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Computer-simulation study of conductivity in a two-dimensional binary fluid mixture

R. B. Pandey
Department of Physics and Astronomy, The University ofSouthern Mississt ppi, 'Hattiesburg, Mississippi 39406 50-46

(Received 5 February 1990)

A computer-simulation model is introduced to study the transport properties of a binary fluid

mixture in which the constituents of one fluid (the tracer particles) carry charges in a linear charge-
density gradient in the background charge of the second fluid. In the steady-state equilibrium, an
effective conductivity o., (p, r) is estimated as a function of the carrier concentration p and the range
of interactions r. The conductivity is observed to vary nonmonotonically with the concentration p,
and it exhibits a maximum at a characteristic value p, . The conductivity decreases when the range
of interaction is increased until a characteristic value r„beyond which (r & r, ) it begins to saturate
as the onset of screening spans with r —r, .

Understanding transport properties such as conductivi-
ty, diffusion, polarization, and dielectric response in fluid
and fluid mixtures has been a subject of continuous in-
terest. Because of the numerous applications, efforts
have been intensified in recent years via a number of ex-
perimental methods, ' such as NMR, light scattering,
neutrons scattering, and dielectric measurements, in
studying the transport properties of a variety of complex
polymeric solutions, such as polyelectrolyte and biopoly-
mers, in solvents with diverse reactivities. Transport of
charge, mass, or heat, in such complex fluids takes place
via numerous carriers (neutral as well as charged parti-
cles, such as ions, ionic clusters, ionomers, etc.), which
are in constant stochastic motion in matrices of each oth-
er. To address the issue of global transport arising from
highly correlated stochastic motion of different constitu-
ents, it is important to understand transport properties of
one component (say, ions) first. While numerous experi-
mental studies exist on the transport properties of such
complex fluids, relatively few attempts have been made
via theoretical means. Most of the analytical treat-
ments are limited due to intractabilities in incorporating
the long-range interactions, where one resorts to several
approximations involving screenings (Coulomb, excluded
volume, etc. ) and details of inhomogeneity. Nevertheless,
these theoretical studies help in understanding some of
the transport processes in extreme limits. Here, we use
computer simulations to study the transport proper-
ties, such as root-mean-square (rms) displacement, and
conductivity of an interacting model system, which may
provide physical insight into some of the stochastic pro-
cesses in highly correlated complex fluids. We focus
mainly on the transport of one type of charge carrier with
a varying range of interactions to address the question,
how does transport depend on the range of interactions
and concentration of charge carriers and when does the
screening come into play? This study may help in under-
standing the fluid flow and fingering instabilities in in-
teracting systems, which is also one of the current issues,
by means of computer simulations and experimental
methods.

For simplicity, a two-dimensional discrete lattice of
size L„XL is considered. One end of the lattice (say,
the first column) is connected with a charge source, while
the opposite end (the L„th column) is connected by a
sink. A fraction p of the lattice sites is randomly occu-
pied by particles, the charge carriers that constitute the
components of one fluid. A lattice site cannot be occu-
pied by more than one particle. Each particle, in contact
with the source, is assigned a unit charge density, while
those in contact with the sink are assigned a zero charge
density. The rest of the particles are assigned charge den-
sities (zero or one) to achieve a linear charge-density gra-
dient (of one at the source and zero at the sink, i.e.,
Vp„-1/L„). Each vacant site (a constituent of the
second fluid of concentration 1 —p) is assigned a charge
density of an opposite sign to maintain the charge neu-
trality of the whole system. Thus, if there are N, charged
particles in the system, then the charge density of each
empty site is

p, = N, /N„, —

where N, =(1 p)L„L, th—e number of vacant sites. The
charges spread over vacant sites thus act as background
charges of the second fluid. The sample is now initialized
and is ready for studying the transport properties.

Particles interact with each other with a repulsive in-
teraction and with holes (the empty sites) with an attrac-
tive interaction. Before initiating the stochastic motion
of the particles, we first set the range of interaction r„, a
distance up to nth neighbor (n =1 represents the
nearest-neighbor interaction, n =2 the next nearest
neighbor, and so on). All the particles and holes interact
with each other only within this range; exclusion of mul-

tiple occupancy of a lattice site by particles takes care of
hard-core interactions. The technical details of the hop-
ping mechanism of a particle are as follows. A particle at
site i and one of its neighbors at site j are selected ran-
domly. If site j is empty, then we calculate the following.
(i) The interaction energy Eo is calculated with particle at
site i,
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where the summation index k runs over all the particles
and holes starting from first neighbor to the nth neigh-
bor, pk is the charge density of the particle or hole at site
k, and r,k is the distance between sites i and k. Note that,
for a particle at site k, pk may be either 1 or 0, while for a
hole, it may be a noninteger number, depending upon the
concentration 1 —p of the holes and the number of
charged particles. (ii) The interaction energy E, is evalu-
ated for a configuration in which particle and hole posi-
tions as well as their charges are exchanged. (iii) Then we
evaluate the change in energy hE=E~ Eo ~ If the
change AE ~0, then the new configuration is accepted,
and the particle is moved from site i to site j. If site j is
at the column connected by the source, then the charge
density p of this particle at site j is set to unity and the
charge transfer (1—pj) is counted as the amount of
charge released from the source. Similarly, if the jth site
belongs to the column connected by the sink, then the
charge density p is set to zero, and the charge transfer p.
is added to the total charge absorbed by the sink. Thus
the charges can be transferred from source to sink, as the
carriers execute their stochastic motion. On the other
hand, if site j is occupied, then the particle stays at site i
and steps (i) through (iii) are not executed. This process
of selecting a particle and its neighboring site randomly,
attempting to move it and updating its charge density, is
repeated again and again for all the particles. Each at-
tempt, irrespective of its success to move a particle, is
counted in the Monte Carlo (MC) time step, and an at-
tempt to move each particle once on average is defined as
one MC step. The simulation is performed for a preset
(large} number of Monte Carlo steps (MCS), which is the
total length of the time scale in our computer experiment.
A periodic boundary condition is imposed for motion
along the y direction, while a reflecting boundary condi-
tion is used along the x direction (where source and sink
act as reflectors).

During the simulation, we keep track of the following
quantities: (i) charges released from the source Q, (t), (ii)
charges absorbed at the sink Qz(t), (iii) rms displacement
of the particles (i.e., tracers), and (iv) the rms displace-
ment of the center of mass of the particle system at each
time step. A limited number of these quantities are, how-
ever, printed periodically at equal intervals of time. Sam-
ples of various sizes are used to test the reliability of our
data, but we limit ourselves here to sample sizes 40X20
and 60X60. The time scales range from 10 to 5X10
MCS, although most of the data we run at the maximum
time of half a million steps. In steady-state equilibrium,
the amount of charge released from the source must be
nearly the same as that absorbed at the sink. A plot of
charge versus time is shown in Fig. 1. The relaxation
time to approach the steady state in which the charge
released from the source equals the charge absorbed at
the sink depends on the concentration of the carriers; the
higher the concentration, the larger the relaxation time in
which the system approaches its equilibrium state. We
also observe that the relaxation time increases sharply on
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FIG. 1. Charge transfer ([g, (t)+Q2(t)]/2) vs time t Lat-.
tice size 60X60 is used at the concentration of the particles

p =0.5, with nearest-neighbor interaction.

where k is the asymptotic exponent. We observe a small
deviation in the estimate of the exponent k from its drift
value as we increase the concentration of the particles.
For example, with the nearest-neighbor interaction,
k =0.94+0.02 at p =0.4, k =0.91+0.02 at p =0.6,
k =0.84+0.02 at p =0.8. The asymptotic value of the
exponent k seems to remain unchanged with the range of
interaction.

It is worth pointing out that the deviation from its drift
value of the rms displacement of the charge carriers in
the gradient field here may be attributed to the reflecting
boundary conditions at the ends (source and sink), the
concentration of particles and holes, their charge distri-
bution, their interactions, etc. If we consider the stochas-

increasing the range of interactions. Most of the data
presented here are in the regime where the system has
reached the steady state.

A typical variation of the rms displacement R of the
center of mass with time is shown in Fig. 2(a). The car-
riers execute their random motion in such a way that the
rms displacement of the center of mass increases with
time until most of the charge carriers hit the other end.
Since the random motion of each particle determines the
movement of its center of mass, a large fluctuation in R is
expected, as seen in Fig. 2(a). A continuous shift in the
rms displacement is, however, observed, although with
fluctuations, on an average time scale ( =4X 10 MCS), in
which each particle hits the reflecting boundaries (source
or sink}. The rms displacement of the particles (i.e.,
tracers), on the other hand, shows a very smooth increase
with time [see Fig. 2(b)]. In the asymptotic regime, we
define the power-law behavior of the rms displacement
R „ofthe tracer with time t by
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tic motion of a single charged particle in a homogeneous
medium in an electric field, its rms displacement will be
driftlike in the asymptotic time regime. However, the
presence of many charge carriers and holes makes the
effective medium complex; the higher the concentration
of particles the more inhomogeneous the medium in the
long-time regime. As we observe, the deviation from its
driftlike behavior becomes more pronounced on increas-
ing the concentration of the particles and therefore we at-
tribute it to the efFect of inhomogeneity' produced by the
random distribution of particles and holes.

We know that in the steady state, the charges released
from the source Q (t) in time t is equal to charge absorbed
at the sink, which satisfies the continuity equation (i.e.,
the conservation of charges). Therefore, in the steady
state, the charge-density gradient is Vp„—1/i.„. From

the variation of Q(t) with time, one may estimate an
effective conductivity cr, from

j =(Vp„)o, , (4)

where j is the current density

1 dQ(t)'L, d

Combining Eqs. (4) and (5), we find

Lx dQ(t)
dt

Thus, by calculating the slope of the Q(t) versus t, we
may evaluate the effective conductivity. (Note that this
method, in combination with a finite-size scaling, pro-
vides a very accurate estimate of conductivity exponent
near percolation threshold. ) We have performed exten-
sive simulations to study the variation of conductivity
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FIG. 2. (a) rms displacement of the center of mass of the par-
ticles and (b) rms displacement of the particles (tracers) vs time
for the same statistics as in Fig. l.

FIG. 3. Conductivity vs concentration p, with nearest-
neighbor interaction, (a) sample size 40X20 and (b) sample size
60 X 60. Time steps from 2 X 10' to 5 X 10 MCS are used.
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TABLE I. EA'ective conductivity data. A sample of size 60X60 is used. The statistical error bars

are in the range 0.00005—0.0002.

Interaction
order p =0.4

0.0436
0.0201
0.0130
0.0011
0.0022

p =0.5

0.0399
0.0146
0.0170
0.0036
0.0093

p =0.6

0.0346
0.0110
0.0169
0.0074
0.0153

p =0.7

0.0331
0.0095
0.0149
0.0114
0.0179

p =0.8

0.0192
0.0046
0.0138
0.0098
0.0123

with concentration p of the carriers and with the range of
interactions. A typical variation of the conductivity with
the concentration p is shown in Fig. 3; data for the con-
ductivity as a function of concentration and order of in-
teraction are presented in Table I. With a fixed range of
interaction, we observe that the conductivity depends
nonmonotonically on the concentration p and exhibits a
maximum around a characteristic value p, . Both the
conductivity as well as the characteristic concentration p,
depend on the range of interaction. At a fixed carrier
concentration, the conductivity is maximum at zeroth-
order (i.e., with hard core) interaction. It decreases on
increasing the range of interaction until the fourth-order
interaction, and then it exhibits a saturation when screen-
ing comes into play (we have observed a little higher
value at the sixth-order interaction, see Fig. 4 and Table
I). Thus the conductivity decreases on increasing the
range of interaction up to fourth neighbor, beyond which
the onset of screening begins to reduce the effects of in-
teractions; as a result, the conductivity tends to remain
constant on further increasing the range of interaction.
The characteristic concentration p„on the other hand,
increases to a saturation value ( =0.7) on increasing the
range of interaction, except in a small region (from zeroth
to first order). The onset of a plateau (Fig. 5) and that of
the screening seem to lie in the same region.

We therefore infer that in our interacting stirred per-

colating system a characteristic range of interactions, say,
r, exists at which the conductivity exhibits a minimum.
For interaction ranges smaller than this characteristic
value, screening is not effective, and, therefore, all the in-
teractions up to this order are important in studying the
conductivity. For an interacting system with range of in-

teraction r larger than r„screening becomes important.
If we define the screening length over which the interac-
tions are important in a long-range interacting system,
then screening length decreases as r —r, increases for our
system. A precise relation between the screening length
and the range of interaction is hard to establish at this
stage, as it requires computational capabilities beyond
our access at present. In real fluid mixtures, transport
and screening is governed by several parameters, such as
quality of solvent, temperature, and nature of solute; and
to take into account a11 these complex details in our ex-
ploratory simulation here is rather difficult. However,
our crude model does capture some of the basic features
through the effect of concentration and range of interac-
tion on the transport properties of the system as a whole.

In summary, we have proposed a computer simulation
model to study the transport properties in an immiscible
interacting binary fluid mixture, in which the constitu-
ents of one component are the charge (in units of discrete
charge, mass, or heat) carriers, while the others act as a
background (charges for drag resistance which may be
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FIG. 4. ES'ective conductivity vs range of interaction at the
concentration p =0.4 with the sample of size 60X 60.

FIG. 5. Characteristic concentration vs range of interactions
with the sample of size 60X 60.
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viscous or capillary) medium. Using a steady-state
linear-gradient method, an effective conductivity is stud-
ies as a function of both the concentration of carriers as
well as the range of interaction. The conductivity exhib-
its a nonmonotonic dependence on the carrier concentra-
tion p with a maximum at about p, . The conductivity de-
creases as the range of interaction r increases until a
characteristic value, say, r, is reached. For the range r
above r„ the conductivity seems to saturate due to
screening. Thus, the conductivity is minimum at a cer-
tain range of interaction, in a specified regime of carrier
concentration which depends upon the quality of solvent
in fluid mixtures. We hope this study will help in under-
standing the transport properties in complex fluids where

a variety of chemical and physical parameters' govern
the transport process; it may also guide analytical
(theoretical) studies to incorporate appropriate interac-
tions in such systems.
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