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Free-energy density functional for the inhomogeneous hard-sphere fluid:
Application to interfacial adsorption
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We propose a simplified version of the free-energy density functional for the inhomogeneous
hard-sphere fluid mixture recently derived by Rosenfeld [Phys. Rev. Lett. 63, 980 (1989)]. This new

functional, which requires four distinct weight functions, generates a triplet-direct-correlation func-

tion for the one-component fluid, which is in good agreement with Monte Carlo simulation results.

It also performs well in describing the density profile of the hard-sphere fluid in contact with hard

and soft walls. Yet, it is not suitable for studying the freezing transition.

I. INTRODUCTION

In a recent article, ' Rosenfeld introduced a free-energy
density functional (DF) for the inhomogeneous hard-
sphere fluid mixture which, in the uniform fluid limit,
reproduces exactly the analytic description of the ther-
modynamics and the pair structure as given by the
scaled-particle and Percus-Yevick (PY) theories. When
compared to other DF's proposed in the recent litera-
ture, which are used to study various phenomena involv-
ing nonuniform systems (adsorption and wetting at solid-
liquid interfaces or freezing transition ), Rosenfeld's DF
offers two major advantages: first, it is by construction a
functional for a multicomponent fluid, while other DF's
cannot be easily generalized to mixtures without intro-
ducing some inconsistencies. Second, it yields simple ex-
plicit expressions for the n-body direct correlation func-
tions of the uniform fluid, and comparison with recent
simulation results for the triplet function c (r, r') of the
one-component fluid shows reasonably good agreement.
It is fair to acknowledge that, after several other at-
tempts, ' the results presented by Rosenfeld, Levesque,
and Weis represent the first significant step towards a
comprehensive picture of the direct triplet correlations in
a three-dimensional dense liquid. On the other hand, and
contrary to other functionals, Rosenfeld's DF is unable
to predict the occurrence of the solid phase.

Then, what is the real theoretical status of this DF? In
Refs. 1 and 8, it is argued that general constraints on the
nature of the PY free-energy functional dictate its com-
plete form and that, in this sense, it differs from all other
existing theories, which are only "tailored" to reproduce
the available properties of the homogeneous Auid. This
statement is certainly excessive, as shown in the present
work, where we propose a much simpler DF than Rosen-
feld, which is also intimately connected to the PY solu-
tion and which achieves a comparable or even better suc-
cess in predicting the triplet correlation function c (r, r').
More precisely, our functional, belonging to the same
class of nonlocal DF's with linear, weighted (or coarse-
grained) densities proposed by Percus, " employs the

minimal number of weight functions necessary for repro-
ducing the PY c (r) The.n, as an application, we show
that this functional works also very well for describing
the density profile of a hard-sphere fluid adsorbed onto
hard and Lennard-Jones planar walls. Yet, it is not
adapted to the study of the freezing transition.

II. DERIVATION

((k) y R (k)

i=1
k =0, 1,2, 3

where the R ' are the "fundamental measures" charac-
terizing particle i: R,' '= 1, R,' "=R, (the radius),
R,' )=4trR, (the surface area), and R,' )=4/3trR; (the
volume); incidentally, we may note that four independent
variables are not enough to describe an n-component
mixture with n )2. The success of Eq. (1) in this case is
quite uncertain and as yet unchecked, as far as we know.

The purpose now is to build a density functional from
which (1) can be derived. The structure of c;,. and the ex-
act solution for the one-dimensional hard rod fluid' sug-

We start with the PY direct correlation function for
the three-dimensional hard-sphere mixture, written

s1,8, 12

c; (r)=g' 'b, V—; (r)+g' 'bSJ(r)+g'"bR; (r)

+q'"e(R, +R, r) . —

For clarity we keep Rosenfeld's notations: R; is the ra-
dius of the sphere of type i; e(r) is the Heaviside step
function; EVj ]eakS j and b,R; are functions of the dis-
tance r which have simple geometrical definitions
y"', g' ', and y' ' are functions of the radii R; and con-
centrations p;.

Equation (1) has a remarkable structure. First, as the

p, vary, c, (r) lies in th"e vector space spanned by the four
functions of r, 8, , hV, , AS;, and hR; . Second, each
y' ' depends only on four reduced quantities, which are
the basic variables of the scaled particle theory:
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gest" that one considers a special family of DF's where

the excess part of the free energy can be written as

PF,„[{p;I]=fdr@({n (r)I), (3)

n (r)= g f dr'p, (r.'}co'; '(r —r') (4)

where 4 is a general function of linear averages (or
weighted densities)

hV; (k)=coI '(k)co' '(k), (10a)

ering (1) from (6)'? If we impose the natural scaling con-
dition

co,' '(k)/co', "(k =0)=co' ' (t, =kR, ),
four independent scalar functions co' '(t) should be
sufficient. Indeed, one readily obtains from (1)—(8) the
system of four equations,

—c,"(r„r2)=P5 F,„/5p,(r, )5'(r2}, (5)

it is clear that c; (r) has precisely the peculiar PY struc-
ture in the uniform limit

and co'; '(r)(a=1, 2, . . . , m) are some unknown density-
independent weight functions (P= I/k T is the inverse
temperature). As proposed by Percus, " the weight func-
tions (and therefore the n 's) can be either scalars or vec-
tors. Since the direct correlation function is given by

bS"(k)=co' '(k)co' '(k)+co'; '(k)co' '(k),

ER,)(k}=co,'"(k)co' '(k)+coI '(k)co'"(k)

+ 1/4mco' '(k)co' '(k),

B;(k)=co', '(k)co,' '(k)+co'; '(k)co' '(k}

+co'"(k)co' '(k)+co' '(k)co"'(k)

which has the unique solution in k space,

(lob)

(10c)

(1od)

co '(k =0)=R' ' a=0, 1,2, 3 (7a)

for the first four scalar weight functions, and

co' '(k =0)=0 (7b)

for the other scalar weights and for the vectorial ones.
Then n (r)~n =g' ' (a =0, 1,2, 3) in this limit and

4=@pv= —noln(1 n3)+n&n2/(1 ——n3)

+( I/24vr)n z /(1 n3)— (8)

How many weight functions are then necessary for recov-

—c (k)= g co' '(k)co' '(k)c} 4
, p c}n,c}np

where we have introduced Fourier transforms with
respect to r with obvious notations (scalar product be-
tween vectorial quantities is implicit).

At this point, can the weight functions co'; ' be uniquely
derived from general geometric considerations? Certain-
ly not. On the other hand, some restrictions on the mul-
tivariable function 4( {n J ) can be found by considering
the limit R;~ ~. In this way, Rosenfeld, ' who makes
an a priori choice for the co'; ', is able to derive a possible
form of 4. (However, his argument is uncomplete or at
least unclear: in order to get information on a possible
vectorial part in 4, one inust consider a nonuniform sys-
tem in the absence of any external field. This system can
only be the solid phase, and therefore one has to admit
that, even in this case, the work needed for inserting a
macroscopic particle at constant pressure is PV. ) In any
case, it is clear that an arbitrariness exists in the choice of
the weight functions and in their normalization (i.e., their
value for k =0).

In fact, it is more reasonable (although less ambitious)
to "tailor" 4( {n I ) on its uniform PY (or scaled particle)
limit, that is, the Helmoltz excess free-energy density (di-
vided by kT), as given in the PY theory by integration of
the compressibility equation. Then one chooses the obvi-
ous normalization conditions

co'; '(k) =4m. [sin(kR, ) —kR;cos(kR, )]/k

co', '(k) =4irR, sin(kR, )/k,

co,'"(k)= [sin(kR; )+kR;cos(kR; )]/2k,
coIO'(k)=cos(kR, )+(kR, /2)sin(kR;) .

(1 la)

(1 lb)

(1 lc)

(1 ld)

co'; ' and m'; ' are the same functions as those introduced
by Rosenfeld, ' but ~';" and co'; ' differ, since we have not
introduced unnecessary vector-type functions. In r space
we have

~I"(r)=e(R, —r),
co;''(r) =5(R, r), —

co';"(«) = (1/8~ }5'(R; r), —

co;''(r) = —( I/8m. )5"(R; r)+5'—(R; r)/(2nr—), .

(12a)

(12b)

(12c)

(12d)

so that in reality the weight functions are distributions
[5'(r) and 5"(r) are, respectively, the first and second
derivative of 5(r). ] We see no objection to this fact since
these quantities are always integrated. We also note that
there is no guarantee that the weighted densities n (r)
stay positive in all circumstances. A priori we have no
objection again since the n s have no obvious physical
meaning. However, this point deserves further discussion
(see Sec. IV below).

The higher-order direct correlation functions are ob-
tained by successive functional derivation of PF,„[{p, I ]
with respect to the one-particle densities. The complete
expression of c;~k(k„k2,k3) in the homogeneous fluid is
given in the Appendix. Note that we have only 20
difFerent terms, instead of 32 in Rosenfeld's DF. How-
ever, we are not penalized for this simplification, as
shown in Figs. 1(a)—1(e), where we compare the theoreti-
cal predictions to the simulation results for the one-
component Quid. In fact, the agreement is even better,
in particular in the intermediate region ko =5—7 (for
ko & 9 the two functionals give indistinguishable results).
However, it is clear from the figures that both theories
are unable to reproduce the fine structure of c .
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FIG. 1. (a) Triplet-direct-correlation function p c'(k0. =2.3045, cose) vs cose in the isoceles triangle geometry (k, =k2=k,
k 3 k &2& 1 +cose ) for hard spheres at packing fraction g =0.45. The points represent the simulation results (Ref. 8), the dashed
line represents the result of Rosenfeld's function (Ref. 8), and the solid line represents the result of the present theory. (b) Same as (a)

but for ko. = 5. 153. (c) Same as (a) but for ko. =6.024. (d) Same as (a) but for k 0 =7.0404. (e) Same as (a) but for k~ =8.0383.

III. APPLICATIONS

A. Adsorption at a wall

We first consider the much studied case of a one-
component hard-sphere Auid in contact with a hard wall.
The external potential is defined by

—(R /4) [p'(z +R )
—p'(z —R )], (14a)

so that the density profile p(z) varies only in the direction
normal to the wall. Then the weighted densities are

no(z) =
—,
' [p(z +R )+p(z —R )]

z(0
0, z)0 (13)

n, (z) = ,' I dz'p—(z +z')
—R

+(R /4)[p(z+R)+p(z —R)], (14b)
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FIG. 2. Density profile of hard spheres near a hard wall at

packing fraction g=0.46. The circles represent the simulation

results (Ref. 15) and the solid line the prediction of the present
theory.

(14d)

p{z)P

nz(z)=2nR I dz'p(z'), (14c)
z —R

R
n3(z)=m J dz'p(z+z')[R —(z') ] .

The profile is obtained by solving the Euler-Lagrange
equation which corresponds to the minimization of the
grand potential' Q[p]=F[p]+fdz p(z)[v(z) —p]. The
result for the packing fraction g=0.46 is shown in Fig. 2
and compared to a recent Monte Carlo simulation. ' The
agreement is really good, except of course at contact

FIG. 4. Same as Fig. 3 for g =0.32 and T = 100 K.

v (z) =a[(zo/z) —(zo/z) ] . (15)

Monte Carlo simulations for this system have been per-
formed recently. ' Comparison with the theoretical pre-
dictions is shown in Fig. 3 for the case of a strongly ad-
sorbing wall (e/k =2876 K; zo/0 =0.562) at T = 150 K
and g=0.244. Again good agreement is observed, even
though it is a demanding situation [p(z)/p=12 at the
maximum]. However, at lower temperature ( T =100 K)
and higher bulk density (g=0.32) the agreement is wor-
sening significantly, as seen in Fig. 4.

where p(0) =13P WPP'""'. We stress in particular that
the oscillations are almost perfectly in phase, a perfor-
mance which is reached by no other density functional.
We also have to note that the weighted density no(z)
reaches negative values near z =R, as could be expected
from the expression (14a).

We next consider adsorption onto a Lennard-Jones 9-3
wall

10-

FIG. 3. Density profile of hard spheres near a Lennard-Jones
9-3 wall (g=0.244, c./k =2876 K, z0=0.562o, T=150 K).
The circles represent the simulation results (Ref. 16) and the
solid line the prediction of the present theory.

B. Freezing transition

Like Rosenfeld's DF, ' the simplified version present-
ed here is unable to predict a freezing transition for
three-dimensional hard spheres, if one uses the full ex-
pression (3) for F,

„

instead of a functional expansion,
truncated at second order, about the excess free energy of
the coexisting liquid, using the PY c (r) as input. How-
ever, unlike Rosenfeld, we do not find that the liquid cor-
responds to the minimal free energy; if, as usual, we
represent the solid density by a superposition of isotropic
Gaussian peaks of width o. centered on the lattice sites,
and vary a to minimize the free energy, we find that F„
decreases so rapidly that it becomes negative for values of
a which are much too small (e.g., for per = 1, F,„(0for
ao. larger than -42, we recall that the freezing transi-
tion occurs near ao = 80 in the simulation). The
mathematical reason for this phenomenon is that no(r)
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and n, (r) are negative in regions where n3(r) is close to 1

and thus ln(1 —n3) and 1/(1 —n3) are large. The fact
that n3(r} (which is the only dimensionless quantity) may
come close to 1 is by itself a serious problem, which origi-
nates from the short range (radius R ) of the weight func-
tion co' '. Indeed, in the low-temperature, high-pressure
limit of a perfect solid, where p(r) becomes a sum of 5
functions

p(r}= +5(r—R), (16)

one would find

(17)

i.e., n3(r)=1 in a sphere of radius R around each site.
This problem does not occur in the other functionals pro-
posed in the literature, where the range of the weight
function is the hard-sphere diameter 0..

IV. DISCUSSION

As pointed out by Percus, " the task of building a func-
tional for the free energy of a nonuniform system from
the available properties of the uniform Quid requires a
compromise between "un der determination and over-
determination. " When Tarazona or Curtin and Ash-
croft build a DF for the one-component hard-sphere sys-
tem and introduce only one weighted density n (r), they
do not take advantage of the existence of the PY solution
for mixtures, which to be sure contains additional infor-
mation on the physics of the system. It is then difficult to
extend such a DF to the case of mixture because one does
not know how to introduce and combine the needed addi-
tional weight functions. This problem is automatically
solved in Rosenfeld's approach or in the present one be-
cause one considers weight functions for each individual
sphere and then simply adds the different contributions to
build the n (r)'s.

How can we then interpret these quantities? When
there is only one weighted density n (r), it may be regard-
ed as an effective local density and this interpretation is
very useful to understand the process of the freezing tran-
sition. ' If some of the n (r)'s are vectors, like in
Rosenfeld's approach, there is no obvious interpretation
available. In the simplified version presented here, there
are only four scalar variables, whatever the number of
fiuid components, and it seems natural to regard them as
the generalization of the four independent variables of
the scaled particle theory to the case of the nonuniform
Auid. From this point of view, the degeneracy present in
the uniform one-component system (where rI is the only
relevant variable) is removed by the appearance of a
nonuniformity due to an external field or to the spontane-
ous crystallization. If we adopt this interpretation, the

+(I/36m)n~/(. 1 n3) n3 . — (18)

The problem is more diScult for c; (r), since it seems
necessary, in order to fit accurately the simulation data, '

to give up the structure of the PY expression, i.e., the
nice separation between geometrical (density-
independent) factors and density-dependent functions.
On the other hand, keeping the same weight functions
co'; ' and using (18) instead of (8) would be incoherent.
Clearly, one must take into account the fact that the
direct correlation functions are nonzero outside the hard
cores. We have not yet succeeded in overcoming this
difficulty.

In summary, we have proposed a density functional for
the inhomogeneous hard-sphere fiuid mixture which is a
simplified version of Rosenfeld's DF. It predicts a good
triplet direct correlation function for the bulk one-
component Quid but fails to give a freezing transition.
When applied to nonfreezing problems such as liquid-
solid interfaces it gives good results if the nonuniformity
is not too large. Another advantage is that it can be
readily used in the case of mixtures. Corresponding re-
sults will be presented in a forthcoming publication. '
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n (r)'s now have a physical meaning and we must forbid
all negative values. Moreover, n3(r), which is the local
packing fraction, must be bounded by 1. Actually, we
must regard with caution situations where n3(r) becomes
locally larger than 0.45—0.5, since we cannot expect the
PY theory for 4 or c, (r) to be accurate in this case.
More generally, we may expect that a bad performance of
the functional will be related to the appearance locally of
negative values of no (and possibly n, ) and high values of
n3. This is the reason why it is not adapted to the study
of the freezing transition. This is also why it becomes
inaccurate in the adsorption problem studied at the end
of Sec. IIIA: in the vicinity of the first peak we get
n3(z) =0.65.

It is clear that improving the present functional re-
quires us to go beyond the PY theory for the excess free
energy 4 and the direct correlation functions c; (r). For

one can use the extension to mixtures' of the
Carnahan-Starling expression, which can be still written
in terms of the variables of the scaled-particle theory

4= [( 1/36m )n 3z /n 3
—n 0 ]in( 1 n3 ) + n—

&
n z /( 1 n3 —)

APPENDIX

In this appendix, we give the explicit expression of the triplet direct correlation function c; k(k&, k2, k3), which can be
derived from our functional. We get
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—
C,J„(1c„1c,k, ) =y' "[co', '(k, )co,'"(k )co'„'(k,)+co';"(k, )co,'Q'(k )co'„"(k,)

+co', '(k, )co' '(k2)co(k '(k3 )+co';"(k, )coj~'(k2)co'k '(k3)

+co', 2'(k, )co,'"(k )co'„'(k,)+co', "(k, )co' '(k )co'„'(k )

+co' '(k, )co'"(k )co' '(k )+co'. '(k) )co' '(k2)cot,"(k3)

(k) )co,
2 (k2)cok (k3)+1/4ttco(2 (k) )co. (k )co (k3)]

+y" )tco', "(k, )co,
' '(k )co'„'(k )+co'; '(k, }co'"(k )co'„'(k )

+co;''(k, )co' '(k2)co(k"(k3)+1/47r[co;''(k, )co' '(k2)co(k"(k3)

+co' '(k, )co' '(k )co' '(k3)+co' '(k )co' '(k2}co' '(k3 }]I

+y' '[co' '(k )co' '(k
2) cok'(k3)+co' '(k))co' '(k2)cot, '(k3)

+co'; '(k, )co,
' '(k2)co'k '(k3))+y' 'co;''(k, }co' '(k2)co'„'(k3),

with k3 = ~k(+k2~ and

(Q)
(Q3) X 1/(1 )2

Bn3

(1)
=2n /(1 n)—

Bn3

(23)
g~(2)

=2n, /(1 n3) +3/—4mnz/(1 . n3)—
c)n3

(3)
=2nQ!(1 n3) +6n, n2/—(1 n3) —+1/trna/(1 —n3)' .

t)n 3
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