors represented in an orthogonal,
right-handed local coordinate system with k as quantiza-
tion axis. The selection of wave vectors k and phases

k fixes the symmetry of the phase.
For the polarization field we write similarly

and where cr is the sum of squares of Miller indices.
For thermodynamic stability of the isotropic phase

(Q=O, P=o) at high temperatures we must require, in
addition to a2 &0, that

Q
2

&0.L1 &0 and L1+ 3 L
Q2

(27c)

The excitation spectrum that follows from F2 is given by
the eigenvalues of the matrix F,

Fan Fa~F=
Fgp F~~

The various branches of the spectrum are labeled by the
quantum numbers m and o.. Each branch of the spec-
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trum has its own minimum as a function of k. For posi-
tive chirality (d + 0) these minima are taken at k vectors Q c(r)=Qoeo z+ —Q, (e e, z+c.c. )[zg 1 l(lkz+g()

[k —=k(o, m), m = —2, . . . , 2]
2 7

(28a)

fulfilling the conditions

k(2, o }=kz= d[

L, &o '

k(l, cr)=k, =
a 1

2 L)+—,
' L~-

ap

(27d}

T2=T +
aL)

T] =T*+ d2
To T ~

(27e)

4a L, +—,
' Lq-

Qp

k(m, o. )=k~ =0 for m ~0 .

The corresponding maximal temperatures T ( m, a )—:T
(m =0, 1,2} at which the successive branches Fz(m, cr),
Eq. (27a), with fixed I and d (0 ~0) become negative
(unstable) are

where c.c. stands for the coinplex conjugation, p&, pz (I},

for phases, and I, m, n for integers. One out of the three
phases can be taken arbitrary which rejects a freedom of
choosing the coordinate origin. Thus, two out of three
phases g„Pz, P„ the amplitudes Qo, Q„Qz Po Pi and
the integers I, m, n must be determined by the minimiza-
tion of the full free energy.

The classical cholesteric phase is described by values

go%0, QzWO, m =1, and Q, =Po=P, =O, while the
Sm-C* phase corresponds to values QoWO, Q, XO,
QzWO, P, WO, and Po=0. Allowed values of l, m, n and
of the phases P„gz,P, for Sm-C' will be determined
from a minimization of the piezoelectric coupling term.
Since polarization in Sm-C* phase is perpendicular to the
director, this implies that, additionally, the I33 invariant
must vanish.

The parametrization, Eq. (28), yields a biaxial tensor
order parameter because TrQ and Trg do not fulfill the
uniaxiality condition (ld):

The first instability towards an ordered state occurs at
the temperature equal to the maximal one, T . For non-
chiral systems (nematic, racemic, smectic-A, smectic-C,
etc. ), where d =0, the instability is towards a phase with
A: =0. For d )0 the system is chiral and, due to the re-
striction (27c), the maximal temperature T is always
equal to Tz. Thus, blue phases and cholesteric phase,
both described by m =2 modes, ' are stabilized at higher
temperatures than the Sm-C* phase.

For nonzero quadratic chiral terms, disregarded in the
expansion (24), the temperature T( may become greater
than Tz. In this case the ground-state tensor field con-
tains m =1 helix modes predominantly and, due to the
associated tilt of the director, represents the Sm-C*
phase.

The ratio ki/kz is, in principle, an arbitrary number.
Therefore, incommensurate polar structures are also pos-
sible. Finally, if the helix mode m =0 is present, then its
amplitudes are strongest for k =0. The same statements
are valid for d (0 if the sign of m is inverted.

With the results from the minimization of the quadra-
tic part of the free energy, it is now straightforward to
construct an approximate form of the alignment tensor Q
and the polarization vector P for a simple helicoidal
structures. Since our intention is to discuss the features
of phase diagrams merely by the properties of the integri-
ty basis, it is sufficient to consider a pair of vectors
(k, —k) for each helicity m. Without loss of generality
we can also restrict the values of m to m ~0. For
cholesteric liquid crystals and Sm-C* structures, where
the modulation of Q is weak, both approximations intro-
duced above are well justified. ' Hence, the fields Q and
P take the form

Trg 2 —g 2 +g 2 +g 2 (29a)

and

Trg = {9gigz cos[(2m —l)kz —gz+2iti]

+ &3(6gogz —3gogi 2Qo }I .

P, Q, T„si [(nn—m)z —1[,+P, ]
e „,T fig„pP, , v2

and

(30a)

The biaxiality parameter g [Eq. (7g)] is position indepen-
dent for Qi =0 or / =2m and a periodic function other-
wise. The periodic part of g is due to Qi in the expansion
(28a). Only for a particular choice of ratios Q, /Qo and

Qz /Qo —for example, Q, /Qo =0 and
Qz/go=+&3 —does the parameter disappear. But this
choice must not be met, because the values of these ratios
are obtained by minimizing the full free energy (see, e.g. ,

Ref. 21 for a discussion of biaxiality in the cholesteric
phase).

In agreement with the discussion above the invariants,
Eqs. (23) and (10b), determine the final form of the order
parameters in the Sm-C* phase. This is achieved by
minimization of the piezoelectric invariant (23) and by
the condition that the I33 invariant vanishes. By direct
calculations of the invariants (23) and (10b) for the expan-
sions (28), one arrives at
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'-I rp-p. p-g~. g"Q.-

(P3iQi {2Q22 sin[(3n +m —21)z —2/2+pi+3/i] —2V3QOQ2 sin[(3n —m —1)z —$2 —t/r&+3/&]

—Q, sin[3(n —m)z —3g&+3/&]I+2&3pop, gogi sin[2(n —m)z —2f, +2/, ]

+2POP iQ2(Q i +6Qo —2Q2 )sin[(2n —l)z —ir'jq+ 2/i]

+2v'3p, (4p,' —P', )Q,Q, Q, sin[(n +m —l)z —g, +g, +p, ]

+Pigi(4P20 P, )—(Qi —2Q2)sin[(n m—)z —pi+pi]

+2PO(2PO —3P i )Q ig2sin[(2m —l)z —$2+2/i]),
which gives for the Sm-C* structure,

n =m =1, i=2m,

P, —pi= —or, gz
—2$, =0 or m, and P0=0 .3~

(30b)

(30c)

Thus, the Sm-C phase is a uniform and biaxial spiral with two commensurate wave vectors k& and k2, such that

k&/kz =1/m =2. The last two features are not present in the standard director approach. The cubic invariant (10b) is

also minimized by the parameters (30c). The other two elements of the integrity basis,

P Q &P&= {3P,Q2cos[(2n —1)z —pi+2/~]+6popiQ, cos[(n —m)z —g, +p, ]+v 3pigo —2&3POQO[

and

P Q &Q&~p~
=

—,', {3Pig,cos[2(n —m)z —2g, +2/i]+12popigigz cos[(n +m —l)z g2+g, +—P&]

+6P ig&+ (3P
~
+6PO )Q, +(2P~ + 8PO )QO I+ P, Qo {P,Q2cos[(2n —l)z —$2+2/, ]

v'3

—Pog, cos[(n —m)z —P, +P,]j, (30e)

are minimized for a Srn-C spiral provided that the signs of the coefficients weighting these terms in the Landau expan-
sion are chosen correctly. Otherwise, a nonuniform spiral with position dependent g or incommensurate two- or three-
dimensional structures may appear more stable. The latter can be selected by I2& and I&2 invariants.

V. DISCUSSION

Many liquid crystalline phases are biaxial. These in-
clude the experimentally observed cholesteric phase, the
blue phases, the smectic-C and -C' phases, or the recent-
ly discovered thermotropic biaxial nematic liquid crys-
tals. Thus, a chemical synthesis of "truly" biaxial
molecular fluids with chiral and possibly also polar
centers does not seem to be remote. The symmetry of
many mesogens is consistent with the requirements for a
ferroelectric phase so that there is no fundamental reason
for ferroelectric fluid phases not to exist. From this point
of view it appears interesting to study systematically the
properties of polar biaxial systems.

The description of such systems in terms of the stan-
dard director field is not general enough, and at least the
traceless and symmetric quadrupole tensor order-
parameter field must be introduced. In case of structures
with polar order and density modulation (like smectic-C*
phases), a polarization field and gradients of local density
of mass have to be added. With so many fields one is
forced to study properties of these systems with an ap-

proach which, as far as possible, refers to the symmetry
of the order parameters.

Here we have made an attempt at such an analysis us-

ing the concept of integrity bases. The proposed phe-
nomenological free-energy expansion in terms of invari-
ants of the order parameters is now complete up to all
powers of the polarization field P and the alignment ten-
sor Q and up to the terms linear in derivatives of Q (flex-
opolarization). The number, the explicit form, and the
algebraic independence of the various invariants and
their physical meaning follow directly from the proper-
ties of the integrity basis. Another advantage offered by
the method of integrity bases is that of a very convenient
parametrization of the free energy in terms of indepen-
dent scalars, i.e., "lengths" of basic tensor order parame-
ters and "angles" between them [see, e.g., Eqs. (10)].

If, as for nematic liquid crystals, the generating func-
tion for invariants only contains denominator terms, the
"lengths" and the "angles" are independent variables and
the minimization is straightforward. Restrictions of the
range of values of the angles come from powers of
numerator integrity-basis elements [compare, e.g., Eq.
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(4a) with Eq. (9c)]. These may be taken into account
when completing the free-energy expansion by appropri-
ate Legendre multipliers. Thus, the problem of minimiz-
ing the Landau free energy simplifies considerably be-
cause usually the minimization with respect to an order
parameter of nontrivial intrinsic symmetry is difficult for
the spontaneously broken SO(3) symmetry and for other
continuous or discrete symmetries.

As an illustration we have discussed the properties of
polar, biaxial liquid crystals. The classification of the re-
suiting local, polar structures was directly inferred from
the integrity-basis elements (10). Moreover, some quali-
tative predictions about phase diagrams were possible
without numerical calculations: In polar biaxial systems
only five different local polar structures, listed in Table I,
can exist. They are linked with the cross-coupling invari-
ants (10) between the alignment tensor Q and the polar-
ization density P. In addition to the uniaxial and biaxial
ferroelectric nematic states, the theory predicts a biaxial
chiral ferroelectric nematic state, F,h, which is selected
by the I33 element, Eq. (10b), of the integrity basis, Eqs.
(10). The F,h state differs from others in that it cannot
exist for a uniaxial phase. From the form of the I33 in-
variant one may speculate that the following conditions
must be fulfille for the existence of a phase of local F,h

symmetry: (i) chiral molecules with a large dipole mo-
ment component, perpendicular to the long molecular
axis, and (ii) large molecular biaxiality, probably of the
same order as the one observed in thermotropic biaxial
nematics.

Apart from a bulk polarization, a system may exhibit
an induced polarization linked with local deformations of
the tensor field. This flexopolarization effect was predict-
ed by Meyer for uniaxial nematic phases. Our attempt
here was to extend the Meyer theory to the biaxial case.
The most general SO(3)-invariant fiexopolarization free-
energy density was constructed up to all powers in the
alignment tensor Q & and linear in the gradient Q~&r
and the polarization field P . The method provides all
algebraically independent flexopolarization modes for
nematic and cholesteric liquid crystals in the form of 12
fundamental invariants, Eqs. (18). These generalize the
concept of splay- and bend-induced flexopolarizations in-
troduced by Meyer.

To provide some insight into the meaning of various ir-
reducible invariants, some symmetry restrictions of the
field Q leading to a smaller number of the irreducible in-
variants were also discussed in detail. Following Ref. 16,
we discussed the case of "soft" biaxial nematics phases by
requiring TrQ =const, a biaxial system with
TrQ =const, a biaxial system with fixed moduli of the
order parameter ("hard biaxials") by requiring both, and
two uniaxial cases (see Fig. 4). Hard uniaxials require
only two irreducible invariants while "general uniaxials"
double this number. Both limiting cases agree with those
of Meyer (hard uniaxials) and Barbero et al. (general
uniaxials). In the case of hard biaxials we obtained six ir-
reducible invariants, i.e., two invariants more than found

by Pleiner et al. (Ref. 26, page 570). The most general
case requires 12 irreducible invariants. These can addi-
tionally be multiplied by an arbitrary polynomial in I02
and I03.

Finally, we discussed some structural properties of the
ferroelectric smectic-C* phase. Our intention was to
generalize the standard director picture using a formal-
ism of space group representations. A full description re-
quires, apart from the alignment tensor Q and polariza-
tion P, inclusion of the density modulation. It leads, in
the simplest approximation, to an additional tensor field
T of rank 3 describing a one-dimensional density wave.
The integrity basis for the invariants is found by applying
formula (9b) recursively. Cross-coupling elements of the
generalized integrity basis are responsible for polar, biaxi-
al, and spatially modulated structures. Some of these in-
variants, relevant for smectic-A and smectic-C phases,
have the same mathematical form as the I2, and I2z in-
variants, respectively. To describe the smectic-C' phase
one needs, apart from a flexoelectric coupling term, at
least one extra piezoelectric term which, in SO(3)-
symmetric form, is given by Eq. (23).

A director description of the Sm-C* phase is found in
Refs. 23. These models must be generalized to describe
properly cholesteric —smectic-C and isotropic —smectic-
C' phase transitions. Due to the presence of deforma-
tions the Sm-C' phase is at least weakly biaxial. In order
to account for these effects, a full tensor field, polar field,
and density wave are necessary. Then the smectic-C*
phase is described as a uniform polar biaxial spiral with
two characteristic harmonics (one for each independent
helicity mode) where the ratio of k vectors is 2 [see Eq.
(30c)]. In agreement with experiment, polarity in this
phase is restricted to the x-y plane provided that the
smectic modulation is parallel to the z axis of a Cartesian
coordinate system. This state is favored by the piezoelec-
tric coupling (23) and makes I33 vanish. It also minimizes
the cubic invariant I03 and the remaining invariants be-
longing to the integrity basis, provided that the signs of
the weighting coefficients are properly chosen. Otherwise
a nonuniform spiral or another state may appear more
stable.

Other intriguing possibilities suggested by the quadra-
tic part of the free energy are two- or three-dimensional
incommensurate polar structures. These could, in princi-
ple, be generated by the integrity-basis elements I2, or I22.
A full account of this problem will be presented else-
where. All algebraic calculations have been performed
using algebraic processors MACSYMA and REDUCE.
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