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Rayleigh-Benard convection is studied in quasi-one-dimensional geometries. Fixed and periodic
boundary conditions are imposed using a rectangular and an annular cell, respectively. The desta-
bilization process of the homogeneous convective pattern is studied for increasing Rayleigh number
A. The first time-dependent behaviors are given by the appearance of coupled oscillators. At larger
A values, the spatial breakdown appears through the propagation of spatial defects, which appear
to be solitary waves. This spatiotemporal destabilization is followed at higher % by a spatiotem-
poral intermittent regime, which corresponds to a dramatic decrease of the spatial coherence and to
a mixing of turbulent patches within laminar domains. This last regime is studied within the frame
of phase transitions. The statistical analysis evidences a second-order phase transition at least in the
rectangular geometry (fixed boundary conditions), while this transition looks imperfect in the annu-

lar geometry (periodic boundary conditions). Nevertheless, the essential qualitative features shown

by theoretical and numerical models are observed in both geometries. Comparison with a simple
model of directed percolation shows that the imperfect nature of the transition in the annulus could
be the consequence of some mechanism of self-generation of the turbulent domains. This mecha-
nism is, however, unknown but is probably related to the influence of the boundaries.

I. INTRODUCTION

The evolution towards turbulent states of one-
dimensional (ID) hydrodynamical systems has recently
received much interest. In fact, these systems are
classified between the highly confined systems where
deterministic chaotic dynamics might be observed and
the extended systems in which developed turbulence gen-
erally takes place. Theoretical studies on these systems,
which depend mainly on one space variable, have shown
that a steady periodic cellular state may destabilize and
become turbulent when a control parameter is varied. In
this context, numerical simulations of phase equations,
such as those derived from the Kuramoto-Sivashinsky
equation, ' coupled map lattices, ' and cellular auto-
mata show that turbulence can be reached via spatiotem-
poral intermittency (STI). This STI regime corresponds
to a mixture of organized and turbulent domains which
exchange themselves in space and time.

In very recent years, experiments were done on 1D sys-
tems in which the basic state is spatially periodic. In this
frame, Rayleigh-Benard convection was studied in cells
with narrow gaps (one horizontal dimension is much
larger than the other) where only one space variable is in-
volved. Specific spatial and dynamical properties were
observed, as well as STI (Ref. 6) at high values of the
Rayleigh number. Statistical analysis of STI regimes,
performed under more adequate experimental condi-
tions, ' has given results similar to those of numencal
simulations. Nevertheless, the nature of the transition,
which could be reminiscent of a direct percolation pro-
cess, left some questions unanswered.

In order to get a deeper understanding of the dynami-
cal regimes involved in this transition to turbulence —via
STI—in 1D systems, we report detailed experimental re-
sults of convection in annular (periodic boundary condi-
tions) and in rectangular (fixed boundary conditions)
geometries. The two flows exhibit STI above a given
Rayleigh number, but whereas the transition is almost
perfect in the rectangular case, it turns out to be imperfect
in the annulus, probably owing to the existence of local
instabilities preceding the sustained STI regime.

In the following, we first describe the experimental set-
up and discuss the conditions relevant to the experiments
(Sec. II). In Sec. III we present the regimes leading to
STI and the existence of solitary waves. The statistical
properties of STI in both geometries are discussed in Sec.
IV. The use of a spatial criterion to discriminate laminar
domains (LD's) from turbulent domains (TD's) allows us
to perform a detailed statistical analysis in the case of the
annular (Sec. IV A) and rectangular (Sec. IV B)
geometries. In Sec. V we show numerical results of
directed percolation and compare them with experimen-
tal data. Finally, in Sec. VI, the convective regimes in
both geometries and the nature of the transition to STI
are discussed.

II. EXPERIMENTAL CONDITIONS

Experiments were performed both in annular and rec-
tangular cells filled with silicon oil of Prandtl number
P=7. Both geometries had vertical walls in Plexiglass.
The annular and rectangular cells had sapphire and
copper horizontal plates, respectively. In order to get a
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quasi-1D geometry, ' the annular cell had a circumferen-
tial aspect ratio I,=2vrr /d =35 and a radial aspect ra-
tio I „=Dr/d =0.29 where r, b, r, and d are the mean
radius, the radial gap, and the cell depth (d =7 mm for
the two cells). In the rectangular cell the longitudinal as-

pect ratio was I „=L„/d=25.7 and the transverse as-

pect ratio was I =L /d =0.43. In the two sets of ex-

periments the temperature difference across the fluid lay-
er was kept constant to within 0.01 K by means of circu-
lating thermal regulated ~ater.

The convective structures were visualized by shadow-
graphic imaging. A parallel light beam crossed vertically
the annular cell through the horizontal sapphire plates,
while in the rectangular cell, the beam was shone perpen-
dicularly through the horizontal longest side L . In this

way, the beam deflection was integrated along the cell
depth (circular cell) and along the smallest horizontal di-
mension (rectangular cell). One had therefore the top
view of the convective pattern in the circular geometry
and the front view in the rectangular one (see Fig. 1).

The temporal evolution of the annular roll pattern was
recorded using either a circumferentially moving photo-
diode positioned at the place of the shadowgraphic image
or a video camera recording system. With the former
technique, the annular convective structure was azimu-
thally scanned every second over 260 spatial points giving
near the onset of STI a spatial resolution of —6
points/wavelength. The video technique was used in
both geometries and, as the convective dynamics is
quasi-1D, the shadowgraphic image was digitized along a
circle of approximately 1200 pixels (annular cell) or an
horizontal line of 512 pixels (rectangular cell), giving a
spatial resolution of -30 pixels and —16 pixels per
wavelength, respectively. The circle and line were ap-
propriately selected in order to get a representative
skeleton of the convective pattern, without losing too
much information on the flow dynamics. The acquisition
frequency could be increased up to 5 circles/sec and 20
lines/sec for the annulus and rectangle, respectively.

In both geometries the time lapse between each new
line acquisition was set according to which dynamics, i.e.,
a short or a long time evolution, was studied. For exam-
ple, when we analyzed the spatiotemporal intermittency,
we looked particularly at the long time evolution of the
roll pattern. In the rectangular cell, up to 1900 lines were
recorded with a time interval generally set to 3 sec; in the
annular cell, time series up to 2000 sec were recorded.

The total acquisition time is to be compared to a charac-
teristic time, namely, the basic period To of the rolls os-
cillators. As To —-1 and 2 sec in the rectangular and an-
nular cells, respectively, this yields a total acquisition
time of about 6000 and 1000 basic oscillations of the
rolls.

After each temperature increase, dynamical equilibri-
um must be reached. In both experiments, we waited as
long as 24 h up to 48 h before each new data acquisition.
As a matter of fact, these delays revealed themselves
sufficient to obtain a new equilibrium dynamical regime.
The comparison with the phase diffusion time
=L, /D

~~

cannot easily be done since D
~~

is not known for
these narrow geometries and high Rayleigh numbers.
Nevertheless, taking D~~

=2.2X10 cm sec ' as calcu-
lated (and measured) near the convective onset, " these
delays are considered sufficient (rD =2 and 3 days for the
rectangular and the annular geometries, respectively).

III. FLOW EVOLUTION
BELOW THE SPATIOTEMPORAL

INTERMITTENT REGIME

Spatial and dynamical properties specific to the narrow
channels, (i.e., I, (0.5), have been already reported else-
where. ' They are summarized as follows. When R
exceeds a critical value %,=f (I ~), perfect stationary
patterns are observed with the roll's axis perpendicular to
the longest side of the container. An increase of A in-

duces generally the appearance of new rolls, making the
wavelength A, of the pattern much smaller than the one
observed in large containers. ' Wavelengths down to 2L
can be obtained. The value of k depends on the Rayleigh
number and on the thermal history. Near the onset of
STI and in a reproducible manner, 30 Q,O=0.43k, with
A,, =2d) and 40 (10=0.44k., ) wavelengths Ao are present
in the rectangular channel and the annular channel, re-
spectively. In the annular geometry, at lower % values, a
stable spatial inhomogeneity of the local wavelength is
generally observed and up to now, no clear explanation of
this phenomenon has been given.

Above a given e value [@=A/A, (1"~)—I] which de-
pends on the transverse aspect ratio I and on the
present wavelength, the pattern becomes time dependent
with the appearance of thermal oscillators (domain la-
beled by D in Fig. 2).

In the rectangular channel, at a=310, hot plumes ap-

FIG. 1. Shadowgraphic image of 1D Rayleigh-Benard convection in a rectangular container with I ~
=0.3 at @=45. Bright and

dark lines are cold and warm currents, respectively.
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FIG. 2. Phase diagram of the convective state as a function
of e in the annular cell (a) and in the rectangular channel (b). S
stands for a stationary pattern, D for a time and/or spatial os-
cillating pattern, STI for spatiotemporal intermittency, and T
for a complete disorganized and turbulent pattern.
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pear periodically in a pattern with a wavelength
A, =0.45k, The system is at first monoperiodic, i.e., all
the plumes have the same frequency everywhere and the
convective rolls are similar to a chain of coupled oscilla-
tors.

In the annular cell, collective oscillations are observed
for e & 200 and are related to a mechanism of Uacillations,
as it has been described in Ref. 12. We recall that these
vacillations, which correspond to a periodic displace-
ment, in phase opposition, of the ascending and descend-
ing streams around their mean position, are specific to
the narrow channels with Iy 0 40 When the Rayleigh
number is further increased, the collective periodic be-
havior may become chaotic with properties similar to
those of a pure dynamical system, while the spatial prop-
erties remain unchanged. Still in the annulus, a small
evolution of the pattern, probably induced by a slow and
a nonhomogeneous drift of the phase of the rolls can also
be observed, but globally the spatial features of the pat-
tern remain unchanged with a wavelength dispersion as
already mentioned.

At a larger value of e, new events leading to a spatial
symmetry breaking appear. These events were observed
in a stationary pattern present in a rectangular channel
between horizontal glass plates. ' The behavior is the
fo11owing: in an otherwise perfect pattern, a local desta-
bilization produces a wavelength larger than its neigh-
bors. This defect, which extends over two or three wave-
lengths, propagates along the pattern and can be reflected
at the lateral walls while keeping its topological aspect
(Fig. 3). Therefore it looks like a solitary wave. These
waves, which have been further observed within the ex-
perimental conditions of the results reported here, are
difficult to detect because their velocity is very low
[(10 —5 X 10 )Ao sec ' with Ao the basic wavelength of
the pattern] and their dynamic is combined with the be-
haviors of the oscillators. In the studied rectangular
channel where hot plumes are present, the defect propa-
gates only in part of the layer and can be reflected by or-
ganized domains that are very robust, at least for a given
time [Fig. 4(a)].

In the annular channel, these solitary waves have also

FIG. 3. Time evolution of the shadowgraphic minima in a
rectangular cell (between horizontal glass plates) with I =21
and I „=0.35. Notice the collapse of two solitary waves which
gives rise to two local large cells.

been observed just below the threshold of STI. In fact,
these waves appear in an e domain which corresponds
also to a homogeneity of the local wavelengths that are
no longer dispersed at the threshold of STI. There could
be a relation between the two phenomena though it has
not been evidenced. Figure 5(a) shows the existence of
such waves in different directions. It is difficult to know
whether they propagate all around the cell and cross each
other or are reflected by domains of oscillating cells.

In all the experiments, these waves are observed just
below the onset of local turbulent events and it seems
likely that they have a fundamental role in their appear-
ance. Indeed, when two defects propagating in opposite
directions collapse, they give rise to large local cells that
are origins for turbulent patches (Fig. 3). Their interac-
tion with oscillators can also destabilize locally the pat-
tern. The convective pattern enters then in the regime of
spatiotemporal intermittencies.

IV. SPATIOTEMPORAL INTERMITTENCY

In both geometries, above a given e value, the pattern
shows a mixture of organized laminar domains and in-
coherent turbulent domains (later defined) that are fiuc-
tuating in space and time. The first events of intermitten-
cy are observed for e'=450 in the annular cell and
e"=350 in the rectangular channel (Fig. 2). Here, super-
scripts a and r will refer, respectively, to the annular and
rectangular geometries.

Annular channel. In the range e' & e (500, the
dynamical regime in the annulus is characterized by tur-
bulent patches which are localized both in space and
time. These TD's can reach a spatial extension up to ten
rolls with a lifetime shorter than 100TO, with To the typi-
cal time period of the roll's oscillation. They can propa-
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FIG. 5. (a) Same as in Fig. 4 but with the annular channel.
The total observation time is 1500 sec and @=420. Notice at
the right and left of the frame the crossing of solitary waves.
Dark lines indicate the trajectory of some solitary waves. (b)
Wavelength distribution at a=420.

(c) X

FIG. 4. Space-time evolution of the convective pattern ob-

tained in the rectangular channel from the shadowgraphic im-

ages. The light intensity is plotted using a gray scale with 256
levels. Spatial digitization is made over 512 pixels (horizontal
axis). The total observation time (vertical axis) is 1536 sec.
Vertical dark lines correspond to stationary warm ascending
currents. (a) @=350, (b) @=409, (c) @=561.

gate around the container by contamination but they do
not spread. Moreover, they can be separated by very
long periods of complete ordered regimes (up to several
hours near e'). When e is increased, the spatial and tem-
poral extension of these domains increases while the
periods of ordered regimes become more and more sel-
dom. Around @ =500, a Auctuating regime made of LD's
and TD's is always present in all the container and is

characteristic of sustained intermittency. The propaga-
tion of the TD's through the pattern of LD's has a tree-
like structure (Fig. 6) as is observed in the spatiotemporal
diagrams of directed percolation (see Sec. V).

Rectangular channel. The transition in the rectangu-
lar cell from the organized "laminar" state to the STI can
be observed in Fig. 4. The behavior looks qualitatively
the same as in the annular cell, at least near the thresh-
old, with the coexistence of laminar and turbulent
domains, however with a stronger spatial confinement of
the turbulent regions. As can be seen in Fig. 4(b), tur-
bulent patches are sandwiched between laminar domains
and hardly propagate throughout the cell.

The simultaneous coexistence of two kinds of qualita-
tively different domains implies the search for a criterion
which distinguishes their different spatial and temporal
characteristics. LD's are regions where the initial spatial
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FIG. 6. Same as in Fig. 4 but with the annular convective
pattern at a=520. The total observation time is 1000 sec (along
the horizontal axis, time is going from left to right) and the spa-
tial digitization is made over 250 pixels. Notice the contamina-
tion process of the turbulent domains throughout the laminar
ones.
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periodicity of the roll structure is preserved, see Fig. 4(b).
Furthermore, in LD's the time evolution of the shadow-
graphic intensity I(x, t) at a fixed given point is either
stationary or oscillating in time leading to a local mono-
periodic or quasiperiodic regime with a small noise level.
We recall that the oscillations correspond to the vacilla-
tions in the annulus and to ascending plumes in the rec-
tangular cell. On the contrary, TD's are regions without
spatial coherence (see Sec. IV B) and their time evolution
is chaotic. This difference between LD's and TD's is well
evidenced in Fig. 4(c).

The choice of a spatial criterion based on the local
wavelength is therefore justified to discriminate LD's
from TD's without ambiguity. A reduction of the signal
can thus be performed, first by finding the extrema of the
intensity I(x, t) (a maximum corresponding to a cold
stream and a minimum to a hot one). A region in the
convective pattern between two consecutive extrema x;
and x, +, of I is then called laminar if

A,o( —,
' —b, ) & x;+,—x; & A,o( —,

' +6 ),
6 being a tolerance factor and A,o the mean wavelength,
otherwise it is called turbulent. We have checked that
the result does not depend on 6 provided —,

' ~ 6 ~ —,'. Such
a choice is suggested by the peaked distribution of the
wavelengths as shown in Fig. 5(b). The signal can then be
reduced to a binary representation of I (laminar or tur-
bulent) which allows us to perform statistics on LD's and
TD's. %'e have also used a temporal criterion to validate
the previous data reductions. Intensity differences be-
tween successive acquisitions were computed and com-
pared to a cutoff value 6. A pixel i is called laminar if

I(i, t +1) I(i, t) «5, —

otherwise it is called turbulent. The results are similar,
but with a larger dispersion, to those obtained with the
spatial criterion. In the following, we present results

0.8

0.6

0.2

I I I l ( l I I I I I I I I I I l

430 470 510 550 590

FIG. 7. Mean turbulent fraction F, as a function of e. (a)
Rectangular channel, (b) annular cell. See text for the full

curves.

which have been computed using the spatial criterion.
In order to characterize the global degree of chaos, we

have computed the mean turbulent fraction F, : F, refers
to the averaged total length occupied by the turbulent
cells divided by the total length of the container. F, is
plotted as a function of e for the rectangular [Fig. 7(a)]
and the annular [Fig. 7(b)] geometry. The difference be-
tween the two geometries is striking even if they both
show a continuous increase of F, with e. In the rectangu-
lar case, the transition looks like a quasiperfect phase
transition and a fit of the experimental data gives the re-
lation

F, -(e—eF )~,
with eF =360 and P"=0.3+0.05. In the annular
geometry, the transition to STI appears not well defined.
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Notice that in both geometries, no hysteretic
phenomenon has been observed when increasing or de-
creasing the Rayleigh number.

In order to get more information on the nature of the
transition and to understand the difference observed in
the two geometries, a detailed statistical analysis has been
made. We present the results separately for each case in
the following.

A. STI in annular geometry

The distributions of spatial lengths of LD's have been
computed. Figure 8 shows the histograms of the number
N(L) of LD's with length L for different values of e. One
must notice that the length L is computed in term of lam-
inar cells, so L can take values between 1 and 80 in the
annular geometry. When e is varied, two kinds of distri-
butions are evidenced. In the range 460& e & 500, the

histogram shows a power-law decay, in a domain of
lengths L which is e dependent.

The power-law decay which can be estimated on the
largest available range of scales at e=e,'=480+5 has a
characteristic exponent p' = l.7+0. l [Fig. 8(a)]. Accord-
ing to a theoretical definition, ' this value e,' could be
defined as the threshold of STI. If we plot the relation
Ft (E E )~ with P=P"=0.3 as computed in the rec-
tangular channel, we can fit the experimental points only
at the large values of e. The discrepancy observed at the
low values of e could be related to an imperfect nature of
the transition as will be discussed in Sec. V.

For e& e,' the histogram can be divided into two parts:
a first part in the range of the small scales shows an alge-
braic decay with the same exponent p,' while at large
scales an exponential decay is evidenced [Fig. 8(b)]. The
histograms exhibit this crossover phenomenon until
a= 500, from where they are best fitted by an exponential
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FIG. 8. Histograms X(L) of laminar domains of length L. (a) Power-law distribution at e=e,'=480, {b) @=500, (c) exponential
distribution at e= 530.
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over the whole range of lengths. Figure 8(c} shows this
exponential decay for a=530. If m, is the slope of the
curve ln[N (L )] versus L, the characteristic length
1, =1/m, is observed to decrease when e increases. A
plot of m, as a function of e [Fig. 9(a)] reveals two kinds
of behavior: at the lowest values of e for which m, can be
computed, m, has a nearly constant value, while at larger
values of e, m, increases almost linearly as a function of
e. This linear behavior is similar to the one observed in
the rectangular channel and in the experiment of Ciliber-
to and Bigazzi. However, the global behavior remains
complex and if there exists a transition —in the sense of
phase transition —these experimental results evidence its
imperfect nature.

The distributions of the lifetime of LD's have also been
studied. By analyzing our space-time series with the
same spatial criterion to discriminate laminar from tur-
bulent cells, we have performed histograms giving the
number N(r) of laminar periods lasting r. This temporal
approach displays features similar to those obtained in
the spatial distributions. The histogram shows an alge-
braic decay for e', =490+10 with a characteristic ex-
ponent p', =2+0. 1, and an exponential decay for e& 500.
The threshold of STI is indeed the same (E,'=e', ) as for
the spatial statistics even if the exponents are slightly
different. In the case of an exponential decay, a charac-
teristic time l, =1/m, is defined and m, varies also
linearly with e [Fig. 9(b)] if we skip the low values of 6.

B. STI in rectangular geometry

2.4

1 6

1.2

0.4

2.8

2.4

2

I c)

CV

1.2

480

(b)

+ 0 0
p
+

+ p +b

I I t I t I

500 520 540
I I

560
I 1 I 1

580 600 620

We have performed the same spatiotemporal statistical
analysis for the rectangular geometry. The results hap-
pen to be similar to those of the annular geometry, except
for the fact that the transition —via STI—in this linear
array of convective rolls is quasiperfect.

The evolution towards sustained STI has been first
quantified via frequency —wave-number power spectra
computed from the temporal evolution of the rolls of Fig.
4. Near the threshold of STI and for increasing %, a
large broadening, in wave number, around the mean
wave number is noticed as shown in Fig. 10(a). At larger
%, a broadening of the peaks takes place in the frequency
domain. We conjecture that this is mainly due to an un-
correlated dynamics of the rolls and differs strongly from
the time fluctuations of the oscillators. From these 2D
Fourier transforms, no propagation of defects, such as
the solitary waves observed near the threshold of STI,
can be revealed. Such frequency —wave-number spectra
also show that the transition toward sustained STI is at
first initiated by a spatial destabilization of the uniform
convective pattern giving a wavelength dispersion, fol-
lowed, at higher A, by time fiuctuations of the new spa-
tial pattern.

The distributions of spatial and temporal lengths of
LD's exhibit qualitatively the same kind of behavior as in
the annular cell. The histograms show a power-law de-
cay near e=e,"=360+10, while they reveal an exponen-
tial decay for e) 380 [Fig. 11(a)]. The characteristic
length 1, =1/m, and time 1, = 1/m, have a well-defined
dependence on e, as

r

m, -(e—e,") ', a,"=0.5+0.05,
0.4

i ~ i T T I I T I I i I T

480 500 520 540 560 580 600 620

FIG. 9. Annular cell. (a) Square of the slope m, computed
from the exponential decay of the histograms of the laminar
domains, as a function of e. Crosses and rectangles correspond
to increasing and decreasing e, respectively. (b) Square of the
slope m, computed from the exponential decay of the histo-
grams of the laminar domains with lifetime ~ as a function of e.

m, —(E e,"} ', a,"=0.5+0.05 .—

Probably due to finite-size effects (the container con-
tains only 60 rolls), the power-law distributions are only
defined on a small range of scales and therefore it is
diffiicult to find a precise value of p," or p,". An estimation
gives p,"=1.6+0.2 and p,"=2.0+0.2. On the other hand,
and contrary to the annular case, a unique threshold for
STI is defined. In fact, the value of the threshold e," ob-
tained from the distribution displaying a power law and
the value eF defined from the law of evolution of I', on e
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FIG. 11. Rectangular cell. (a) Slope m, computed from the
exponential decay of the histograms of the laminar domains, as
a function of e. (b) Spatial correlation length g as a function of
e. Notice the strong decrease of g when the convective pattern
enters into the spatiotemporal regime at a= 370.

FIG. 10. 2D centered power spectra. Horizontal and vertical
axis are wave-number and frequency axis, respectively. The
maximum wave number and frequency are 1/8 cm ' and 1/6
Hz. The logarithmic power spectra are plotted above a given
threshold. {a)@=380,(b) a=409.

are the same, e,'=eF-—360. This value also corresponds
to the first events of turbulence which can be observed in
the experiment (e"=350). Accordingly, the transition via
STI appears to be almost perfect in the rectangular con-
tainer, but with exponents which do not differ within the
error bars from these of the annular geometry.

To get more information on the transition process, we
have also computed the correlation length g of our sys-

tern. g is defined through the spatial correlation function:

C(r) =([r(r, t)—(r &][r(O, t) —(r &] &/(r'),
where I(r, t) and I(o, t) are the light intensity at two
points separated by a distance r and ( ) denotes the en-
semble average. The envelope of the correlation function
C(r) is expected to decay as

C ( r ) —exp( r lg ), —

where g is the correlation length to be compared to the
length L, of the system. As stressed by Hohenberg and
Shraiman, " when g& L, which is the case for all small
systems, the fluctuations may be regular or chaotic in
time but are still coherent in space. On the other hand,
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for (&L„the dynamical behavior is incoherent in space
and at moderate Rayleigh number is typical of a regime
of weak turbulence without any energy cascade. This is
the case for the convective regime studied in the two
geometries.

Correlation functions of the intensity were computed
to measure the correlation length g for different values of
e. The envelopes of these functions have an exponential
decay with the distance r, from which g can be extracted.
Fig. 11(b) shows the dependence of g on e and reveals a
change of behavior near a= 370, where a sudden decrease
of the correlation length is observed. Below the thresh-
old of STI, the correlation length is of the order of the
length of the system: /=20k, -L„while far beyond e,",
(=A, &L, which corresponds to the observed regime of
spatiotemporal chaos.

A characteristic frequency was also computed from the
first moment of the averaged frequency power spectra. '

A monotonic increase of the frequency is observed as a
function of e; however, no saturation of the frequency
value can be seen beyond the sustained STI regime.

V. COMPARISON OF EXPERIMENTS
WITH DIRECTED PERCOLATION SIMULATIONS

The results of spatiotemporal analysis performed in the
rectangular geometry are typical of a second-order phase
transition, but the transition turns out to be imperfect in
the case of the annular geometry. The nature and the
characteristics of the transition will be discussed in Sec.
VI. In this section we compare first the experimental
measurements with available numerical results. Some
statistical properties obtained with a very simple model
constructed from direct percolation are then given.

First of all, the experiments reveal the same qualitative
route to turbulence via STI as in the numerical simula-
tions of some partial differential equations (PDE s), cou-
pled map lattices, and directed percolation (DP) and most
of the characteristic properties observed in the critical re-
gion around the threshold of STI are similar to those ob-
tained numerically. The Kuramoto-Sivashinsky equation
with an additional damping term reveals a second-order
transition, with an algebraic decay close to the threshold,
in the histograms giving the distribution of lengths of
LD's, ' although the critical exponents are different from
the experimental ones. A one-dimensional array of maps
coupled by diffusion exhibits also the same behavior. In
this last case, Chate and Manneville have shown that
coupled map lattices display critical properties analogous
to DP, but that they do not belong to the same universali-

ty class. The relationship between DP and the transi-
tion to turbulence via STI had been pointed out by
Pomeau, who has placed the transition to turbulence for
weakly confined systems in the field of critical phenome-
na.

To go further in this comparison between DP and ex-
periments, we have performed calculations with a simple
model of cellular automaton. In our problem, the au-
tomaton is defined on a 2D lattice: one space dimension
made of N sites (standing for the 1D geometry of our ex-
periments) plus time. Each site has two possible states: a

laminar state (L) and a turbulent state (T) by
identification, respectively, with a laminar and a tur-
bulent cell in the experiments. The probabilistic rules are
defined on a three-site neighborhood, because the experi-
ments suggest the inAuence of the two nearest convective
rolls on the dynamical regime of the roll they surround.
The state of a cell i at time t +1 thus depends on its state
and on the states of its neighbors i —1 and i + 1 at time t.

In DP, the laminar state is absorbing, i.e., it cannot be-
come turbulent if its parents are laminar: p (LLL
~T)=0. However, since the experimental data show
that a turbulent region may originate from a laminar one
around the threshold of STI, a small probability p is in-
troduced so that

p(LLL~T)=p .

This probability stands for the spontaneous apparition of
turbulent spots in LD's.

The automaton is defined by a set of eight elementary
probabilities Ip„~k=0,7I:

p0=p(LLL~T), p, =p(LLT~T),

p2 =p (LTL ~ T), p3 =p (LTT~T),

p4=p(TLL ~T), p~ =p(TLT~T),

p6 =p ( TTL ~T), p7 =p (TTT~ T) .

The complementary probabilities are given by the rela-
tion p(XYZ~L)=1 —p(XYZ~T) and because of left-
right symmetries, we have p, =p4 and p3 =p6. %e have
chosen the case of directed bond percolation, which
seems to be more representative of our experiments than
site percolation, because of the diffusion process. More-
over, in order to make the calculations easier, we have
taken totalistic rules, ' so that the following relations are
satisfied:

5'I P2 P4

We are thus dealing with only one control parameter p
plus the probability p0=p. For the numerical simula-

tions, the number of sites N was 10 and the duration of
the run was several 10 . The statistical analyses were per-
formed only after some 10 iterations to skip the transient
regimes, especially near threshold. These values are not
large enough to ensure accurate results of the exponents,
which also depend on the size of the lattice. However,
they allow a description of the main characteristics of the
studied behaviors.

First of all, when @=0, the results show a transition
for p =p, =0.44. The fraction of turbulent sites (the time
average of the fraction of the system occupied by TD's)
varies as

F, -(p —p, )'

with @=0.28 and, for p =p„the histograms giving the
distribution of LD's of length L show a power-law decay
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with a characteristic exponent p, (p=0)=1.5. More-
over, for p )p„the histograms exhibit an exponential de-

cay with a characteristic length l, =1/m, which depends
on p. The evolution of I, can be fitted by

Q

m, -(p —p, ) ', a, =l .

The distributions of the lifetime of LD's evidence the
same transition at p =p, and give an exponent

p, (p =0) = 1.6 and a characteristic time l, = 1/m, for

p )p, . m, dependsonpas

0.8

0.8

0.4

m, —(p —p, ) ', a, =l .

A correlation length g can also be defined from the spa-
tial correlation function which decays as C(r)
-exp( —r/g). The variation of g reveals a transition
near p =p, which varies as

0.2

0
I I t i i t I I I I I I I t I t I

0.38 0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54

with v, =0.5. A second-order phase transition is there-
fore observed when p =0, with well-defined threshold and
characteristic exponents.

The results obtained when pWO display several impor-
tant differences from the case p =0. First of all, the spa-
tiotemporal representations of the automaton exhibit
features very similar to the experimental results. It
shows the importance of the spontaneous appearance of
turbulent sites for the generation of localized TD's near
the threshold p„while for p &&p„the role of p is totally
hidden by the process of contamination of LD's by TD's.

The statistical properties are also changed by the pres-
ence of p. If it is small enough (p (10 ), an algebraic
decay is still observed in the histograms giving the distri-
bution of LD's, but in a range of length scales which
shortens when p increases. The characteristic exponent
also depends on p. With p=5X10, the histograms
show an algebraic decay around p =0.44 on 100 sites
with a characteristic exponent p, (p =5X10 ) =1.4. On
the other hand, no noticeable change is observed in the
distributions of lifetime of LD's, provided p is small
enough: p, (p= 0)=p, , (P= 5X1 0 ). When p is in-

creased further, no transition in the functional form of
the distributions of LD's is observed: all the histograms
show an exponential decay. This last result is similar to
the conclusions of Bagnoli et al. ,

' who have also com-
pared the behavior of the experimental data of Ciliberto
and Bigazzi with that of suitable chosen automaton
rules.

When p&0, a change of behavior of the turbulent frac-
tion is still observable (Fig. 12). The value of I', for p =p,
is different from zero and increases with p. In fact, if
p & 10,F, evolves slowly with p and reveals no transi-
tion. The evolution of m, (or m, ) with p is also affected
by an increase ofp, as the evolution of F, .

In conclusion, these numerical results show the ex-
istence of a well-defined transition in the case of directed
percolation, i.e., when the laminar state is absorbing
(p =0). When the laminar state is quasiabsorbing (P&0),
the transition disappears in a strict sense or becomes im-
perfect. The evolution of the turbulent fraction becomes

FIG. 12. Mean turbulent fraction F, as a function of the
probability p for different p (see text). Squares, P'=0; crosses,

p = 5 X 10;diamonds, p = 10 ', triangles, p =2 X 10

smooth; meanwhile, the algebraic decay, which is charac-
teristic of the critical transition, disappears when p in-
creases.

Finally, these numerical results performed on a very
simple model of DP give an interesting insight on the ex-
perimental data. The rectangular geometry is well
represented by pure DP; meanwhile, the annular case can
be compared to DP with pAO. Though the physical na-
ture of p is not explained, it gives a good representation
of the spontaneous apparition of turbulent cells. As a
power-law decay is present in the experimental distribu-
tions, it turns out that the probability p is small in the ex-
periments, as shown by the numerical results. The lami-
nar state of the convective rolls is thus quasiabsorbing.

VI. DISCUSSION

The experimental results discussed in this paper have
shown that in quasi-1D Rayleigh-Benard convection, the
evolution of the convective state to sustained spatial tur-
bulence is achieved through the development of spa-
tiotemporal intermittency, as expected from theoretical
and numerical studies. The observation and quantitative
analysis of STI regimes have been previously performed
in convection experiments, but in that case, the 1D
character was not well fulfilled, and the criterion to
separate LD's from TD's was different from that used in
the present study. Nevertheless, many properties remain
similar in the two cases, showing the robustness of the
STI regimes.

In the present study, two different geometries were
used. Periodic boundary conditions were obtained using
an annular cell, while fixed boundary conditions prevailed
in the rectangular channel. The transverse aspect ratio
was slightly different for the two cases, but this difference
seemed to influence only the dynamical regimes preced-



3398 F. DAVIAUD, M. BONETTI, AND M. DUBOIS 42

ing STI. As a matter of fact, the first time-dependent
convective behavior was given by the appearance of oscil-
lators in the convective pattern —plumes in the rectangu-
lar channel, vacillations in the annulus —in agreement
with the general observation that vacillations do not exist
when I" )0.4. Nevertheless, the qualitative behavior of
the sustained STI regime was exactly the same in both
geometries, therefore it is independent of the nature of
the oscillators in the convective pattern. Their infiuence
on the STI threshold through eventual specific mecha-
nisms of spatial destabilization is unknown, but it is likely
that the observed difference (e"=360, e'=480) is related
only to the value of I' itself (in the experiment reported
in Ref. 7, the threshold value e'=200 with I = 1).

In the two geometries, the spatiotemporal intermittent
regime corresponds to a loss of spatial coherence and ap-
pears as an interspersing of turbulent patches within lam-
inar domains. Very close to the STI threshold, turbulent
patches spontaneously appear from time to time and,
after a while, relax and disappear. The intermittent be-
havior of a complete ordered pattern with a locally tur-
bulent one is observed within a very narrow e interval in
the rectangular channel, and within a larger e domain in
the annulus, as is clearly evidenced by the variation of the
turbulent fraction as a function of e. Moreover, this vari-
ation shows that in the former case, we have a quasiper-
fect second-order phase transition. In the case of the an-
nulus, the nature of the transition from laminar state to
STI is more complex and looks imperfect, though the
statistics concerning the length of the laminar domains
(power law at the "effective" threshold, scaling law for
the characteristic length) are similar to the statistics ex-
pected for a well-defined transition. A somewhat similar
behavior has been reported in Ref. 7, where the convec-
tion is also built up in an annular container (with I =1).
The striking difference between the behaviors in the an-
nular and rectangular geometries is probably due to the
influence of the boundaries which stabilizes the phase of
the rolls in the rectangular channel. On the contrary, in
the annular geometry, an intrinsic phase roll instability
together with a possible large scale flow could induce the

observed imperfect transition. In fact, it is only in this
geometry that turbulent patches propagate near the
threshold.

The experimental results agree globally with those ob-
tained by numerical simulation of PDE or coupled maps
and also with directed percolation. The quantitative
comparison between the values of the exponents numeri-
cally and experimentally measured (see Table I) is not
straightforward, for recent studies" show that the ex-
ponents are not universal. They depend, in particular, on
the size of the system, but also on the underlying mecha-
nisms which govern the transition. Nevertheless, the ex-
ponents P'—for the evolution of the turbulent fraction in
the rectangular geometry —and p, —of the algebraic
decay —deduced from the experimental observations,
may agree with those of DP and coupled maps. To our
knowledge, the prediction concerning the u exponent
describing the evolution of the inverse of the characteris-
tic length as a function of e, has not yet been done. The
exponent obtained through our numerical simulation of
directed percolation is not the same as from the experi-
mental data. Furthermore, no clear correspondence be-
tween the two control parameters p and e can be estab-
lished. A recent phenomenologica1 study of a 1D chain
of rolls, performed in the frame of the Landau-
Ginsburg equation, ' could give a transition similar to
our experimental observations.

The recent studies of 1D periodic systems have re-
vealed the richness of their spatial and dynamical proper-
ties. In a certain range of the control parameter, they
present an analogy with a chain of coupled oscillators,
and so, are linked to dynamical systems. Then, the first
symmetry breaking of the space translation takes place
by the appearance of propagative solitary waves. These
waves, observed in the convective narrow channels, have
been also evidenced in directional solidification ' and in
the periodic front of the meniscus of a fiuid between two
rotating cylinders. In this last experiment, spatiotem-
poral intermittency is also currently under investigation.
Therefore it seems that a large amount of the properties
we have found is generic to 1D systems.

Geometry

TABLE I. Values of different exponents

Experimental results

Ps

Rectangular channel
Annulus
Annulus (Ref. 7)

0.3 1.6+0.2
1.7+0.1

1.9+0.1

2+0.2
2+0.1

1.9

0.5+0.05
=0.5
0.5

0.5+0.05
=0.5

Technique

DP (this work)
(three parents)
DP (Ref. 5)
(two parents)
Coupled maps (Ref. 5)
PDE (Ref. 1)

=0.28

0.28

=0.25

Numerical results

1.5

1.6

1.78,2
3.15

1.6

a,
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