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We study the linear stability of an arbitrary number of spherical concentric shells undergoing a
radial implosion or explosion. The system consists of N incompressible fluids with small amplitude
perturbations at each of the N — 1 interfaces. We derive the evolution equation for the perturbation
7; at interface ; it is coupled to the two adjacent interfaces via 7,+,. We show that the N —1 evolu-
tion equations are symmetric under n = —n — 1, where n is the mode number of the spherical per-
turbation, provided that the first and last fluids have zero density (p,=py=0). In plane geometry
this translates to symmetry under k = —k. We obtain several analytic solutions for the N=2 and 3
cases that we consider in some detail. As an application we derive the shock timing that is required
to freeze out an amplitude. We also identify “critical modes” that are stable for any implosion or
explosion history. Several numerical examples are presented illustrating perturbation feedthrough
from one interface to another. Finally, we develop a model for the evolution of turbulent mix in
spherical geometry, and introduce a geometrical factor G relating the mixing width 4 in spherical
and planar geometries via A gpherical = Aplanar G- We find that G is a decreasing function of R /R, im-
plying that in our model A pperca €vOlves faster (slower) than 4., during an implosion (explosion).

L. INTRODUCTION AND NOTATION

The classical Rayleigh-Taylor instability! refers to the
evolution of perturbations at the interface between two
fluids undergoing a constant acceleration. The
Richtmyer-Meshkov instability? occurs when the inter-
face is subjected to a shock. Most of the theoretical,
computational, and experimental work has been in plane
geometry and two fluids only.> A few years ago we ex-
tended the Rayleigh-Taylor problem to an arbitrary num-
ber of fluids,* and similarly for the Richtmyer-Meshkov
problem.> The purpose of this paper is to carry out a
similar extension to multilayer fluids in spherical
geometry. We believe that a recent paper® claiming to
have done just such an extension is incorrect.

We mention two applications in which spherical
geometry may be important: one is the implosion of iner-
tial confinement fusion (ICF) capsules, in which we are
primarily interested. The second is stellar collapse when,
for example, a shock helps eject most of the material in a
supernova explosion. We expect that the Rayleigh-
Taylor and Richtmyer-Meshkov instabilities lead to mix-
ing in ICF capsules or stars as the interfaces between two
different materials are subjected to accelerations or
shocks. Due to the complexity and nonlinear nature of
turbulent mixing we will conclude this paper by present-
ing a model, in the form of an ansarz, to estimate the mix-
ing widths in spherical geometry. Otherwise the bulk of
this paper treats the linear regime much the way it was
done in plane geometry, i.e., we assume that perturba-
tions are small, that the fluids are incompressible, and we
neglect viscosity, surface tension, and heat conduction.
These are the usual classical assumptions which allow the
analysis to proceed from basic principles.

We now review briefly earlier work in spherical
geometry. The first application was apparently the stabil-
ity of a spherical cavity. Perturbations at the interface
between the cavity and the outer fluid are expanded in
spherical harmonics Y, ,,. The amplitude 7 of the nth
mode evolves according to’

d_Z”L_F B_ii_’l_ _1_&:0 1
% 3R dt (n )RT/ (1)

and the conditions for stability were given by Birkhoff.®
Binnie® considered the case where the central cavity is re-
placed by a fluid of density p,. His results were in error
and subsequently Plesset'? produced the correct evolution
equation for this case:

dzﬂ R dn R )
i +3— o —nA(n)—Rn——O , (2)
where

nin—1)p,—(n+1)n+2)
nd(n)= P2 iy (3)
np,+(n+1)p,

p, being the density of the outer fluid. He also pointed
out that an incompressible fluid of finite density p, im-
plies a source or a sink at the origin. As expected, Eq. (2)
reduces to Eq. (1) for the case of a spherical cavity
(p;=0). We will refer to Eq. (2) as “Plesset’s equation.”
Its stability conditions were also given by Birkhoff:®

nd(mE <0, %[nA(n)RSR'ko. @)

Considering the same problem Gupta and Lawande!!
assumed a constant radial acceleration and perturbations
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growing exponentially in time, as was done by Binnie.
The results of Gupta and Lawande and of Binnie, which
are identical, do not reduce to the spherical cavity case
when p;=0. We have already presented our comments
and comparisons on this two-fluid problem.!?

In treating the general problem of N spherical fluid lay-
ers Gupta and Lawande® continued to assume a constant
acceleration and exponentially growing perturbations.
For N =2 one may assume a constant g and in fact we
consider it as a special case later in this paper (but we find
that the perturbations do not grow exponentially in time).
For N >2, however, one cannot assume a constant ac-
celeration at all interfaces. Conservation of mass or
volume (the two are equivalent because we are consider-
ing incompressible fluids) allows one to specify the
motion of only one interface—say, R;(¢). The motion of
all the other interfaces R (z) is then fixed by volume con-
servation

R;(1)=[R}(0)—RX0)+RX1)]'"

and clearly if the acceleration is constant at one interface
it cannot be constant at any other interface. This is a
purely geometric requirement (exactly the opposite is
true in plane geometry: mass conservation of incompres-
sible planar fluid layers requires that the acceleration be
the same at all interfaces). This obvious shortcoming of
the work of Gupta and Lawande® was the primary motive
for carrying out the research reported here.

Our notation is defined in Fig. 1: it shows a spherical
fluid of density p, and radius R ; surrounded by a series of
concentric shells. There are N fluids of densities
P1sP2 - - - »Ppn- The interface between shells i and i +1, of
densities p; and p, , |, has a radius R,(z). The last fluid, of
density py, is assumed to have Ry = o, hence there are
N —1 finite radii R|,R,,...,Ry_,. We denote radial

velocities and accelerations by v;(¢) and g;(¢),

FIG. 1. N-fluid system in spherical geometry considered in
this paper. The successive densities are p,,p,, ... ,px-1,Pn,and
the radii are R|,R,,...,Ry_,. R, is the average radius of the
interface between the two fluids of densities p; and p, +, and has
a perturbation of amplitude 7,.
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dR;(t)
dt

B _ d’R;(t)
=R ,(t)=v;(2), 7—
and drop the labeling subscript i when no confusion can
arise. Initial values will be denoted also by a zero sub-
script as in R(0)=R, or 7(0)=m,. Positions within a
fluid layer will be denoted by r. Perturbations are intro-
duced by a straightforward generalization of Plesset’s
treatment: each interface is assumed to have a perturba-
tion of mode (n, m) so that

R.i(t)zgz(t) ’

ri(t)=R (t)+n,(t,n,m)Y, ,(6,p), (5)
with
|n;(t,n,m)| <<R,(t) (6)

at each interface.
Two remarks are in order: first, condition (6) above is
not enough for the linear analysis; one also needs

Inm;(t,n,m)| <<R, (1) (7)

as we will show in Sec. II. While Plesset explicitly men-
tions only condition (6), he implicitly uses the much more
restrictive condition (7). Second, Plesset’s single ampli-
tude analysis applies also to each mode in an arbitrary
perturbation as long as they all remain in the linear re-
gime. This was pointed out by Plesset and Mitchell'® and
follows trivially from the orthogonality of the spherical
harmonics.

We close this section by recalling well-known classical
results in a planar geometry for N =2. For a constant ac-
celeration,!

n=nocosh(yt)+%sinh(yt) , (8)

where the growth rate y=VgkAd, k=27/A, and A
represents the wavelength of the perturbation, and 4
represents the Atwood number
4= 9)
pP2tp
For a shock treated as an impulsive acceleration,
g =Avd(1), we get

70 )=7(0_)+kAAvn(0), (10)

where the subscripts * refer to postshock (preshock)
values. In this incompressible treatment, suggested by
Richtmyer,? the shock changes the growth rate 7 of the
perturbations without changing 7 instantaneously, i.e.,
17(0,)=n(0_)=mn(0). The subsequent evolution of 7 de-
pends on the motion of the fluids—if it is a constant ac-
celeration, for example, then 7 is given by Eq. (8) with
7(0)=7(04).

We chose our notation with an eye towards an easy
transition to the planar limit, which is done by taking
n—>o, R—ow, with Kk =n/R finite. The coefficient
A (n) in Plesset’s equation was chosen such that

A(n)— A asn— o

and the equation reduces to the well-known result
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in the planar limit.

The condition for linearity is kn<<1 in plane
geometry and it is our more restrictive requirement, Eq.
(7), which reduces to it.

In Sec. II we derive the general equation governing the
evolution of the perturbation 7; at each interface. As in
the planar case, we find that 7, is coupled to the two ad-
jacent surface perturbations 7, , and in this way all per-
turbations are coupled to each other through the inter-
mediate ones. In Sec. III we specialize to N =2 where
our equations reduce to Plesset’s equation, and we con-
sider several cases where analytic solutions can be written
down explicitly. Particular emphasis is given to shocks,
leaving mathematical details and other solutions to the
Appendix. In Sec. IV we study the N =3 case; unlike the
planar case where the solution for arbitrary densities and
thicknesses could be written down in a fairly simple form,
in spherical geometry the coupled equations are quite
complex and require a numerical solution which we
present for an imploding and an exploding system. We
also present analytic expressions for the special case
p1=p3=0 and in the limit where the thickness of the in-
termediate shell is much less than its radius. In Sec. V we
present a model for calculating the turbulent mixing
width 4 in spherical geometry. Finally, in Sec. VI we
present our concluding remarks and possible directions
for future work.

II. GENERAL EVOLUTION EQUATIONS

Referring to Fig. 1, we introduce a velocity potential
@; in each region i of density p; extending between r; _;
and r; such that the fluid velocity in that region is given
by —Og,;/dr. Since we assume incompressible flow,
V2p; =0, hence ¢; is given in terms of the solution to
Laplace’s equation in spherical geometry. As in Ref. 10,
we require that the perturbation velocities vanish at the
center and at infinity, hence ¢, ~r" and @y~r "~ ! in
the first and last zones, respectively. In the intermediate
layers, however, one must consider a linear superposition
of the two forms:'*

R7R

[

¢i=T+B,—r"Yn,m+C,-Y,,,m/r"+1, (11)

where B; and C; are constants to be determined via con-
tinuity of the radial velocity. They are functions of n, m,
R;, R,_,, etc. and are constants only in the sense that

they do not vary with position within each shell, i.e.,
B;,C;B,(r),C;(r). Therefore

__rt —_ n—1
ar |, r? nBir Yum
+n +1)C Y, , /12, (12a)
S | _, =R +7,Y (12b)
or =r=R, TN X, .,

1
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where the second equation follows from Eq. (5). Since
the velocity potential ¢; in Eq. (11) holds in the region
ri_1=r=r;, we obtain two more equations identical to
(12a) and (12b) with r; replaced by r;_,. Equating the
right-hand sides of Egs. (12a) and (12b), and the corre-
sponding ones with r;—r; _;, we will obtain two equa-
tions which determine the two constants B; and C; ex-
plicitly if we limit ourselves to the linear regime. The
reason for the linear approximation is that we need to
substitute »,=R;+7,Y, , in Eq. (12a) and without the
assumption of linearity the expressions become quite
complicated.

In the absence of any perturbations B; and C; in Eq.
(11) vanish and, therefore, they are at least of order 1. In
the first term of Eq. (12a) we approximate
ri—2=(R,-+77,-Y,,Ym)_2zR,-*2(1—277,-Y,1,m/R,-) which re-
quires only the weak linearity condition Eq. (6). The
second and third terms of Eq. (12a) are proportional to B;
and C; which are already of order 7;. We will therefore
use the lowest-order relation (r,—R;) in expanding r/" !
and r,-_"_z, i.e., replace them by R,-"‘1 and R,-f"fz, re-
spectively. For this to be a valid procedure we obviously
require the stronger linearity condition Eq. (7).

As expected, the zeroth-order (R;) terms on the right-
hand side (rhs) of Eq. (12a) and (12b) cancel, leaving a re-
sult that is linear in 7); and its first time derivative 7);:

—n—2 R, -1
(n+1)CR " 2—2=ty, —, /R,." :
R;
We now repeat the same procedure at interface i —1.
Since B; and C; are regional quantities, they remain the
same. The result is

nB,= (13a)

Ri—l .
Riqni_l MNi—1

(Rz—l)n_l

(n +1)C,‘(R,‘_])_-n“2_2

nB;,=

1

(13b)

Note that the zeroth-order terms (R,_,) have again can-
celed because R?R; =(R,_,)’R, _,, i.e., the quantity R?R
is the same at all interfaces, which is simply a conse-
quence of mass (or volume) conservation: R;}—R}
=const in time. Mass conservation is not required for
the two-fluid case where there is only one interface and
hence only one equation.

Equations (13a) and (13b) determine the two constants
B; and C;. After some algebra we get

p—— R 4 R )+(i—i—1),
R[1—=(R,_, /R, "1 dr T

(14)

C,=B,(n——n—1), (15)

which completely specify the velocity potential ¢; in Eq.
(11).

To get the equations of motion for the interface radii
R;(t) and the evolution equations for the perturbations
7;(t) we follow Plesset’s method but leave out surface
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tension for simplicity. In this case the pressure on each
side of the interface at r; is continuous and therefore
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where we have again used the fact that B; and C; are al-
ready of order 7; so that we need to keep only the
lowest-order term (r;,— R;) in their coefficients. Similar-

P.(t)+p; ~a;i — (Vg )2 ly, we evaluate
' 9g; Ni
a(p[+l q)a+1 =R 47 Y -:RL l—i—Yn,m di(Rile)
:Pi+1(t)+Pi+l at _%(V(P1+l)2 , (16) t LER Ty om i i
‘ n dBi+l Yn,m dCi+]
where P, ; ,(¢) are the constants of the spatial integration TR Y m dt R*T1  dt
leading to the Bernoulli integral. To lowest order in 7, !
(17b)
% = .l, 1— " Y _‘i R2R )
dt |r=R+uY,, - R, R, "M ar again using mass conservation to set (R; , |)*R; .| =R?R,.
' Substituting Eqs. (17a) and (17b) in Eq (16) and usmg the
LR'Y dB; Y, m dC (17a) first-order approximation (Vg;) |, =~(V@; 1) |, ~r?
Pemmode o RrTY dr ~R 24+29,R,Y, ,, Eq. (16) reduces to
1 d . d . dB, Y,, dC, R? .
Pi+p; | 5——(RR,)— -3 % R?R)+R"Y, ., —— T —— — — — R0,
i TPi Ri dt( i 1) n,m dl( i 1) timme gy Rin+1 dt 2 iMitnm
d e d : dB; ., Y,n dCiyy R}
=P+ RIR; —(RR;)+RY, : ———R;7,Y, 18
i+1 p1+1 R d[( ) R,2 Yn,m dl( 1 1) i *nm dt Ri,, +1 dt 2 1771 n,m ( )
f
The zeroth-order terms that are independent of 5, lead Ry _,<r =< o, respectively. As mentioned earlier, we

to the equation of motion of the ith interface:

d’R; 3.,
Pi—P; 1 =(p, 17 p;) Ri7+5Ri (19)

The rest of the terms are linear in 7; or %;., and their
time derivatives, each multiplied by Y, ,,. Dropping the
common factor Y, ,, we get, after some algebra,

— VL (R2B . V= RN 2 4Biv, _ dB;
(pi+1 pi)dt(RiRinz) R, Pi+1 dt Pi dr
+(n——n—1). (20)

This is the general evolution equation we were seeking.
It describes the time evolution of the perturbation ampli-
tude 7; at interface i in terms of 7,,; and their time
derivatives. It is a second-order differential equation be-
cause [see Eq. (14)] dB,/dt involves 7,;,7;,7); and also

Ni—1pMi—17Mi—1- We can write Eq. (20) in the following
form:
i+1 2
d d
al=—+bi—+c’ |n,=0, 21
2 e e

in which each of the nine coefficients a’,b’,c/,
j=i—1,i,i +1is a function of the two adjacent densities
p; and p;,,, the radii R;_,, R;, and R;,, their time
derivatives and, of course, mode number n. There are
N —1 equations in all because there are N —1 interfaces,

i=1,2,...,N—1. The first and last regions must be
treated carefully because they extend over 0<r <R, and

must require that C, =By =0. For ease of reference we
will write out the first and last evolution equations explic-
itly:

(py—p1) L (R2R )= de-Hn —n—1)
— P dr 1 1M Pz dt
dB
n+2 1
—R{*"p—= (22a)
d
(py— PN—-I)d [(RN—I) RNAlnN—l]
-1
=—py_1 |Ry_""? dr t(n——n—1)
dCy
+pN(RN,,1)'"Hd—lA , (22b)
where
B,=— “#dzm‘"‘) (23a)
(Ry_)" 4
N=T“+;—Z[(RN_I)%7N_I] . (23b)

The evolution equations for the intermediate interfaces
i=2,3,...,N—2 cover no singular points so that Eq.
(20) is well defined.

Let us make a few general remarks concerning the evo-
lution equations. There is no hidden dependence on the
densities—all the dependence on p; is shown explicitly in
Eq. (20) because the B; are independent of p; [see Egs.
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(14) and (15)]. Clearly, we need to specify only density
ratios rather that absolute densities. Furthermore, since
the fluids are assumed to be incompressible, all p; are
constants in time, but otherwise are not constrained.
Had the factor R/ *2in Eq. (20) not been there, we could
have integrated that equation with respect to time and
thus reduced all of our N —1 second-order differential
equations into first-order ones, a major feat. Unfor-
tunately, the presence of the R ™% factor spoils such
luck. The only exception is a shock treated as an instan-
taneous acceleration, an approach first used by Richt-
myer? for the two-fluid case in plane geometry. In such
an approach the radii R; as well as the amplitudes 7,
remain unchanged, while their time derivatives change.
By setting R,=Av;8(¢)=[R;(0,)—R,(0_)18(t) we in-
tegrate Eq. (20) for 0_ <t <0, and obtain

(pi+1—Pi )Rizﬂi[Ri(0+ )“Rf(o—)]
=R!""?[p; . ,AB; ,,—p;AB;]+(n—>—n—1), (24)

where AB;=B,;(0,)—B,;(0_). This is an equation which
relates postshock derivatives to their preshock values. Of
course the interface coupling aspect remains the same,
that is, Eq. (24) still involves the triad 7, _,,1;,7,+; and
their first-order preshock and postshock derivatives.

Our next remark concerns the symmetry of Eq. (20).
Clearly, Eq. (20) is invariant under

n— —n-—1 (25)

and hence one might conclude that the evolution of the
perturbations is invariant under this exchange. We must
remember, however, that in the first and last regions we
need to force C, =0 and By =0, respectively, and the re-
sulting equations which we have written explicitly in Eq.
(22) break this symmetry, unless p,=py=0. We con-
clude that if the central sphere is a vacuum (p,=0) and
the outermost shell is also a vacuum (py =0), then the
perturbations in an arbitrary number of shells evolve in
such a way as to be symmetric between n and —n — 1.

Of course this symmetry does not appear for the classi-
cal N =2 case (unless both fluids have zero density!). It is
valid for a shell or series of shells bounded by vacuum on
the inside and on the outside.

We now turn to two simple systems: N =2 and 3.

III. N =2 CASE

A. Analytical results

We have seen that when there are N fluids they have
N —1 interfaces and an equal number of evolution equa-
tions given by Eq. (20). For N =2 we have only one
equation because there is only one interface between a
central fluid of density p, and an outer fluid of density p,.
We will simplify our notation in this section by defining
R =R (t) and n=m,(¢) since there is only one interface
position and one perturbation amplitude.

Equation (20) reduces to Eqgs. (22a) and (22b) for the
first and last interfaces, respectively. These interfaces
coincide for ¥ =2, hence we can use either Eq. (22a) or
(22b). The latter equation reads
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d .
(PZ—PI)E(RZRU)

dB,
— Rn+2
Pi dt

+(n—>-—n—1)

dc,
+0.R —n+1 , 26
P2 dr (26)
with  nB,=—R """ d(R?p)/dt and (n+1)C,
=R"d(R?y)/dt [see Eq. (23)]. Substituting these expres-
sions in the above equation and collecting terms, we ob-
tain Plesset’s equation

dn  Rdn _ R__
e +3R 7 nA(n)Rn 0, (27)
with

n(n—1)p,—(n +1)(n +2)p,

A ——

nd(n) np,+(n+1)p, (282)

2 Ay

_(n’tn+DA4-2m—1 (8h)

n+(1—A4)/2

As we mentioned earlier, the coefficient n 4 (n)—n4A in
the large-n limit, where A is the Atwood number
(p,—p1)/(py+py). Of course for 4 =1 (p;=0) we get
nA(n)=n —1 and we recover Eq. (1).

An alternative form of Eq. (27) is

1 d

3dn
R3 dt R

i
- Sa= 29
7 nA(n)Rn 0, (29)

which is sometimes useful when we seek solutions to
Plesset’s equation.

We now consider analytic solutions. As far as we
know there is no general solution, by which we mean a
solution 7(¢) to Eq. (27) or (29) for an arbitrary implosion
or explosion history R (t), arbitrary densities p, and p,,
and arbitrary mode number n [of course only the com-
bination nA(n) matters in Plesset’s equation]. We are
therefore led to consider two classes of solutions which
we denote as class A and class B. Class-A solutions are
valid for specific values of n A (n) but arbitrary histories
R (1); class-B solutions are the reverse: valid for arbitrary
n A (n), but only specific R (¢). Of course the doubly re-
stricted case where both nA4 (n) and R (¢) are specified
can be obtained as a special case of either class. This will
serve as a nontrivial check of our analytic as well as nu-
merical solutions.

We have found only two class-A solutions: (i)

nA(n)=—2, in which case the solution is
2R Mo+RoMy
_ 2 010 0’10
n()=no(Ry/R) +—R;7——fOR(t)dt , (0

and (ii) n A (n)=0, in which case the solution is
n(t>=n0+ﬁof0’<R0/R Vdt . 31)
There are two distinct situations which lead to the first

case with n 4 (n)= —2: one is n =0 with arbitrary p, and
p, as we reported earlier.'? The other is p, =p, with arbi-
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trary n, in which case there is no density mismatch and
the distortions are geometric in origin.

The second case with nA4 (n)=0 is perhaps more in-
teresting because if 7,=0 then 7(t)=m, [see Eq. (31)
above], i.e., the amplitude does not grow or diminish no
matter what one chooses for the radial history R (¢). We
will refer to such modes as “critical modes.” From Eq.
(28b) these modes satisfy the relation (n’+n-+1)4
—2n —1=0 and therefore

_2—A+(4—34Y)72
critical — 24 :
Alternatively, one can define 4 ;..

142
critical — l4n+n? ’

n (32)

(33)

for any given mode number n. For example, 4 ;. =1
if n=1 and A4 ;=5 for n =3, etc. As n increases,
A iical approaches zero. We can view the critical modes
as perturbations which do not grow because the pressure
forces arising from the density mismatch are exactly bal-
ances by the purely geometrical distortions.

We now turn to class-B solutions which are valid for
arbitrary n A (n) but specific R (¢). We have found ana-
lytic class-B solutions for the following four cases: (i)

R=R,e"T,
(ii)

R=Ry(1+t/T)'/?,
(iii)

R=R,+R,t+1igt?,
and (iv)

R=Avd(t—1,) .

The solutions to these four cases are discussed in the Ap-
pendix in detail.

The last two cases can be referred to as a constant ac-
celeration and a shock, respectively, hence they are the
familiar Rayleigh-Taylor! (RT) and the Richtmyer-
Meshkov? (RM) instabilities in spherical geometry. The
solution for the RT case is given in terms of hyper-
geometric functions [see the Appendix, Eq. (A15)] and
not by an exponential as was erroneously assumed by
Gupta and Lawande.®!! For the RM case the solution is
2
nA(n)

R,

1—
R

‘ ) (34)

where we have assumed that 7,=0 before the shock
which arrives at t =0.

Shock-induced implosions and explosions can be treat-
ed in a unified manner by writing R =R (1+¢/T), where
a positive (negative) time constant T corresponds to an
explosion (implosion). Since

1—(Ro/R*=t(t +2T)/(t +T)?, (35)

we conclude from Egs. (34) and (35) that the perturba-

tions evolve linearly with time as long as t << |T|. If the
interface was moving prior to the shock and if the shock
stops the radial motion then we find that perturbations at
such a stationary interface evolve linearly with time for
all ¢ (see the Appendix).

As in plane geometry shocks can induce phase reversal
of perturbations (see Meshkov?). Clearly, 7(¢) in Eq. (34)
goes through zero and changes sign if n 4 (n) is positive
and R <R, (implosion), or if nA(n) is negative and
R >R, (explosion). In either case the phase change
occurs at

—-1/2
2

nA(n)

1+

R=R, (36)

independently of 7,. For example, if n 4 (n)=50 then the
amplitude goes through zero after the radius has moved
in only 2%, i.e., R /R;=(%)"2=98%.

Finally, the phenomenon of freeze-out occurs in spheri-
cal as in planar geometry.’ By appropriately timing a
second shock one can stop the growth of perturbations,
i.e., set 17(¢t)=const, as we discuss in the Appendix.

B. Numerical examples

We will consider a system which implodes from an ini-
tial radius Ry=25R, to a final radius R,. The ratio
R, /R, is also called the “convergence ratio.” Two types
of implosions will be considered: a constant acceleration
and deceleration, and an exponential acceleration. The
second example can of course be solved analytically [see
Eq. (A2)], and we considered it first as a test problem to
check our numerical integration of Plesset’s equation
and, second, to see how the evolution of the perturbation
depends on the implosion history R (¢). The initial and
final radii were the same in both implosions, and so was
the implosion time.

Our units for distance and time are fixed by setting the
final radius equal to 1 and the implosion time equal to 8.
Since R =R e'’T for the exponential implosion, the time
constant is given by T = —8/In25. For the constant ac-
celeration and deceleration case we chose a negative ac-
celeration (—32) for the first 4 time units and a positive
(+3) acceleration for the remaining time. In this way the
radius cover 12 units in the first half of the implosion and
another 12 units in the second half to go from the initial
value of 25 to the final value of 1. Figures 2(a)-2(c) show
the radius, the velocity, and the acceleration for each
type of implosion.

A numerical example will clarify these points. A shell
with an initial radius 2.5 mm moves in with a constant
acceleration of 150 um/ns® for a period of 4 ns, during
which time it covers 1200 um and reaches an implosion
velocity of 600 um/ns. In the next 4 ns it decelerates at
150 um/ns? and comes to rest after covering another
1200 pm, hence R ;=100 um.

We next specify the density ratio p,/p; and mode num-
ber n, which we do for two sets of numbers. Let us first
take p,/p,=10 and n =50; such large density contrasts
and mode numbers are relevant to ICF implosions. Of
course the controlling quantity is nA(n) which is
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B: exponential acceleration

24

20

16

R(t)

12

(b)

-2+ A —

4+ ]

R(t)

A: constant accel. and decel.
B: exponential acceleration

~10 ! | x !

I | I [ ©

A: constant accel. and decel.
3 B: exponential acceleration ]

R(t)

1 ]

2 L 1 1 |

FIG. 2. (a) The radius, (b) the radial velocity, and (c) the ra-
dial acceleration of the interface in a two-fluid imploding sys-
tem. Curves labeled A4 describe a constant acceleration and de-
celeration, and curves labeled B describe an exponential ac-
celeration. For both types of implosions the radius goes from
25 to 1 in 8 times units (see text).
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21848/551=40 for this case—other combinations of
p>/p; and n yielding the same n A4 (n) will evolve identi-
cally.

The evolution of the perturbations for each type of im-

plosion is shown in Fig. 3. Note that n grows exponen-
tially in time when the implosion itself, i.e, R (¢), is ex-
ponential in time (curves labeled B in Figs. 2 and 3). The
constant acceleration case first oscillates because Ag <0
during 0<t <4, and then grows, somewhat faster than
exponentially, during the deceleration phase 4 <t <8.
Only absolute values are graphed on semilogarithmic
plots. In all our numerical results we set n,=1 and
70=0.
As Fig. 3 shows, the two different ways 4 and B of get-
ting from R;=25 to R,=1 give substantially different
perturbation growth, suggesting that it might be possible
to shape the pulse of a laser drive on an ICF capsule in an
effort to reduce the growth of perturbations. To actually
achieve such a reduction via pulse shaping one must take
into account the effects of compressibility, radiation, heat
conduction, and ablation. Direct numerical simulations
will be required for this purpose, as we discuss briefly in
Sec. VI.

Keeping the same implosion histories and initial condi-
tions, we now consider a second set of density ratios and
mode numbers to illustrate the critical modes.
Specifically, let p,/p, = # and consider three values for n:
n=9, 10, and 11. The critical mode satisfying n 4 (n)=0
is n =10 for this density ratio. Whether the implosion
history is the constant acceleration and deceleration case

10
10 IIIlllIIIIIIIIIIIIIIIIIII’TIIIII[I_I'T II'IT

P, /P4 =10, n=50

B: Exponential acceleration

In (t)l (arb.units)

A: Constant accel. and decel,

102 M b b b Laa g

0 2 4 6 8
t

FIG. 3. The magnitude of the perturbation amplitude |7(z)]
vs time for the constant acceleration and deceleration case A4
and the exponential acceleration case B shown in Fig. 2. The
initial conditions read my=1 and 7;=0. The constant
nA(n)=2%8 ~40.
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FIG. 4. The perturbation amplitude 7(¢) vs time for the con-
stant acceleration case (curves labeled 4 in Fig. 2). The density
ratio is pz/p,Z% and three modes are shown: » =9, 10, and
11. The mode n =10 is a “critical mode,” i.e., n4(n)=0, and
therefore does not grow. Initial conditions read 7,=1 and
170=0.

(Fig. 4) or the exponential case (Fig. 5), the critical mode
does not grow while the two adjacent modes # =9 and 11
exhibit a healthy growth. Such behavior, viz., absolute
stability of critical modes for any implosion or explosion
history, can serve as a good test problem for two-
dimensional (2D) or 3D numerical codes.

IV. N=3 CASE

A. Analytical results

For the three-fluid case there are two interfaces: the
first at r =R and the second at r =R,. As mentioned in
Sec. II, the general evolution equation, Eq. (20), must be
augmented by C; =0 in the first region and By =0 in the
last region [the C; are the terms denoted by (n — —n — 1)
in Eq. (20)]. Equations (22a) and (22b) give the evolution
of the perturbations at the first and last interfaces which
are the only two interfaces for N =3:

d .
(Pz"‘Pl)E(R%Rlﬂl)

dB, ) dB,

=R'l'+2p2 o +(n—>—n—1)“R1+zp1—dt ,

(37a)

d .
(P3"P2)Z(R§Rz”lz)
dB
=—p, (Rz)"“d—t2+(n—~>——n-l)

dc

+p3(R2)‘"“—dti : (37b)

400 T | T
L p%1 = 22/15, exponential acceleration
n=11

300

200 —

100 ;/"o =1and ﬁo= 0 in all cases

n () (arb. units)
(=]

—400 | | | |

FIG. 5. Same as Fig. 4 for the exponentially imploding case.

with
Blz—annﬂg;(R%m), (38a)
1
—(R2)7n~1 d
B,= = (R,
2T WU —(R, /Ry at T
+(R, =Ry, =), (38b)
RH d

where we have used Eq. (14), (23a) and (23b) with N =3.

When the middle shell is very thick, i.e., R, >R,
Egs. (37a) and (37b) decouple and we obtain two N =2
equations, one for each interface. If we set p,=0, Egs.
(37a) and (37b) again decouple and reduce to two N =2
equations with appropriate values of nd(n):
ndA(n)=—n—2 and nd(n)=n—1 for Eq. (37a) and
(37b), respectively. The algebra is simplified by noting
that an alternative form of the N =2 (i.e., Plesset’s) equa-
tion is

d

dt

1

d ., ..
—_ —_ -+ = .
R dt(R n) [2+nA(n)]Rnp=0 (39)

When the middle fluid has a finite thickness and a
nonzero density Eqgs. (37a) and (37b) remain two coupled
second-order linear differential equations which, in gen-
eral, must be solved numerically.

An interesting case is the spherical analog of the planar
problem considered by Taylor:' p,=p;=0. Equations
(37a) and (37b) reduce to

. __dB
%(R%le)Z(Rl)“z dt2+(n—>—n-—l), (40a)
. dB
4RIy =Ry 22 4 (n>—n—1), (40b)

dt dt

which are, as expected, independent of the density p, of
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the middle shell and are symmetric under n = —n —1.

We now consider the thin-shell limit which turns out
to be nontrivial for the following reason: from mass or
volume conservation we have R3R,=R3R,; as R,—R,
Eq. (40) implies that 17,—m,. If we define a shell thick-
ness AR and an average radius R by

AR'_—Rz(t)_Rl(t)y Rz[Rz(t)+R1(t)]/2’ (41)

then to lowest order in AR /R we must keep terms of or-

der (p,—m,)/AR. The algebra is quite tedious and we
will omit the details. The final result is
2 R
?(7724'7]]):—25( ="M, (42a)
d2 R =)
AR T
| (1) (ny+my)
=R |3——————(n+2)(n —1)———
AR (n )n ) "R
(42b)

Remarkable cancellations occur leading to the above two
simple equations. Note that R does not appear explicitly.
Also, the mode number n appears only in the combina-
tion (n +2)(n —1) which of course is symmetric under
n = —n —1, providing a nontrivial check of our calcula-
tion. One might be tempted to drop the last term which
is proportional to (n,+,)/R; however, it multiplies
(n +2)(n —1) which can be very large for large n. No
simplifying assumptions about n or about the radial his-
tory R (t) were made in deriving Egs. (42a) and (42b).
They are valid for AR /R <<1. We must warn the reader
that it is possible for an initially thin shell to thicken up
by geometric convergence so much that during the final
stages of an implosion the shell is as large or larger than
the average radius, in which case the condition
AR /R <<1 is violated and one must revert back to Egs.
(40a) and (40b).
Defining

An=m—n, n=0n+n)/2, (43)
Eqgs. (42a) and (42b) read

i .
Z—;}=—:;RA71, (44a)
d’> |RAy |_ 4|0y .

5 | AR R |30 —(n+2)(n — 1) (44b)

We will consider only two cases: a constant radial ve-
locity and a shock. For the constant R case we have
R=0, R=R,+Ryt=Ry(1+¢t/T), where T>0 (T <0)
for an explosion (implosion), and Egs. (44a) and (44b) can
be easily solved:

n(t)=no+ 7t ,
3

An=An, (1

(45a)

1+ +Angt (45b)

where we have used the fact that for a thin shell
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R /AR ~R*/(ARyR3)~(1+¢/T)*. Note that only the
difference in amplitudes 1, —7, is affected by the nature
of the radial motion, i.e., implosion versus explosion; the
sum 7,+mn, is independent of T. Furthermore, if
17,(0)=1,(0)=0, i.e., 7y=A7,=0, then 7(t)=1n, so that
the sum 77, + 7, does not grow or diminish at all, though
the difference 7, —7, evolves with time. If the shell is im-
ploding then this difference goes through zero and
changes phase at =|T]|/3 when the shell is 2 of the way
in, i.e., R=2R,. If the shell is exploding then the
difference 7,—m, maintains its sign and never goes
through zero. We repeat that, in either case, implosion
or explosion, the sum 7,+ 7, remains constant.

We now turn to a shock and let R =Avb8(t) where
Av=R(0,)—R(0_)=R, —R_. Integrating Eqs. (44a)
and (44b) over 0_ <t <0, and noting that variables such
as 7, R, An, and AR do not change instantaneously while
their derivatives do, we get

. 4
Ne=n-— AROA"O’ (46a)

AR,
—(n+2)(n—1)770Av—R2—

0

Aq, =A7)_ (46b)

We have used the relation

d

i (R/AR)=
to cancel a term in the rhs of Eq. (44b) against an identi-
cal term in the left-hand side (lhs) of that equation when
we integrate it over time.

If the motion starts first with a shock, then the shock
sets the initial conditions for the subsequent evolution of
the amplitudes. For example, if the motion starts with a
shock at + =0 followed by a constant radial velocity, we
combine Egs. (45) and (46) to get

3(R/AR), AR <<R

Av
() =no— A

t,
AR, (47a)
3
1+ An=An,
AR,
—(n +2)(n —1)noAv 'y t. (47b)

0

A second shock may arrive at a later time. As in the
N =2 case the second shock, if properly timed, can
freeze-out some of the perturbations. There are too many
possibilities for the N =3 case and the analysis becomes
quite complicated. We mention only that it is not possi-
ble for the second shock to freeze out the perturbations at
both interfaces.

B. Numerical examples

We now consider two numerical examples: (i) an im-
ploding shell and (ii) an exploding shell. We have written
a code that solves the fully coupled equations (37a) and
(37b) for arbitrary densities, shell thicknesses, and radial
histories. Note that only one of the two interfaces, e.g.,
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R (1), can be arbitrary—the other is fixed by the conser-
vation of the mass (or the volume) of the shell:

R,(1)=[R3(0)—R3}(0)+R}(1)]'*, (48a)
which gives the familiar relation
R,=(R,/R,’R, , (48Db)
and
3
R,= 2R, [1-=1 |[R1+RIE, /Rg. (48¢)
2

For our examples we chose (p;,p,,p3)=(1, 10, 1). As we
mentioned earlier, such high-density contrasts are
relevant to ICF.

(1) Implosion. For the implosion history we chose
R ,(2) to follow the constant acceleration and deceleration
history considered in Sec. III: R, has an initial value of
25, accelerates inwards for 4 time units, decelerates for
another 4 units and comes to rest at a final radius of 1.
The only free parameter for R, is its initial value R,(0)
or, equivalently, the initial shell thickness, which we
chose to be 1. The ratio R;(0)/[R,(0)—R(0)] is also
known as the “aspect ratio.” For our example, the aspect
ratio and the convergence ratio are both 25. In Fig. 6 we
show the radius, the velocity, and the acceleration of
both interfaces. Note that the final conditions read
R,=(1952)!*~12.5 (final shell thickness approximately
equal to 11.5). This is an example of how an initially thin
shell with AR /R= 5!~ <<1 thickens up by convergence
to AR/R = % > 1, as we mentioned in our discussion of
thin shells.

Figure 7 shows the evolution of the perturbations at
each interface. In all our numerical work we set
11,,(0)=0, and consider finite initial amplitudes at one or
both of the interfaces. We set (1,,1,),=(1,0), (0,1), and
(1,1) in Figs. 7(a), 7(b), and 7(c), respectively.

We see that in all cases the perturbation on the inner
surface grows much larger than the perturbation at the
outer surface. This occurs during the deceleration phase
of the implosion, i.e., after ¢t >4, when the lower-density
inner fluid (p=1) decelerates the shell (p=10). In fact,
the evolution of 7,(¢) is not much different between this
N =3 case and the N =2 case considered in Sec. III. On
the other hand, the perturbation 7,(z) at the outer sur-
face grows only during the earlier acceleration phase
(t <4) when the lower-density outer fluid “pushes” on the
shell. Qualitatively, such behavior is expected from clas-
sical and planar considerations according to which insta-
bility (stability) occurs when Ag >0 (Ag <0).

The mode number n was taken to be 50 in the above
examples. We obtained similar results with other values
of n. For example, with n =100 the early time oscilla-
tions of 17, were faster and its late time growth was larger,
as expected.

Figures 7(a) and 7(b) illustrate also the phenomenon of
feedthrough,* particularly at early times when the shell is
thin: the interfaces are coupled to each other in such a
way that a perfectly smooth surface with no initial per-
turbation acquires a finite perturbation amplitude from a
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FIG. 6. (a) The radius, (b) the radial velocity, and (c) the ra-
dial acceleration of a shell imploding with a constant accelera-
tion and/or deceleration. R,(t) and R,(t) refer to the inner and
outer radii of the shell which is initially 1 unit thick. The inner
radius R ,(#) moves from an initial value of 25 to a final value of
1. R,(t) is obtained via mass conservation. For units see text.
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neighboring perturbed interface and that amplitude can
later grow very large. Note that during the later stages of
the implosion there is much less feedthrough: while 7,(¢)
is growing 7),(¢) remains at its relatively small value of
200-2000. The reason is that the shell has thickened up
[see Fig. 6(a)] and the interfaces are separated further:
the ratio R, /R, which initially is 2 =1 decreases to ap-
proximately . during the second half of the implosion.
Since the coupling is of order (R, /R,)", for n =50 it be-
comes much less effective in the later stages. We verified
this by running other n values and finding that the low-n
modes couple more efficiently than high-n modes. The
same phenomenon occurs in plane geometry where
(R,/Ry)"—e ¥Rk =27 /L—Ilonger wavelengths cou-
ple more efficiently than shorter wavelengths.

The results shown in Fig. 7 were not changed in any
substantial way when we set (p,,p,,p3)=(0,10,0) and/or
n = —51. The large ratio of densities, viz., 10 to 1, in the
original set (1,10,1) implies that the results are not
affected much by zeroing out p, and p;. For p;,=p;=0
we obtained identical results when we set n =50 or —51
in our numerical code, which is a nontrivial check of the
integration routine. Even with the original set (1,10,1)
the results between n =50 and — 51 were similar because
of the large 10-to-1 density ratio which favors the contri-
bution of the p, terms in Eq. (37). We naturally expect
that n = —n — 1 will be a good symmetry when the den-
sity ratios at the first and last interfaces, p,/p, and
Pn /Py —1» are small but not necessarily zero.

(i) Explosion. To illustrate an exploding shell we chose
to reverse the implosion described above: we start with a
shell of outer radius (1952)!/3~12.5 and inner radius
R,(0)=1. R (t) accelerates outwards for 4 time units
then decelerates for another 4 times units until it stops, at
t =8, at a radius of 25, by which time R, is at 26, i.e., the
initially thick shell ends up 1 unit thick via mass conser-
vation. The exploding motion is shown in Fig. 8. In this
way the initial conditions for one type of motion serve as
final conditions for the other, and vice versa.

For the same densities (1,10,1) and mode number
n =50 we show in Fig. 9 the evolution of the perturba-
tions at the inner and outer surfaces of the exploding
shell. Three initial conditions were considered as before:
(M1,m2)0=1(1,0), (0,1), and (1,1) in Figs. 9(a), 9(b), and 9(c),
respectively. All started with 7, ,(0)=0.

There are several distinct differences between the im-
ploding shell (Fig. 7) and the exploding shell (Fig. 9). The
most obvious is the scale: 10° for explosions compared
with the previous 10'° for implosions. Another difference
is that the final amplitudes 7, and 7, are comparable
here. This is a result of feedthrough: the exploding shell
becomes thinner (11.5—1) so that the perturbations at
one interface are essentially replicated at the other. Fi-
nally, the initial conditions (1,,7,),=(1,0) and (1,1) yield
essentially identical results [compare Figs. 9(a) and 9(c)],
while the (0,1) condition, Fig. 9(b), exhibits extremely in-
hibited growth—only a factor of 100, which is four or-
ders of magnitude less than the growth factors of Figs.
9(a) and 9(c). This behavior can be understood by
feedthrough: in the (0,1) case 7, oscillates during the
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FIG. 7. The perturbation amplitudes 7,(¢) and 7),(¢) at the
inner and outer surfaces of the imploding shell as shown in Fig.
6. Only absolute values are plotted, and the scale is arbitrary.
The initial conditions read (7,,7,),=(1,0), (0,1), and (1,1) in (a),
(b), and (c), respectively.
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time ¢ <4 —it is classically stable because Ag <0. Since
the shell is initially thick, there is little feedthrough to the
inner surface which is highly unstable. After t =4 the
outer surface does become unstable and perturbations
grow there, albeit by a factor of only 100 (note that the
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FIG. 8. (a) The radius, (b) the radial velocity, and (c) the ra-
dial acceleration of a shell exploding with a constant accelera-
tion and deceleration. R,(¢) and R,(¢) refer to the inner and
outer radii of the shell. Their initial values are 1 and
(1952)!73~12.5, respectively (the shell starts ~11.5 units thick).
Their final values are R, =25 and R, =26 (shell 1 unit thick).
This explosion is the mirror image of the implosion shown in
Fig. 6.
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acceleration at the outer surface is generally less than the
acceleration at the inner surface). During this phase
(t >4) the inner surface is “stable,” but the shell is thin
enough that perturbations feed through from the outer to
the inner surface inducing some relatively small perturba-

|
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|n (t)| (arb. units)

0 N2 (t)

(c)

-
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I

FIG. 9. Same as Fig. 7 for the exploding shell.
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tions at that inner surface. Figures 9(a) and 9(c), which
exhibit a completely different evolution, can also be ex-
plained by the same phenomenon of feedthrough. For
example, in Fig. 9(c) the early large growth of 7,(¢) is not
replicated by 7, because the shell is thick. It is replicated
later when the shell becomes thin, so much so that one
can notice 77, mimicking the late time oscillations of 7.
In itself, 1, is unstable and would have grown uniformly,
albeit slowly , were it not for the close proximity of the
highly perturbed inner surface with its large (10°) and os-
cillating perturbation 17,. We checked this explicitly: we
multiplied 17,(0) by a certain factor (10~3) without chang-
ing 7,(0). We found that this factor was carried through
by not only 7, but 7, also exhibited the same factor at
late times. The fact that 7, was affected in direct propor-
tion to 7, is an unambigous sign of feedthrough.

The dramatic smallness of the perturbations in Fig.
9(b) is a combination of four factors all of which are
favorable: (1) as the explosion starts there is a perturba-
tion on the outer surface only, but that surface is stable;
(2) the inner surface is unstable, but it has no initial am-
plitude to grow on; (3) early time feedthrough is mini-
mized because the shell is at its thickest; and finally (4)
when feedthrough becomes effective and the inner surface
does acquire some perturbations it “goes stable,” i.e., the
local Ag <0. In fact, the close proximity of the stable
inner surface has a (small) beneficial effect which inhibits,
to some extent, the growth of 7,.

We close this section by considering the oscillation of a
shell in such a way that at the end of the cycle the shell
returns to its original configuration. We assume that at
least one of the interfaces has an initial perturbation of
order 1, i.e., the initial conditions read (1,,7,),=(1,0)
(0,1), or (1,1), but of course not (0,0). The results men-
tioned below are obtained in a straightforward way by
compounding Figs. 7 and 9.

Consider first an implosion followed by an explosion.
At the end of the cycle the inner surface perturbation 7,
grows by a factor of 10' in all cases while the outer sur-
face perturbation 7, grows by 10° [10® if 1,(0)=0]. The
special initial condition (0,1) has no stabilizing effect here
because by the end of the implosion 7, will have
developed a healthy amplitude (about 10'°) and the explo-
sion in fact starts with (n;,1,)=(10'°10%)~10'(1,0),
and therefore we must use Fig. 9(a) for the explosion
phase. From Fig. 9(a) we pick up an additional factor of
10° from which we obtain the total factors of 10'® and 10°
quoted above.

If the cycle starts with an explosion followed by an im-
plosion,'” then the special condition (0,1) does make a
difference to the overall growth factors which are only
10'! for 1, and 10° for 5,. Otherwise we obtain the same
factors as before: 10'¢ for 17, and 10° for 7,.

Any realistic surface finish will no doubt end up in the
nonlinear regime if perturbations grow by such large fac-
tors. It is also clear that different implosion or explosion
histories, or different density ratios and mode numbers,
will yield different growth factors. Admittedly we have
considered a very simple implosion and its mirror image
explosion (or vice versa). We expect, however, that our
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results will remain qualitatively correct because they are
based primarily on feedthrough of perturbations in shells
that thicken up during implosion and thin out during ex-
plosion. There is good theoretical support for the mecha-
nism of feedthrough but, unfortunately, no experimental
verification so far.

V. AMODEL FOR TURBULENT MIX
IN SPHERICAL GEOMETRY

In this section we address the question of turbulent mix
in spherical geometry. It is highly probable that mul-
timode perturbations, starting from random initial condi-
tions, grow into the nonlinear regime and interact with
each other leading to a “mixing layer” which evolves
with time. The most fundamental property of the mixing
layer is its width h, and the simplest question is: how
does & evolve with time in spherical geometry? The mix-
ing layer has other, perhaps secondary, properties which
we do not address in this paper such as scale sizes and
their evolution with time, spectrum of turbulent energy,
etc. Another question that will be left unanswered is the
transition time between the linear and the highly tur-
bulent regime, a question that remains unanswered in
plane geometry also.

The evolution of mix at shocked and constantly ac-
celerating interfaces has been observed in plane
geometry.'®!7 As far as we know there has been no ex-
perimental effort to observe mix in spherical shells due,
no doubt, to the extreme difficulty of diagnostics. Here
we present a theoretical treatment of the problem. We
must warn the reader, however, that unlike the linear sta-
bility analysis of Secs. I-IV, where we could start from
first principles, the highly nonlinear nature of turbulent
mix forbids a first-principles approach and, for that
reason, we present only a model. Much work, theoretical
and experimental, remains to be done.

We consider a two-fluid system as in the N =2 case of
Sec. III. We assume that the evolution of 4 is given by
Plesset’s equation after taking the limit

n—ow, 17—0, nn/R—c=const . (49)

Note that we make no assumptions concerning R. Using
Plesset’s equation in the form given in Eq. (29), we obtain

Li R3ﬁ

v |Rar | Teak=0, (50)

where of course A4 represents the Atwood number. This
equation is the model proposed here.

We should point out that spherical geometry, whose
effect on mix we are trying to assess, presents far more
difficulties than the above-mentioned nonlinearities which
are present in plane geometry also: in spherical geometry
the problems are compounded by the presence of a di-
mensionless variable R /R,. Scaling or dimensional argu-
ments are often powerful in deducing at least the form of
h, but they are no help when it comes to determining di-
mensionless variables like R /R . Furthermore, it is pre-
cisely the functional dependence of 4 on R /R that we
are trying to asses, so we cannot neglect it. The planar



42 RAYLEIGH-TAYLOR AND RICHTMYER-MESHKOV . ..

limit, R /R,— 1, provides only one point of comparison,
and does not determine that function. In other words,
obtaining the correct planar limit is a necessary condition
for any spherical model, but it is not sufficient.

The strength (and perhaps also the weakness) of Eq.
(50) is that it is too general. One must specify what kind
of R (t) histories can support a mixing width 4 given by
that equation. Unlike Plesset’s equation, which cannot
be solved in all generality, Eq. (50) can be easily integrat-
ed to give h (¢) explicitly for any specified R ():

dh

h(=h(O)+R}Z [

e f! %fO'R% dr |dr . (51)
For initial conditions we will assume that
h(0)=dh,/dt =0, so that only the last term, which is
proportional to cA, will survive in the examples con-
sidered below. This equation implies, of course, that the
evolution of & is independent of initial conditions, which
remains to be verified.

For completeness we will present 4 (¢) for all four cases
considered in Sec. III, although we are primarily interest-
ed in the last two (constant acceleration and a shock).
We find

2
CARO Ro 3R RO
= _ = 4+ — — t/T
> x| PR, TR || R=Ree
(52)
for case (i);
h=2cAR, 1—Ri+1n(R/R0) , R=Ry(1+1/T)1/3
0
(53)
for case (ii);
2 R R, |*
cAgt 0 0
=5280 15416—-+8|—
h 70 > 6R 8 R
+—S5  InR/Ry
(R/Ry)—1 oty
2
R=RO+§£— (54)
for case (iii); and
2
AAvt | Ro R,
p=LA20 170 10
2 R R ’

R=Avd(1), R=R,+Ry t (59

for case (iv). These equations were obtained by substitut-
ing the corresponding R (¢) and R(¢) in Eq. (51) and car-
rying out the double integral over time. Only the con-
stant acceleration case was nontrivial. Of course other,
perhaps experimental, R (¢) histories can always be nu-
merically integrated in Eq. (51). As mentioned above, we
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are primarily interested in the last two cases, Egs. (54)
and (55).

In the case of a shock let us point out that if the shock
stops the radial motion, i.e., if R(0,)=0 so that R =R
for t 20, then Eq. (55) predicts that the mixing width A
will grow linearly in time around such a stationary inter-
face. If this is a “second” shock, one may wish to include
the h(0) and dh,/dt terms of Eq. (51)—they do not
spoil the linear-t growth (the slope of A, of course, will be
different after a second shock).

We now take the planar limits of our equations, i.e., let
R /R,— 1. For a constant acceleration Eq. (54) yields

h—1lcAgt?, (56a)
which has the correct form gt? expected from scaling
(such arguments cannot fix the dependence on A, another
dimensionless variable). In fact, Eq. (56a) agrees with the
experiments of Read and Youngs!” which can be used to
fix the (one) free parameter of the model: ¢=0.14 (h
represents the mixing width into the heavier fluid—see
Ref. 17). With this value of ¢ we get

h =0.07 Agt*> (plane geometry) . (56b)

The planar limit of a shock is even easier to take: from
Eq. (55)

h—cAAvt . (57a)

If ¢ is truly a univeral constant approximately 0.14, then
this equation predicts

h=0.14 A Avt (plane geometry) , (57b)

a form that we have suggested earlier.'® The experimen-
tal situation on shock-induced mix is not very clear at
present (experiments are in progress at several
places'®?%), but a linear dependence on A and on ¢ is not
inconsistent with the data available so far. Clearly, it is
preferable to have the situation settled first in plane
geometry before attempting a spherical shock experi-
ment.

The planar limits given by Egs. (56) and (57) follow
also from the planar limit of the model equation (50)
which becomes

d*h _
?“CAg~0 (plane geometry) . (58)

No doubt using one “‘universal constant ¢ to explain
and/or predict mix by shocks and constant accelerations
in both planar and spherical geometry makes a very
tightly constrained model. We expect that a number of
effects which we have not taken into account (such as
compression) will require the constant ¢ to differ from
0.14. At present we have no theoretical capability to
“predict” the value of c¢. In this paper as in our earlier
work we fix it solely on the basis of the experimental
work by Read and Youngs!” on constantly accelerating
incompressible fluids. One should limit oneself to posi-
tive h or Ag >0, although for shocks there is some evi-
dence that the evolution of mix is symmetric between
+ A and — 4.

We now define a geometrical factor G by
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h
From Eqgs. (54)—-(57) we get

R pianarG - (59)

spherical =

2
R, 0
= _.+ —_—
G {5+16R 8 R
+— 5%  nR/R) /35 (60)
(R/Ry)—1 0
for a constant acceleration, and
_ — +__
G SR 1 R (61)

for a shock. We point out that in the very late stages of
an explosion (R /Ry— ) Eq. (60) predicts that G — 1.

In Fig. 10 we plot the above two geometrical factors.
Note that the G is larger than 1 for implosions (G > 1 for
R /R, <) and it is smaller than 1 for explosions (G <1
for R/Ry>1). In other words, this model predicts that
the mixing width for implosions (explosions) will evolve
faster (slower) than in plane geometry.

We close this section by repeating our caveats and
words of caution. Equation (50) is only a model and not a
first-principles result. We cannot estimate the transition
time between the linear and the turbulent regime. Equa-
tion (50) applies only after that transition has taken place,
i.e., in the highly turbulent regime. The fact that it pre-
dicts Eq. (56) which agrees with experiments is of course
encouraging, but we must remember that we cannot
“predict” the constant ¢ —its value, 0.14, is taken from
incompressible experiments in plane geometry. Equation
(50) also predicts Eq. (57) which, as we mentioned,
remains to be verified. Even if it is borne out by experi-
ments, the reader must remember that predicting the

100 ———T—TT Ty Ty
A Shock |

10 F =

F Constant acceleration 3

G 1F E
01F E

[ ]

s Implosion «—— ——>Explosion g
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FIG. 10. Geometrical factors for a constant acceleration and
a shock. The G’s relate spherical and planar mixing widths via
h sphericat = Rplanar G- For the constant acceleration case G asymp-
totes to + as R/Ro— . For a shock G approaches zero as

R /Ry— oo but the mixing width asymptotes to a constant value
of 0.07 AR, (see text).
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“correct” planar limit is only a necessary but by no
means sufficient ground for accepting the fully spherical
evolution equation (50).

Clearly we need experiments. One would at least like
to verify if the geometrical factor is indeed a decreasing
function of R /R,. Explosions may be easier to diagnose,
though of course implosions are more important for ICF
applications. In either case ingenious methods must be
devised to diagnose the mixing layer. The prediction of a
finite (3) geometric effect in explosions even when R —
is interesting (h —0.01 Agt?), but it calls for a constant
radial acceleration rather than a shock. The geometrical
factor for a shock decreases as R — o but note that the
mixing width h asymptotes to a limiting value which,
from Eq. (59), is

Bgock — (c/2)ARy=~0.07 AR . (62)

R/Ry—»

VI. SUMMARY, REMARKS, AND CONCLUSIONS

The main contribution of the present work is to extend
Plesset’s analysis to include an arbitrary number of in-
compressible shells. In addition, we found several analyt-
ic solutions for N =2 (Plesset’s case) and N =3, and pro-
posed a model for turbulent mix in spherical geometry.
We also illustrated the evolution of perturbations by nu-
merical examples.

In a system with N fluids there are N — 1 interfaces and
therefore the phenomenon of interface coupling or
feedthrough of perturbations from one interface to anoth-
er arises for N > 3. The strength of the coupling is of or-
der (R, /R,)" which reduces to e “*“R in the planar limit
(n—ow, R ;—>o, AR=R,—R, finite). Perhaps the
most interesting aspect of spherical geometry is the fact
that as a shell thickens by convergence or thins out by
divergence, i.e., as R, /R, changes, the effectiveness of
the interface coupling also changes, as we illustrated by
the examples considered in Sec. IV. In contrast, the cou-
pling efficiency remains constant in plane geometry be-
cause shell thicknesses do not change with time for in-
compressible fluids.

The effects of compressibility, which we have neglected
in this paper, are expected to be similar as in plane
geometry: shells get compressed and hence get thinner as
they are subjected to strong pressures as in shocks. Con-
sequently, the effectiveness of feedthrough will increase
and the interfaces will be more closely coupled. In addi-
tion, the amplitude (for the case of a single scale pertur-
bation) or the mixing width 4 (for the case of turbulent
mix) gets compressed by the passage of a shock. Recent-
ly we have carried our 2D numerical simulations?! on
Livermore’s compressible hydrocode LASNEX with N =2
and 3. We find that the simulations agree very well with
our analytic incompressible results even when a compres-
sible equation of state and large (~ 10'® cm/s?) accelera-
tions are used as in ICF implosions. The agreement is
partly due to the fact that shocks are avoided in constant-
ly accelerating systems. When shocks are present the
agreement is poorer and one must take into account the
compression of the shell as well as the compression of the
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perturbation amplitude. Another Livermore hydrocode
(a compressible Lagrangian-Eulerian code) was used to
simulate shock tube experiments®? and in Figs. 11 and 12
we show two examples: the evolution of a single scale
perturbation (planar shock impinging on a curved shell,
Fig. 11), and the evolution of multiscale perturbations
(planar shock impinging on a flat shell with random per-
turbations, Fig. 12). An analysis of the linear regime indi-
cated” that the simple formulas derived following
Richtmyer’s technique (treat a shock as an instantaneous
acceleration) were valid to within 20-30 % if we made al-

lowance for the compressed shell and the compressed am-
plitude. Of course the highly nonlinear stages shown in
Figs. 11 and 12 cannot be described by simple formulas,
and the semi-Eulerian code was necessary for such simu-
lations.

In addition to compressibility and nonlinearity a num-
ber of other effects (radiation, heat conduction, ablation,
etc.) not included in our analytic theory require numeri-
cal simulations for a realistic treatment of ICF capsule
implosions. A model combining theory and simulation
has been proposed by Haan.?® The effects listed above
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FIG. 11. Isodensity contours in a shock tube simulation in which a plane shock of Mach number 1.2 passes from air into a curved
Freon shell 4 cm thick and, after reflecting from a wall 60 cm away, reshocks the Freon shell at  =3.0 ms. The direction of the first
(second) shock is vertically down (up). Distances are in centimeters and times in milleseconds. For details see Ref. 22.
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are taken into account by direct numerical simulations in
the linear regime and the nonlinear effects in the presence
of multiscale perturbations are assumed to begin when
n 217(1‘,n,m)~vR (), with v a constant number between 3
and 5 [note that this differs from our linearity condition
for single scale given in Eq. (7)]. We have carried out
LASNEX simulations of single scale perturbations in
laser-driven targets and we find that linear growth rates
are 40-80 % of classical.?! Radiation effects are found to
be important only at high laser intensities (>10"
W/cm?). We have also carried out a few multiscale per-
turbations and we find that the appearance of new modes

time = 0.0 time = 0.8

KARNIG O. MIKAELIAN 42

is consistent with the weakly nonlinear classical theory,
provided that ablative stabilization is taken into account.
Fully 3D turbulent calculations with ablation have also
been reported.?*

The theoretical results presented in this paper help our
understanding of feedthrough and its time dependence
because of spherical geometry in ICF implosions. Our
analytic solutions can also serve as tests for 2D and 3D
codes. Until 3D spherical capsule implosions are realisti-
cally simulated including the various effects listed above,
we will have pieces of theoretical analysis on the one
hand and pieces of code simulation on the other, and the
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two must be judiciously combined to make reliable pre-
dictions on how the yield of ICF capsules may be degrad-
ed because of mix. A definite prediction of the model
presented in Sec. V is that, while single scale perturba-
tions clearly depend on initial conditions such as ampli-
tude and wavelength, multiscale perturbations in the
highly nonlinear regime develop a mixing width that is
largely independent of initial conditions. This is verified
by planar experiments with constant acceleration,!’ but
the pertinent information in the presence of shocks or
spherical geometry is not available.

On the experimental side spherical systems are much
more difficult to diagnose than planar ones. Cylinders
stand midway in difficulty between the two and some ex-
perimental results have been reported,”> and we hope to
investigate multishell cylindrical systems and their stabil-
ity in the future. We expect that most, if not all, of the
convergence effects found in spherical geometry will be
captured by cylindrical systems also.

Finally, we hope future experiments will detect some of
the phenomena (feedthrough, freeze-out, critical modes,
etc.) discussed here. We believe they are of interest in
and of themselves. Similarly, we hope that our definition
of the geometrical factor relating A percar 10 A pjanar Will
be of some use to experimentalists. Clearly, our predic-
tions for single scale perturbations and for turbulent mix
must be tested in simple laboratory experiments before
one augments them with the effects discussed above and
applies them to astrophysical or ICF systems.
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APPENDIX

In this appendix we give the details of the four class-B
analytic solutions mentioned in Sec. III. The class-A
solutions reported there are straightforward to obtain.

(i) R=Rye'/", where T represents a time constant.
Throughout this paper a positive time constant will be as-
sociated with explosions and a negative time constant will
be associated with implosions. Note that R/R=1/T?
hence R >0 whether T >0 (explosion) or T <0 (implo-
sion).

With R =R e'’T Eq. (27) reduces to

2

dm  3dn_

1
A —_— =
i T ar (n)Tzn 0, (A1)
whose solution is
r Vit Yyt y_t
Ve Ve e " —e
n(t)=nqy +1 ,  (A2)
2 T =y
where
1 _—
=—[—-3%+V .
Y+ 2T[ 3+V'9+4n4(n)] (A3)
One may take advantage of the radial motion,

R =Rye"7, to write the exponential functions in terms
of R:
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eyit___(R/RO)TIT:(R /RO)[f3i\/9+4nA(nJ]/2 ) (A4)

We see that for the case R =Rge'/” where we have an
exponential implosion or explosion the perturbation am-
plitude 7(¢) evolves exponentially in time. This should be
contrasted with plane geometry where a constant ac-
celeration leads to an exponentially growing amplitude.

The solution given above is valid for arbitrary n A4 (n).
To compare with the doubly restricted cases, we first let
nA(n)=-—2. Then y,=—1/T, y_=-—2/T, and Eq.
(A2) becomes
n:no(ze'-t/r__e—ZI/T)_jr_,fIOT(e —t/T_e —2!/T)

=27+ 7T Ry/R)—(no+10oT)Ro/R)? , (AS)

which agrees with the corresponding class-A solution
when we let R =R e'/T in Eq. (30).
If we let nA(n)=0 (critical modes) then y =0 and

v _=—3/T, so that Eq. (A2) now becomes
ol
n(t)=n0+n%(1—e*3’/r)

0 T
=n0+l7—;—*[1—(RO/R 1, (A6)

which agrees with the corresponding solution when we
set R =R e'’Tin Eq. (31). Equation (A6) exhibits the ex-
pected critical behavior, i.e., n(t) =1, if 9,=0.

(i) R=Ry(1+1/T)"?. Note that R=—2R§/9T’R°®
and therefore R <0 whether T'>0 (explosion) or T <0
(implosion).

Plesset’s equation for this case can be solved by making
a change of variables: define

x=In 1+iT =3In(R /R,)

so that d /dt =(e ~*/T)d /dx. Equation (29) reduces to

2
d—1l+£nA(n)1]-_—0 ,

A8
PRSI (A8)
whose solution is
7:(0)
n(x)=mn(0)cos(yx )+ sin(yx) , (A9)

with y =1V2n A4 (n).

In this equation 7,(0)=(d%/dx), —o=T1,. When de-
scribed in terms of x, the evolution of 7 is extremely sim-
ple: if n A (n)>0, then ¥ is real and 7 oscillates with x; if
nA(n) <0, then y is imaginary and therefore 7 grows ex-
ponentially with x.

Writing Eq. (A9) in terms of the “real” variable R /R,
we find
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(t)=173 R i‘/2nA(n)+ R —iV2nA(n)
U= 1R, R,
30T R iV2nA(n)
2ivV2nd(n) | | Ry
—iV2nA(n)
R
- |= Al0
R, } (A10)
This form is useful for checking against the class-A
solutions. If welet n 4 (n)=—2, we get
2 -2
Mo R R
H=—/\\|=— 1|+ |
1= R, R,
30T [ [ R R |
— 5| — |5 , All
4 R, R, (ALl

which agrees with the result obtained from Eq. (30) after
substituting R =Ry(1+¢/T)!/? in that equation. This is
a nontrivial check. Note that in this case 7(¢) will grow
quadratically with R whether the system implodes
(R /Ry < 1) or explodes (R /R, > 1), though in principle it
is possible to cancel the growing term with a suitable
choice of 7.
For critical modes [r 4 (n)=0] Eq. (A10) becomes

n()=mn,+37,T In(R /R,)
=no+ioT In(1+1/T) ,

which agrees with Eq. (31) when we
R=R,(1+t/T)"? in that equation.

(iti) R(1)=R,+R,t +1gt?, g=const. This constant
acceleration case turns out to be the most complicated
case considered in this paper. To solve Plesset’s equation
we again make a change of variables:

(A12)

substitute

R} 2R,

, == ;

R
x———L +—0+a
2a g

(A13)

so that
R=2a%x(x —1), R=2(x—1)ag, R=g . (Al4)

Plesset’s equation becomes

d? d _
x(l—x)ﬁ+6(%—x)£+2nA(n)n—O ,  (A15)

whose solution is the hypergeometric function?®
F(a,b;c;x) where

= 5+V25+8nA4(n)

—-—2 ’ (A16)
b= 5—Vv25+8n4(n)
2 b

and

c=3

It is ironic that the constant acceleration case, probably
assumed to be the simplest by Binnie’ and by Gupta and
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Lawande,>!! turns out to be quite a complicated one.
The constants a and b given above were derived by com-
paring Eq. (A15) with the differential equation obeyed by
the hypergeometric function in the notation of Ref. 26.
They satisfy ab =—2n A (n) and a +b +1=6.

A numerical example with a constant acceleration and
deceleration was given in Sec. III B. Rather than consult
tables we solve Plesset’s equation numerically. This ap-
proach has the obvious advantage that in this way one
can evolve 7(t) for any implosion or explosion history in
the subroutine calling for R (¢). We used the analytical
solutions found in cases (i) and (ii) as a check of our nu-
merical integration technique.

The special case R =g =0 can be trivially integrated
because Eq. (29) implies that R*j=const. This case is
formally similar to case (ii) in class A, but note that here
we make no simplifying assumptions concerning n 4 (n).
The solution is still given by Eq. (31) after setting

R(1)=R,+Ryt=Ry(1+t/T) (g=0) (A17)
so that
10T
n(t)=n0+%[1—(Ro/R)2] (A18a)
. 1+t/2T
=it — L= (A18b)
oMo /Ty

(ivy R=Avd(r—t,). We refer to this case as a
“shock,” i.e., an instantaneous acceleration occurr:mg at
t =t in which the radial velocity is changed from R (¢, )

to R(ts+ ) but of course the position R is not changed in-
stantaneously. We have defined Av =R(ts+ )—R (¢, ).

As we discussed in Sec. II, the perturbation amplitudes
also behave in a similar manner: their values are not
changed instantaneously but they do acquire a new
growth rate. Integrating Plesset’s equation over
t, <t<t , where the subscripts * refer to times im-

mediately before and after the shock which is assumed to
arrive at t =t, we get

s

7'7(t$+)=’r'](txw)+nA(n)—%9-n(tS). (A19)
s

This result is of course similar to the planar case [see Eq.
(10)]. R, is the radius at shock arrival time. Note that
critical modes n 4 (n)=0 are not affected by a shock.

Let us consider a shock at t =0 followed by a constant
velocity. Since postshock g =0, the evolution is given by
Eq. (A18) with the shock setting the “initial”” conditions,

ie.,
Moo »

No—1(0,)=7(0_)+nA (n)%v—no .
0

Substituting these expressions into Eq. (A 18a) we get

1

(A20)

R

1—
R

77(t)=770+I 70_)+nA (n)—A—U'nO
2 R,
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where Av=R(0,)—R(0_) and T=R,/R(0,). If there
was truly no motion before this #=0 shock, i.e., if
7(0_)=R(0_)=0, then Av=R(0,)=R,/T and Eq.
(A20) simplifies to
]

as reported in Eq. (34).

We now consider the reverse case: constant velocity
followed by a shock at ¢t =t,. The perturbation evolves

according to Eq. (A18) until t=t,, when the_ shock ar-
rives and changes the velocity R(t; ) to R(z; ) and
Wt ) to 7z, ). We will define R(z;, )=R,/T_ and
R(tS+ )=R,/T .. The shock may stop the radial motion
of the interface, i.e., R(z . )=0, which will be a limiting
case T, — . We can obtain 7(¢;, ) by differentiating

Eq. (A18b); a faster way is to note that R 37 is conserved
when the interface moves with constant velocity and
therefore

nA(n)
2

Ry
R

n(t)=mny 1+ 1—- (A21)

R}
0t ):Fﬁo .

Substituting this value in Eq. (A19) we get
R} R, /T, —Ry/T_

. _ o,
n(t3+)——1(23-170+nA(n) R n(t,) (A22)
where, from Eq. (A18),
T_
n(t)=mo+itg——[1=(Ro/R, )] . (A23)

As we mentioned above, the shock may stop the radial
motion of the interface. The evolution of perturbations
at a “stationary” interface is in fact the simplest of all:
setting R=R =0 in Plesset’s equation it reads

2 2

t
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d?n/dt*=0 and therefore

n(t)=n(0)+#(0) . (A24)

If the stopping is done with the help of a shock at t =1¢,
we simply translate Eq. (A24) in time to read

17(t>ts)=77(ts)+7'7(t3+)(t—ts) . (A25)
No matter how the stopping is done, perturbations grow
linearly with time on a stationary interface.

Instead of, or in addition to, stopping the radial motion
of an interface a shock may, if properly timed, stop the
motion of the perturbations themselves by setting
#(t; )=0. This is the “freeze-out” phenomenon which

we reported earlier for the planar case.’ It is clear from
Eq. (A19) that one can arrange to have 7(z; )=0 by can-

celing 7(¢;, ) immediately before the shock against the 7

induced by the shock, i.e., against n 4 (n)(Av /R )n(t,).

The shock timing necessary to freeze out an amplitude
is obtained by setting to zero the lhs of Eq. (A22) after
substituting Eq. (A23) for %(¢,). To compare with the
planar result we write down one of the intermediate steps
in the algebra:

. A(n) | Rs R,
+ 2 n —_
Mo+ (R, /Ry) R, T, T_ Mo
nd(n) | R;  Ro | M0 | R
- | = +1].
R, N B 2ts R, 1 (A26)

If we now let n —kR with finite kK but R — o, hence
n— o, then 4(n)—> A4, R;/Ry—1, R, /T, —Ry/T_
=v(t; )—v(t,_)=Av, and Eq. (A26) reduces to

Ntk AAvn,=—kAAvigt, , (A27)

which agrees with the planar result [Eq. (10) of Ref. 5].
The final result for spherical geometry is

Mol [nA4(n)/21[(R, /R NT_ /T, )—1]—1)}

T_

which determines R, (or t,) necessary for freeze-out.

The very special case where the “second” shock stops
R and freezes 7 can be obtained from Eq. (A28) by taking
the limit T, — oo:

2 2

tS
T_

N

R,

_ Mol2+nA(n)]
nA(n)ig+2m,/T_)

1+

(A29)

So far we have kept the initial conditions 7, and 7, ar-
bitrary. If they actually are set by a “first” shock, then
the two are related:

To

A ’
To=n (n)T_

(A30)

" nA(R,/RMNT_ /T )—1\(ig/2+10/T_)

(A28)

f

and we find that 7, drops out of the freeze-out condition:
Eq. (A28) becomes

2 2

tS
T_

_ [nAn)/2]U(R,/RNT_ /T )—1]—1
" (R, /R NT_ /T, )—11[1+nAd(n)/2]

(A31)

s

Ry

_ [1+

For example, if n 4 (n)=10 and the velocity ratio is 2 (or
1) we get (R;/R;)*=2 (or 1). There are many possibili-
ties, especially if we remember that the shocks may be
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directed inwards or outwards, i.e., either T, or T_ or
both may be positive or negative.

Note that it is not possible to stop R and freeze 7 if the
initial conditions are set by a first shock: substituting Eq.
(A30) into Eq. (A29) we get R,=R, i.e., t, =0. When we
consider that there are three possible events: (1) setting
initial conditions by a shock, (2) second shock stopping
the radial motion, and (3) second shock stopping the per-
turbations (freeze-out), we conclude that one can choose
any single event or any combination of two events, but
not all three.

The situation is the same in plane geometry. If the ini-
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tial conditions are set by a first shock, then 7y=k Av;n,
and Eq. (A27) reduces to
by /0 (A32)

t,=— ,

s Avk A
again independent of the initial amplitude 7,. This is the
shock timing required to freeze-out an amplitude with in-
itial conditions set by a shock. It is clear that we cannot
add a third requirement of stopping the radial motion
(v, =0). Again, any single or two out of the three events
mentioned in the preceding paragraph can be selected,
but not all three.
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