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Dynamic cross correlation in isotopic two-component liquids:
Molecular-dynamics calculation results compared with predictions of kinetic theory
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For thermodynamically ideal two-component systems, as for example isotopic systems, the mass

effect on the mutual diffusion coefficient is negligibly small for mass ratios of order 2. For higher
mass ratios a significant influence on the diffusion coefficient may be expected. We present here ac-
curate molecular-dynamics calculation results for the hard soft sphere and the Lennard-Jones
liquids, which indicate quantitatively the mass-ratio effect on the mutual diffusion coefficient. The
predictions of the Enskog kinetic theory are found to give the correct trend and order of magnitude
of these effects but overestimate them at all the mass ratios studied. Both systems, the hard soft
sphere liquid I,'the softness of the interaction is so small that it can be regarded as a hard one) and
the Lennard-Jones liquid, show appreciable mass-ratio dependence of the diffusion coefficient only
for ratios larger than 10, in agreement with our previous numerical work [Schoen and Hoheisel,
Mol. Phys. 52, 1029 (1984); 53, 1367 (1984); 57, 65 {1986)].

I. INTRODUCTION

Dynamic cross correlations in binary liquid mixtures of
very nonideal character have widely been studied by
molecular-dynamics (MD) calculations. ' In thermo-
dynamically ideal two-component systems whose com-
ponent particles differ only in mass, the so-called isotopic
mixtures, cross correlations are generally negligible.
However, for isotopic systems of very large mass ratio,
these cross effects can play a significant role. They ac-
celerate the mutual diffusion process relative to the self-
diffusion processes. Recently self-diff'usion has been care-
fully studied for isotopic liquid mixtures. Although
significant mass influence was found in these studies, the
results provide only indirect information on dynamic
cross correlation.

Hence an extensive MD investigation of cross correla-
tion in isotopic binary mixtures seemed to be in order.
Such a study seemed of particular interest, because kinet-
ic theoretical predictions exist for these systems and to
the best of our knowledge they have not been compared
with exact computer results until now. Our calculations
include the hard soft sphere (HSS; the softness of the in-
teraction is so small that it can be regarded as a hard in-
teraction) and the Lennard-Jones (LJ) two-component
system. The former is equivalent to the hard-sphere sys-
tem and thus allows application of theoretical ap-
proaches developed for HS systems. The latter shows the
influence of attractive forces on the cross correlation,
when it is compared with the HSS system.

II. DYNAMIC CROSS CORRELATION
AND DEMIXING IN TWO-COMPONENT SYSTEMS

For "molecular-dynamics ensembles, " where the parti-
cle number N, the volume V, and the total energy E are
fixed and the total linear momentum p is zero, the mutual
diffusion coefficient D, 2 of a binary system may be writ-
ten as follows:

Here the velocity of particle i of kind 1 is denoted by v", ,
the particle masses of the species are denoted by m

~
and

m2, and the mass fractions by w, and w2. The total
number of particles is assumed to be X =X, +%2. The Q
factor appearing in the first equation represents a thermo-
dynamic factor, which is unity for a thermodynamically
ideal mixtUre. The angular brackets indicate the aver-
age over the NVE p=o ensemble.

It can then be shown that for a pseudomixture, in
which particles of species 1 and 2 can only be dis-
tinguished by numbers, Eq. (I) reduces to an expression
containing velocity-autocorrelation functions rather than
the mass-current autocorrelation function (MCAF). ' We
have for such a system

D, =Q x, f (v', "(0) v', "(t))dt

+x~ f (vI '(0) v,' '(t))dt

= Q (x~D, +x,D2 ), (3)

where we have introduced the self-diffusion coefficients

D, and D2 and the mole fraction x, and x, of the com-
ponents.

We see that in thermodynamically and dynamically
ideal mixtures (pseudomixture) the mutual diff'usion

coefficient is just composed of the self-diffusion
coefficients. Thus the diffusion process is solely charac-
terized by velocity autocorrelations.

For nonideal mixtures, the mass-current autocorrela-
tion function given in Eq. (1) appears to contain addition-

D„= f (J (0) J (t))dt,
3N m)w)mqw2 o

where J (t) is the mass current defined by the following
expression:

x,
J (t)=m, g v' '(t) .
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al velocity cross correlations responsible for deviations of
the mutual diffusion coefficient from the ideal diffusion
coefficient D,2. The so-called dynamic cross-correlation
ratio D&2/D, 2 may therefore serve as a suitable measure
of dynamic cross correlation in binary systems. A further
advantage of the use of this dynamic quantity is its expli-
cit independence of the thermodynamic factor Q which
drops out as Eq. (1) and (3) show immediately.

However, an interesting alternative, completely
equivalent description of the dynamic behavior of a
binary mixture may be given by direct analysis of auto-
correlation and cross-correlation terms in the mass-
current autocorrelation functions. This has been given in
a general manner by Raineri and Friedman and applied
to computer calculations by the present authors.

Here it is satisfactory to define the so-called self-terms
and distinct terms of the mass-current autocorrelation
functions which will be exploited in a later section to ana-
lyze the dynamic character of the mixture. We write

D„
xiD, +x,D,

(1/S)'
x2 x)+

x, +x~(S)' x, (R)' (S)' x

(4)

where x& and x, denote the mole fractions and R the
mass ratio mz/m, of the two molecular species with the
additional abbreviation

S =2R /(1+8) .

We see immediately from Eq. (4) that for R= 1 the dy-
namic cross-correlation ratio, which we shall denote by
D,2/D, 2 in what follows, equals 1, as it should. The
asymptotic case of R ~ ~ can also be determined by Eq.
(4), yielding

D&z 1 xi=1+ —, , R~~ .
D, 2 (2)'

y'(t)= —,(v;"(0) v,
" (t)),

y (t)= —,'(X,v,'"(0) v,'"(t)),

with j Wi Not.e that for a pseudomixture y'(t) cancels
y (t) at any time to order (1/N). For nonideal mixtures
the sum function y'(t)+y (t) is well suited to character-
ize the dynamic behavior of the mixture.

A final general comment on phase separation and asso-
ciation in a mixture may be in order. Using the dynamic
ratio D,2/D, 2, one can classify thermodynamically
nonideal mixtures in those showing demixing or associat-
ing tendencies dependent on whether the D~2/D ~p value
is larger or smaller than unity. ' In particular, phase sep-
aration is well detectable in mixtures of very different
molecular interactions. However, in the present work we
investigate thermodynamically ideal mixtures only
differing in the particle mass of the components. These
mixtures behave thermodynamically like a pure Quid.
They cannot show any structural demixing or associating
tendency. So, when we speak of "dynamical demixing"
in the following text, we think of nonequilibrium states,
where these pure dynamical effects could play a role. We
think, for instance, of thermodynamically unstable
"metastable states" near the boundary of phase stability.
For these latter states, pure dynamic demixing effects
could inhuence the behavior of the liquid.

III. KINETIC THEORY

Using the definition of partial friction coefficients in a
binary mixture Al-Chalabi and McI.aughlin obtained
self-diffusion and the mutual-diffusion coefficients of a
hard-sphere mixture in the Enskog approximation. ' In
particular, they derived simple formulas for isotopic HS
mixtures. Considering these expressions for the self-
diffusion coefficients D

&
and Dz, as well as for the

mutual-diffusion coefficient D&z, we find the following
simple relation for the dynamic cross-correlation ratio,
D u /(x )D2+xqD i ):

For equimolar composition, we then find the value of 1.7.
From earlier studies"' we know that dynamic ratios
close to 2.0 lead to demixing of the system. So phase sep-
aration might not occur in isotopic mixtures, at least not
in "Enskog-type" Auids. We shall, however, return to
this point in our final discussion.

IV. MD CALCULATIONS

The MD calculations were performed in the manner
described extensively in Ref. 6. Some useful technical de-
tails of the present computations are gathered in Table I ~

As we are interested here in very small effects, it was
obligatory to perform a lot of different runs for the same
mass ratio to achieve the required low statistical error.
Furthermore, it was necessary to examine the reproduci-
bility of the results depending on the time step applied.
In most cases, an integration time step of 0.5X10 s
sufficed. However, for the larger mass ratios and the
hard —soft-sphere potential a reduction to 0.25 X 10 ' s
was unavoidable. We studied mass ratios up to R=20
very accurately, but performed some test runs for much
larger R. As the runs for these latter R values indicated
large statistical uncertainties, we did not attempt to reach
a better accuracy by increasing the number of runs. The
results, which we obtained for the smaller R, sufficed for
what we intended to show. The statistical uncertainty of
the dynamic cross-correlation ratio computed in this
work is smaller than 3%, which has been accounted for
in the smoothed curves, drawn by graphical interpolation
through the final data, presented in the figures. The
"cross-correlation functions" illustrated in the figures
have larger statistical uncertainties of 5—10%%uo, because
they stem from single runs only.

V. POTENTIALS AND STATES

For the comparison with kinetic theory we have used
the "42" HSS potential function given by the expression
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TABLE I. Technical details of the MD computations.

Number of particles
Number of integration time steps
Number of runs per mass ratio
Time step
Integration scheme
Ensemble

Number of uncorrelated averaging events

Cutoff radius for the LJ potential
Computation time per 1000 steps (Cyber 205)

108 256 {standard 108)
10'
3—6
0.25X10 ' s, 0.5X10 ' s
Stoermer-Verlet
NVEp (V volume, E energy, and

p total momentum of a system}
10000 (for Dl and D2)
6000 (for D»)
2.5a.
1.8 s {108 particles)

where c denotes the energy and o the volume parameter.
Because we study isotopic mixtures, the potential func-
tion is identical for all pair interactions. The fluid
modeled by this HSS potential has practically the proper-
ties of the genuine HS system as shown in recent publica-
tions. " To obtain information about the influence of
attractive interactions, we also studied the common (12-6)
LJ potential with corresponding F and o parameters.
The chosen potential parameters are listed in Table II.

Particle masses and mass ratios as well as the density
of the states investigated are given in Table III. Equimo-
lar mixtures were considered throughout the computa-
tions, and a reduced temperature of kT/e = 1 was
achieved in each run with a precision of about 5%%uo. Tem-
perature variations within the 5% range had a negligible
influence on the results. The results for other than liquid
densities have an accuracy of about 5%, as they have
solely been used to discern tendencies.

diets a too high cross-correlation effect, at least for the
liquid density considered. However, as the deviation is of
the order of 10%, the kinetic theoretical results can be
regarded as satisfactory. Some preliminary MD results
for smaller densities are summarized in Table IV. The
numbers given in this table indicate an increase of
D,z/D, 2with decreasing density. Thus agreement be-
tween MD and kinetic theory seems to improve slightly,
since D&z/D ~2 predicted by the Enskog approach has no
density dependence. It would, however, be extremely ex-
pensive to prove this unambiguously by MD calculations.
For completeness, we have gathered the computed self-
diffusion coefficients as well as the mutual ones for the
density 0.75 in Table V.

VII. RESULTS FOR THE LJ MIXTURE

VI. RESULTS FOR THE HSS MIXTURE

The dynamic cross-correlation ratio D,2/D &2 obtained
by MD are plotted as a function of the mass ratio R in
Fig. 1. It is evident from this figure that the mass effect
on D, 2 /D» is small, leading to an enlargement of
D,2/D &2 on the order of 10% for mass ratios around 20.
The slope of the curve is practically constant but would
also be consistent with a square-root function predicted
by kinetic theory.

Kinetic theory results obtained from Eq. (1) and the
smoothed MD values for the cross-correlation ratio are
presented in Fig. 2. Apparently, the Enskog theory pre-

TABLE II. Potential parameters.

Figure 3 contains the computed D,2/D, z ratio for the
two-component LJ liquid. As in the case of the HSS sys-
tern, the mass effect on the cross-correlation ratio is
small. It reaches appreciable values solely for the higher

System
mp

m&

{a.u. )

HSS 4

9
12
15
18

16
10

8

6.15
5

4.21

TABLE III. Equimolar isotopic systems studied at kT/v=1
for (N/V)o'=0. 75.

Type

HSS
LJ

(10-" m)

3.4
3.4

'k denotes Boltzmann's constant.

c./k'
{K}

120
120

LJ 2
3
7
9

15
19.5

26.6
20
10

8

5

3.90
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D,q/D, q

1.12-

HSS mixture
MD

TABLE IV. Preliminary MD results for the HSS system at
smaller densities than considered in Figs. 1 and 2 for R = 15.

'). ') 0-

1.08-
0.75
0.70
0.65

1.09+0.02 (from Fig. 1)

1.15+0.1

1.20+0. 1

1.04-

1.02-

10 15 20 R

FIG. 1. Dynamic cross-correlation ratio for the equimolar
isotopic HSS system as a function of the mass ratio. n*=0.75;
T*= 1. The line represents a graphical interpolation.

R values. On comparing Figs. 1 and 3, we see that the
dependence of the cross correlation on the mass ratio is
very similar in both systems. Apparently, the attractive
tail of the LJ potential has only a little inhuence upon
cross correlation. Hence, we may conclude that the
present findings concerning dynamic cross correlation in
isotopic mixtures are of general validity and might also
hold for molecular liquid mixtures. Accordingly, the ki-
netic theoretical predictions of cross effects apply to HS
as we11 as LJ mixtures. This is in agreement with recent
MD investigation of the separation factor in isotopic mix-
tures 1 3f 14

0, /D,

1.2-

VIII. DISCUSSION AND CONCLUSIONS

Before we summarize a number of conclusions which
can be drawn from the present results, we may discuss
our findings in the light of recently defined self- and dis-
tinct terms of the mass current to describe the mutual
diffusion process in mixtures. ' Using the latter determi-
nology (see Sec. II) we can analyze reliably the character
of a binary mixture by the sum function y(t):

10
20

D, /DQ

L J mixture
MD

i.06-

'I 02-

1.00
10 20

FIG. 3. As in Fig. 1 but for the isotopic LJ system.

FIG. 2. Dynamic cross-correlation ratio for the equimolar
isotopic HSS system as function of the mass ratio. KT, kinetic
theory; MD, molecular-dynamics calculations.

where y'(t) and y"(t) are the self- and distinct velocity
time-correlation functions associated with the mass-
current autocorrelation function of component 1 of the
mixture system. After Refs. 13 and 14, y(t) is identical
to 0 for a thermodynamically and dynamically ideal sys-
tern, larger than 0 for a system of demixing character,
and smaller than 0 for a system of associative character,
at least in a certain short-time interval. Relying on these
properties of y(t), we should expect that the purely
dynamical effects arising from hindered momentum ex-
change between particles of unlike species are reAected in
the time behavior of y(t). This is in fact nicely confirmed
by the plots of y(t) presented in Figs. 4 and 5. The
figures show curves for different mass ratio and different
density. Evidently, the sum function, display a large pos-
itive peak at short times in all cases. The height of the
peak is largest for the highest mass ratio and depends on
density. The positive peak of y(t) indicates undoubtedly
the demixing tendency of isotopic mixtures, consistent
with the conclusions to be drawn from the D,2/D&2
values, which are larger than 1 for mass ratios larger than
l.

Thus we see that the reduced momentum exchange be-
tween particles of unequal mass prevents the thermo-
dynamically ideal system from behaving dynamically
ideally also. Whether the isotopic system of very large
mass ratio may show dynamic demixing depends on the
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TABLE V. Self-diffusion and mutual-diffusion coeScients computed for the equimolar isotopic HSS
and LJ mixtures, with (N/V)o. =0.75 and kT/v =1.

System

HSS

LJ

4

9
12
15
18

2
4
7
9

15
19.5

Dl
(10 'cm s ')

5.106
5.721
6.142
6.323
6.701
7.181

4.439
4.903
5.459
5.742
6.705
6.888

Dq
(10 cm s ')

4.500
4.618
4.709
4.813
4.940
5.118

4.172
4.217
4.348
4.459
4.750
4.853

D12
(10 'cm s ')

5.253
5.492
5.841
5.933
6.408
6.694

4.361
4.581
4.988
5.203
6.117
6.374

asymptotic behavior of those systems. Using the predic-
tion of kinetic theory for the asymptotic value of
D&z/D, 2, we find 1.7.

On the other hand, the limiting value of D~2/D, z

determined in Refs. 1 and 2 for the boundary of phase
stability is =2.0. Therefore, dynamic demixing in isoto-
pic mixtures seems to be impossible. The exact D,2/D, z
ratios presented in this report have probably a consider-

ably smaller asymptotic limit. Hence dynamic demixing
is even more unlikely to occur in real isotopic mixtures.

The important results of our work may be summarized
as follows: dynamic cross correlation is of the order of
10% for isotopic mixtures of mass ratios larger than 10.
Due to the hindered momentum exchange between parti-
cles of different mass, one always finds positive cross
correlation, which means that the mutual diffusion
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FIG. 4. Sum of the normalized self- and distinct-velocity
correlation function for the equimolar isotopic HSS system of
mass ratios 7 and 15. n *=0.75, T*= 1. FIG. 5. As in Fig. 4but for n*=0.5.



42 DYNAMIC CROSS CORRELATION IN ISOTOPIC TWO-. . . 3373

coefficient becomes larger than the weighted sum of the
self-diffusion coefficients of the mixture. Density and in-
teraction potential effects are small and possibly com-
pletely insignificant. Kinetic theory gives a rather good
account of the diffusive behavior of these mixtures, al-
though the predictions for the dynamic cross-correlation
ratio D &z /D &z are somewhat too large compared with the
exact data.
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