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A Lyapunov function is defined for two-dimensional differential systems. The relationship be-

tween the Lyapunov function and the stationary probability distribution of the corresponding
Fokker-Planck equations in the weak-noise limit is analyzed. Based on the structure of the

Lyapunov function we classify two types of singularities. The classification of different kinds of
singularities is shown to be significant for the intrinsical dynamics of the deterministic How. The bi-

furcation behavior of periodically forced planar systems that contain distinctive kinds of singulari-

ties in the autonomous cases is investigated. It is found that the responses of planar systems to the
external force, i.e., the resulting bifurcation sequences, are substantially different if the trajectories
circle around different types of singularities.

as

I. INTRODUCTION

Planar systems of nonlinear differential equations such

ian, Eqs. (2) become Langevin equations:

x =C, (x,y)+y, (t),

y =Cz(x,y)+y2(t),
(3)

x =C, (x,y),
y=C2(x, y) .

(2)

One of the most interesting extentions of Eqs. (2) is to in-
clude noise and to investigate the response of the system.
%'ith the simplest assumption of the noise being Gauss-

x =C~(x,y, t),
y = C2(x,y, t),

have been extensively investigated (see Refs. l and 2, and
references therein) for the following reasons. On one
hand, they are capable of producing much richer dynam-
ics in comparison with one-dimensional differential equa-
tions. On the other hand, they are still considerably
simpler than systems with more than two equations and
thus allow for a detailed analysis. Consequently, they
have been much better understood than those of higher
dimensions. Moreover, planar systems have a wide range
of physical applications. Many models of practical
relevance, such as the forced pendulum, the DufFing
equation, and the Van der Pol oscillator, belong to
this range.

In this paper we will consider only dissipative planar
systems and mainly focus on their attracting sets of solu-
tions. The study of unstable trajectories is also interest-
ing from a mathematical point of view. However, they
will not be considered here since they are not directly ob-
servable.

Let us first start with an autonomous system

t}p (x,y, t)
at [C,(x,y)p (x,y, t)]a

a
[C2(x,y)p (x,y, t)]

82 a2
+e +, p(x,y, t) .

Bx Bp

A great number of publications have been devoted to the
investigation of this FPE (see, e.g. , Refs. 9—19).

Another major approach focuses on the response of
system (2) to a regular external source, say, a periodic
force:

x =C, (x,y),

y =C&(x,y)+F. cos(cot) .

It has been known that complicated bifurcation se-
quences leading to erratic motions may appear, whereas
the force remains periodic and well behaved.

Up to date, most of the investigations on (4) and (5)

where

& y, ( t) ) =
& y, ( t) ) =

& y, ( t)y, ( t' ) ) =0 ,

& yt(t)y, (t') ) =2E5(t t ),
& y2(t)y2(t') ) =2e5(t t')—

(e)0). System (3) can be transformed into a Fokker-
Planck equation (FPE):
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have been conducted as two distinct fields, apart from a
few publications studying the infiuence of noise on bifur-
cations at the onset of chaos and some works considering
the problem of stochastic resonance. In Refs. 15
and 16, one of us has analyzed the potential of FPE (4) in
the weak-noise limit (e((1). It has been found that two
different types of singularities in Eqs. (2), in particular,
two types of saddles, may be distinguished according to
the different potential structure of the FPE (see, e.g. , the
last part of Sec. IV in Ref. 16). It has been well known
that in the weak-noise limit the potential of the FPE has
a close relation with the corresponding deterministic sys-
tem. Thus it would be interesting to ask whether these
two kinds of singularities, classified on the basis of poten-
tial of the FPE, affects the deterministic dynamics or not.
The answer to the problem in the present paper is rather
positive. Therefore, distinct structures of the potential
and, consequently, the classification of singularities may
appear to be physically and mathematically meaningful
new concepts for planar systems.

In Sec. II, we briefly analyze the potential of the FPE
(4) and distinguish two kinds of singularities, in particu-
lar, two kinds of saddles, according to the potential. A
potential, slightly different from that of the FPE, is sug-
gested. In Sec. III, the dynamics of the deterministic sys-
tem (2) around these two kinds of singular points will be
distinguished. In Sec. IV, we analyze numerically the
response of the system to a periodic external force. We
shall see that the responses differ considerably if the pla-
nar systems contain different kinds of singularities in the
autonomous case. In Sec. V, some examples of practical
significance, which are supposed to contain different
kinds of singularities, are investigated. Section VI sum-
marizes the conditions and distinctions of bifurcations in
various periodically forced planar differential systems. In
Sec. VII, the discussion of the potential will be extended
to FPE with an arbitrary diffusion matrix. The potential
obtained for the general FPE confirms the classification
of two kinds of singularities. In Sec. VIII, we juxtapose
some open problems deserving further investigation.

we arrive at the Hamilton-Jacobi equation'4'~

2 2
a(to ago ago a{(),

C, (x,y) + C2(x,y) + +
B~ ' '

By Bx By
=0.

Bgi

By

Bg2

Bx

a'4o

BxBy
'

(9)
g)di +g2d2 =0

It is evident that the function go(x, y) must be a solution
of (7) and, at the same time, be a Lyapunov function of
the deterministic system (2}:

4o= —(g i +g 2) —o (10)

which must reach extrema on all the asymptotic sets of
(2). Let us consider a limit cycle system. Then Po should
take extrema along the entire limit cycle, i.e., the con-
straints

a&o a0o
Bx '

By

should hold on a one-dimensional closed curve. Thus it is
convenient to rewrite (g„g2) as (Qa„ga2) with Q =0
yielding the limit cycle. ' Therefore, Eqs. (8) can be re-
placed by

C, (x,y) =pg (x,y)a, (x,y) gf (x,y)a&(x,y),—

Cz(x, y) =pg (x,y)az(x, y)+gf (x,y)a, (x,y),
with

(12)

Suppose that we are able to decompose the drift (Ci, Cz)
into the following form:

Ci (x,y) =gi(x,y)+d i(x,y),
C, (x,y) =g, (x,y)+d, (x,y),

under the conditions

II. POTENTIAL AND T%'0 CLASSES
OF SINGULAR POINTS

a(Qa, ) a(ga2)
ay ax

a'l(,
ax ay

(13)

In recent decades, one of the most attracting problems
in statistical physics has been to extend the general for-
malism of equilibrium potential to non equilibrium sys-
tems. To this end, the FPE (4) has been extensively
used. ' The stationary probability distribution of (4)
can be expanded in terms of e as

p (x,y) =N exp
Po(x,y)

—egz(x, y)— (6)

In the weak-noise limit e«1, only the first term in the
large parentheses, i.e., po(x, y)/e, dominates, and Po is
often called the potential of the FPE. Inserting (6) into
Eq. (4) and keeping only the leading terms of order 1/e,

Note, however, that the choice of Q (x,y), which vanishes
on the limit cycle, is associated with some uncertainty.
Nevertheless, this uncertainty does not affect the poten-
tial. Moreover, (ai, az) and f (x,y) are determined
uniquely after fixing Q(x,y), according to Eqs. (8). The
function go, defined in this way, certainly satisfies (7).
The two vectors in (12), i.e., (pga, ,pga2 ) and
( gfa2, (fa& }, are call—ed the gradient and circulation of
the drift, respectively. On the one-dimensional set
f (x,y) =0 (denoted hereafter by I,, if it exists), the circu-
lation alters its direction. If the set Q(x,y)=0 (denoted
by I 2) is nonempty and is a closed curve, and if it does
not intersect with I „the I 2 must be a limit cycle of the
deterministic system {2). Note that in a bounded system
an attracting I 2 must be a closed curve. Henceforth, we
only consider the case that I 2 is closed.

It has been shown' that if I, and I 2 do not intersect
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each other, go is identical to Po, i.e., go, calculated from

(13), represents the stationary probability distribution of
(4) in the leading order of e. If the set Q(x,y)=f (x,y)
=0 is not empty, go and Po are no longer identical.
Apart from the Hamilton-Jacobi equation (7), Po should
be constrained to one more boundary condition which is
not satisfied by go. This issue has been clarified in Ref.
16. Nevertheless, go still preserves some characteristic
feature of Po (see Figs. 1 and 2 in Ref. 16). Being a
Lyapunov function of the deterministic system (2), $0
plays a role similar to the potential. Hence, in what fol-
lows, we shall call $0 the potential of the system and
focus on the structure of $0, whether it is totally identical
to Po or not.

Representing the field (C„C2) in the form of (12), we
find that the singularities of (2) may have two distinct ori-
gins. The first comes from

a, (x,y)=a2(x, y)=0 (class A),
and the second from

(14)

Q(x,y)=f(x,y)=0 (class B) .

In the first case, the potential go has local minima, maxi-
ma, or saddles at the stable, unstable, and saddle points,
respectively. However, in the latter case, the potential
Po, determined only by the gradient part of the field, does
not feel the alternation of the circulation, i.e., does not
feel the sign change of f (x,y). It remains to be fiat on
the entire curve I 2. In Ref. 16, it has been shown that
around the two above-mentioned classes of saddles, $0
also has rather different local structures. It has a local
saddle at each saddle point of class A, while there is a
discontinuity of its first derivative at those of class B (see
Sec. IV in Ref. 16). Thus both functions $0, which are
the potential of the FPE (4), and go, which is a solution of
the Hamilton-Jacobi equation (7) and a Lyapunov func-
tion of the deterministic equations (2), refiect the distinc-
tion of the two classes of singularities in their different
structures.

If we let (=0 in (12), Eqs. (2) reduce to a purely gra-
dient system. In case of p=0, the pure circulation yields
a quasi-Hamiltonian system. By quasi-Hamiltonian, we
mean that the system may be made a Hamiltonian system
by multiplying both equations by a common factor. The
multiplicative factor cannot change the track of the tra-
jectory, but it may alter the direction of the trajectory by
changing its sign. It is obvious that class-A singular
points are stable, unstable, or saddle points of the pure
gradient system ((=0), and they are elliptic or hyperbol-
ic points of the corresponding quasi-Hamiltonian system
(p=O). On the contrary, for class-B singular points there
is no such correspondence. Actually, the one-
dimensional curve I, (or I 2) is structurally unstable
when p=O (or /=0), since a planar differential system
with degenerate eigenvalues is structurally unstable. '

Without the circulation (or the gradient), no one-
dimensional null set I z (or I &) can be properly defined at
all. Thus class-B singular points may appear only at the
presence of both the gradient and circulation.

In order to make I ~ (or I, ) structurally stable,

x =p( ax —x ') —g(ay —y ),
y =p(ay —y ')+ g(ax —x ) .

Model 2:

x =px(a x y—) gy—(x —y b—), —

y =py (a —x —y ) +gx (x y b—') . —

For model 1, we have

Q(x,y)=1, f (x,y)=1,
a, (x,y)=ax —x', a2(x, y)=ay —y

and for model 2,

Q (x,y) =a —(x +y ), f (x,y) =(x y b')—,
—

a, (x,y)=x, ai(x,y)=y .

The potentials are given by

go(x, y)= —
—,'[2a(x +y )

—(x +y )],
and

(16)

(17)

(19)

(20)

go(x, y) = —
—,
' [2a (x +y )

—(x +y ) ], (21)

respectively. In case of a )0, model 1 has an unstable
point (0,0), four stable points (+&a,+&a ), four saddles
(0,+&a ) and (+&a,O), and one unstable point at
infinity. It is obvious that all the singular points belong
to class A. The potential $0 takes minina, maxima, and
saddles at the stable, unstable, and saddle points, respec-
tively. When 0& a & b, model 2 has a stable limit cycle
with an unstable point (0,0) inside it. As a &b, the
closed curve I 2, i.e., a =x +y, intersects I &, i.e.,
x =y +b, at four singular points (+[(a+b l2)]'
+[(a b /2)]' ), of—which two are stable points and the
other two are sadd1es. Apart from the origin, al1 the
singular points apparently belong to class B.

Potentials satisfying (10) have been often used to ex-
plore the local and global stability of system (2). Howev-
er, little has been known beyond that. The relationship
between the structure of the potential and the detailed
characteristic feature of the dynamics of the determinis-
tic systems has rarely been considered. In the following
sections, we shall investigate this aspect in detail. The

nonzero circulation (or nonzero gradient) is absolutely
necessary. In Ref. 25, one of us has proven that if the cir-
culation does not vanish on I 2, the one-dimensional
curve I 2, i.e., Q(x,y)=0, may persist after adding a
small perturbation. The same procedure can be applied
to prove the structural stability of I, at the presence of
nonzero gradient. Moreover, it can be shown that a
small perturbation may only slightly change the functions
Q(x,y), f (x,y), a, (x,y), and a2(x, y) while retaining the
form of (12). Therefore, the form of (12) as well as the
classification of the two classes of singular points may be
structurally stable.

To conclude this section we present two simplest mod-
els to exemplify the singularities of classes A and B.

Model 1:
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function $0, being the Lyapunov function of the deter-

ministic system, must be intrisically related to the dy-
namic behavior of the system. Since the structure of 1(o

around singular points of class A are essentially different
from that of class B, we expect that the classification into
two kinds of singularities should have significant conse-
quence on the deterministic planar system, and these two
kinds of singularities should be distinguished not only
from the FPE (4), or, equivalently, from the Hamilton-
Jacobi equation (7), but also directly from the deter-
mimistic fiow (2).

III. DETERMINISTIC TRAJECTORY
AROUND T%0 CLASSES OF SINGULARITIES

Usually, it is difficult to decompose an arbitrary field

(C„C2) into the form of (12). Thus a problem of practi-
cal importance is whether one can distinguish class-A
singular points from those of class B without resort to the
explicit form (12). In this paper, we are not yet able to
provide a precise criterion. However, from (12) we can
already extract some essential features, characteristic for
each kind of singularities, by which one may recognize
them in certain systems, which cannot be brought into
the form (12) analytically.

The following features are worth remarking. Among
them the first two stem directly from geometric con-
sideration and the last two from the dynamics.

(1) For class-B singularities, which come from the in-

tersections of two curves, saddle and node must, generi-
cally speaking, appear in pairs. Whenever a singular
point of class B appears alone, it must be a saddle-node
point. Moreover, there must be closed trajectories, con-
necting the asympototic pairs of singular points of class
B. Thus all the singular points that do not satisfy the
above constraints must belong to class A. For instance,
all the singular points of a bounded system, which cannot
be connected by closed trajectories, must be of class A.
However, the converse may not be true. Singular points,
connected by closed manifolds, can belong to class A as
well as to class B [it so happens in both Eqs. (16) and
(17)].

(2) The closed curve I z (assumed to be smooth) must
be an invariant manifold of Eqs. (2), and thus no trajecto-
ry can cross it. Consequently, no focus can exist on I 2.
All focuses must belong to class A.

(3) The trajectory of "saddle connection, " which is
essential for studying the erratic behavior of a forced pla-
nar system, can only appear among class-A saddles,
while they can never encounter among points of class B.
The reason is clear: According to (2) and (12), no pair of
saddles of class B can be connected by a single trajectory
(heteroclinic orbit) and no saddle of class B can be self-
connected by a single trajectory (homoclinic orbit). Nev-
ertheless, both class-A and -B singular points can be con-
nected by homochnic or heteroclinic trajectori. es at cer-
tain particular parameters. For instance, in (16) hetero-
clinic orbits exist at @=0, a )0, while in (17) it appears
at a =b &0. However, heteroclinic trajectories, which
appear in these two cases, have rather different nature.
In the former case, they belong to saddle connection.

The saddles are structurally stable against small pertur-
bations. In the latter case, they are saddle-node connec-
tions. The saddle-node points can be annihilated by an
infinitesimal perturbation.

(4) The bifurcation to a limit cycle in both cases is radi-
cally different. In the case of class A, an attracting limit
cycle can arise via Hopf bifurcation at which a stable
focus is destabilized. According to (2), Hopf bifurcation
can never appear for class-B singular points. However, a
limit cycle can occur via saddle-node bifurcation among
the class-B singular points. For instance, in Eqs. (17),
when we decrease a from a & b to a &b, a limit cycle
appears beyond the critical point a =b, at which a
saddle-node bifurcation takes place. It is obvious that
limit cycles, associated with singular points of class A,
can never appear via saddle-node bifurcation. We would
like to emphasize that the possibility for a limit cycle to
arise via saddle-node bifurcation has been seldom dis-
cussed before. However, it should be regarded as one of
generic ways for appearance of limit cycles according to
Eqs. (12).

From Eqs. (12), we have clear definitions about class-A
and -B singularities. However, apart from rather
artificial examples such as Eqs. (16) and (17), it is difficult
to cast Eqs. (2) into the form of (12) analytically. More-
over, we should admit that our remarks (1)—(4) do not
provide a precise criterion to distinguish the two kinds of
singular points if the form of (12) cannot be written down
explicitly. Nevertheless, these arguments are of impor-
tance. On the one hand, they indicate that the
classification of two classes of singularities really has
some practically observable consequences no matter
whether the concrete form (12) can be found or not. On
the other hand, they open up the possibility of recogniz-
ing the class of singular points in some physically impor-
tant planar systems as will be shown in Sec. V.

IV. BIFURCATIONS IN PERIODICALLY
FORCED PLANAR SYSTEMS

x =px(a —x —y )
—gy(x —y b)l(x~+y +6—),

y =py(a —x —y )+gx (x y2 b) j(x2—+y2—+6)

+E cos(cot),

(23)

where we put the factor x +y +6 in the denominator of
the circulation only to constrain the trajectory to a limit-
ed area in the phase space. To compare with both equa-

To further investigate the inhuence of the potential on
the dynamics of planar systems, we impose a periodic
force on the systems with different kinds of singularities
and then study the responses of the systems. This and
the next sections will present some numerical results
about the bifurcation diagrams in various forced planar
systems. With a time-dependent force included, Eqs. (16)
and (17) are replaced by

x =p(ax —x ) —g(ay —y ),
y =p(ay —y )+g(ax x)+E cos(cot),—

and
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tions, we also simulate a periodically forced limit cycle
system:

x =lux(a —x —y )
—gy,

y=@,y(a —x —y )+gx+E cos(cot),
(24)

2-4-8

of which the unforced system has the same potential as
Eqs. (17). It will soon be shown that the fact that the un-
forced systems (23) and (24) have the same potential leads
to similar characteristic features of the bifurcation struc-
ture in the forced systems, though they seem to be rather
different in the autonomous case (the former has fixed
points as a & b, while the latter has a single limit cycle).
Rather complicated and interesting bifurcation behav-
iors, such as multiple attractors, transition of basin boun-
daries from smooth to fractals, hysteresis caused by
discontinuous jumps between various attractors, crises,
symmetry breaking, and various roads to chaos, can be
identified in these models. However, our main interest
consists in understanding the influence of the structure of
the potential on the dynamics of the forced systems.
Therefore, we do not intend to go too far into the details
of the bifurcations in the present paper. We only com-
pare the different forced systems by recording the se-
quences of the bifurcation to subharmonics, quasiperiodi-
city, and chaos. Even in this aspect, we restrict ourselves
on the global bifurcation structure rather than exploring
the detail of the bifurcation sequences by invoking much
finer resolution. A thorough study of the bifurcation dia-
gram including more aspects and possessing finer resolu-
tion will be left for our future work. In all the following
calculations, we start from a certain fixed initial condi-
tion and vary the amplitude of the force from below,
skipping the discussion on the structure of multiple at-
tractors and their basins.

A. Bifurcation diagram of Eq. (22)

Let us first investigate Eqs. (22). Figure 1 schematical-
ly plots the bifurcation diagram of Eqs. (22) in g Epa--
rameter space. We fix @=a =1 and vary g and E As 8.
is small, the trajectory moves around the stable point of
the unforced system, and the period of the output is iden-
tical to that of the force. This kind of trajectory will be
called a 1P trajectory. The orbit will be called nP subhar-
monics if the period is n times of that of the driving force.
With E increasing, 1P motion persists with a larger and
larger loop, until the loop reaches the adjacent saddle
point. As E is large enough, the trajectory may pass a
saddle, getting out of the initial basin and start to travel
between various basins (here, by basin, we mean the basin
of the unforced system), and the dynamics undergoes
dramatic changes. For very large E, the motion is again
1P. At intermediate values of E, the competition between
the external force and the circulation of the system leads
to very rich bifurcation patterns. All the parameter re-
gions where the motion is not 1P will be called bifurca-
tion regions. Numbers in the figure denote various
subharmonics. In the dotted regions, the motion is
chaotic or of very long period. It is clear that many
periodic windows should be observed by using finer reso-
lution. This remark applies to a11 figures that follow.

6.

1
0 g

FIG. 1. Bifurcation figure of Eqs. (22). p=a =1, and co=2~.
The numbers in the blank parts of the figure indicate periods of
the subharmonics. The dotted region is dominated by chaotic
motion. Smaller periodic windows can be found in the chaotic
region by finer resolution of detection.

B. Bifurcation diagram of Eqs. (24)

Now we are dealing with a typical forced limit cycle
system as a )0. Figure 2(a) gives the phase figure of the

The features of the bifurcation can be summerized as
follows.

(1) The prevailing bifurcation sequences are period
doublings-chaos-periodic windows-chaos and so on. The
largest period window is 3P window. The sequence is
similar to the U sequence. ' However, the U sequences
are often not complete. They are easily interrupted by
tangent bifurcations. As g is large enough, 1P motion
can be directly followed by chaos via tangent bifurcation
without any subharmonics of higher periods in between.
This kind of bifurcation can be identified with type-3 in-
termittency. ' The various islands of the bifurcation
regions can be understood by the basin structure of the
potential. When the trajectory alters its basin traveling
(i.e., enters a new basin or retreats from an old one by
passing a saddle), then bifurcation from 1P may take
place.

(2) An essential point is that we have never found any
information to imply the Farey frequency-locking se-
quence.

(3) Aperiodic motion is further detected by calculating
the Lyapunov exponent. It is found that the largest
Lyapunov exponent of the system is always positive
whenever the aperiodic motion takes place. We did not
find quasiperiodic motion, apart from the accumulating
points of certain period-doubling sequences which have
zero measure in the parameter space. This finding coin-
cides with the observation that no Farey sequence exists
in this system.
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bifurcations by fixing a =11. The blank, shaded, and
dotted regions are the periodic, quasiperiodic, and chaot-
ic regions, respectively. There appears a really wide sea
of quasiperiodicity. Most of the parameter space is
covered by either a quasiperiodic region or the 1P region.
In the quasiperiodicity sea, one can surely observe Farey
frequency-locking sequences as F. is small (for instance,
E (22). Only in the small parts, right on the top of the
bifurcation region, can one find period-doubling bifurca-
tion and chaos [which are indicated by I and II in Fig.
2(a)]. This situation radically differs from that in Fig. 1

where period doubling and chaos are prevalent after the
system is bifurcated from 1P. Figure 2(b) is the blowup
of region I in Fig. 2(a). Note that we only list the se-
quence of subharmonics observed by rather rough resolu-
tion. Many periods in the quasiperiodic and chaotic re-
gions are not shown. The bifurcation diagram in Fig. 2(a)
is essentially identical to that of the sin-circle map ' or,
more precisely, to that of the return map recently intro-
duced and investigated in detail by Ding.

E
36

C. Bifurcation diagram of Eqs. (23)

For Eqs. (23), we only investigate the case a )b, when
no limit cycle exists in the unforced system. Equations
(17) have two saddles and two stable points on the circle
x +y =a, which belong to class B. In Fig. 3, we fix
a =9, b =8, and have F. and g varied. The bifurcation
figure has the following features.

(1) As E is small and the system is trapped in one of the
two attracting basins, the motion is 1P that is similar to
Eqs. (22). It is stressed that for Eqs. (23), we have neuer
found any bifurcation from 1P as the system moves only
in a single basin.

(2) As E is relatively large, i.e., enough to drive the sys-
tem out of the initial basin, the bifurcation sequences ap-
pear to be completely different from those in Fig. 1.
Various subharmonic regions stand one after another
very closely, leaving little rooms to quasiperiodicity. In-
creasing F., the regions of quasiperiodicity becomes a bit
wider. The subharmonic periods are apparently of Farey
frequency-locking sequence.

(3) Period-doubling bifurcations and chaos can be ob-
served as E is raised to the top of the bifurcation region.

These results are really striking. Both Eqs. (22) and
(23) have similar multiple attracting fixed points in the
unforced cases, and they are driven by a same force. The
responses of both systems are radically different. Neither
Farey sequence nor quasiperiodicity have been observed
in the system (22) while they are prevailing in (23). The
only similar behavior is that the motions are, most prob-
ably, 1P in both cases as the systems are trapped in a sin-
gle basin. On the other hand, cotnparing Eqs. (23) and
(24), it seems that they are rather different in the un-
forced case. The latter contains a single attractor, the
limit cycle, while the former has only stable fixed points.
However, apart from point (1), the main features of the

f5 E
20

E (b)
34-

32-

30-

10'-

24
0 3 j

FIG. 2. (a) Bifurcation figure of Eqs. (24). a = 11, and
~=2~. The shaded region denotes quasiperiodicity. Chaos and
period-doubling bifurcations can be found in regions I and II,
the tops of the bifurcation regions. (b) Enlargement of region I
in (a).

53 40 20 g

FIG. 3. Bifurcation figure of Eqs. (23). a =9, b =8, and
co=2m. . The resemblance of this figure with Fig. 2(b) is obvious
if we see the part E & 14 only.
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(3—v'3a )'"
y =+

2

can be solved explicitly in terms of a as

(3++3a )'
x, =+

2
(33)

i 44

In the parameter region g) g„ there is no fixed point (ei-

ther stable or unstable) other than the origin, which
remains unstable. However, the system is still trapped in
the region a x +y 2a. The only attractor of the sys-
tem must be a limit cycle. Thus the limit cycle appears
exactly via saddle-node bifurcation in the coupled two-
box Schlogl model. At the precise value g=g„hetero-
clinic trajectories arise at the saddle-node bifurcation
point. According to arguments (3) and (4) of Sec. III, the
singular points (apart from the origin) must be of class B
as g is slightly smaller than g, . Moreover, they are ex-

pected to belong to the same class for even smaller g since
the classification of two classes of singularities is structur-
ally stable, and it seems that there is no clear track imply-
ing new bifurcation in that region.

B. Bifurcation diagram of DufBng equation

From the discussion in the last subsection, one expects
that with a periodic force, Eqs. (25) and (28) should
behave in the manner essentially similar to those of Eqs.
(22) and (23), respectively. We get the expected results in
the numerical simulations of both equations. A great
number of publications analyzed the Duffing equation
from various aspects. ' ' However, it is surprising
that after an enormous amount of literature, a plot of the
bifurcation figure of the Duffing equation in 8-E plain,
which is important for analyzing the inAuence of the dis-
sipation on the bifurcation of the forced system, seems to
be lacking. Here, in Fig. 5, we attempt to fill this small

gap, on the one hand, and to compare with the previous
equations (that is our main task), on the other hand.

In Fig. 5, we again avoid the detailed discussion about
the multiple attractors and examine the system, starting
from small E and fixing the initial condition at
(xo,yo ) =(2,2). All the meanings of the notations in Fig.
5 are the same as those in Fig. 1. Of course, there are bi-
furcation regions other than that shown in Fig. 5. How-
ever, here we only consider the bifurcation region first en-
countered by increasing E from zero. When E is small
and the trajectory is trapped in a single basin, the motion
is, in most cases, 1P. As 8 is large, period-doubling bifur-
cations may occur when system is still trapped in a single
basin. However, as we observed in Fig. 1, the trajectory
certainly reaches the vicinity of the saddle whenever the
bifurcation from 1P arises. As E is large, the motion
turns to 1P again. At the intermediate values of E, the
trajectory travels in the double basins and gives an in-
teresting bifurcation-phase portrait.

Usually, chaos appears as soon as the trajectory starts
to wander in the double basins. There appear various
period windows in the chaos sea. Period-doubling bifur-
cation sequences can be found around the border of the
bifurcation region as well as in the period windows. We
cannot find quasiperiodic motion except at the accumula-

0.45 1.90 a

FIG. 5. Bifurcation figure of the Duffing equation (25).
Period-doubling bifurcation and chaos are prevalent in the bi-
furcation region. No Farey sequence is observed. All R„, R„,
and Ro are plotted according to the theoretical results of the
Melnikov method. R„ indicates the critical condition for n

subharmonics of which the trajectory is trapped in a single po-
tential well, while R„ indicates the circles around a large loop
including both wells. Ro denotes the threshold for the trans-
verse crossing of the stable and unstable manifolds of the saddle.
No visible agreement between the theoretical plots and numeri-
cal results exists.

tion points right before chaos bursts which have, actual-
ly, zero measure in the parameter space just like what
happens in Fig. 1. When the motion is aperiodic, the
largest Lyapunov exponent is surely positive. By a care-
ful detection, we did not find a Farey frequency-locking
sequence. The prevailing bifurcation are period-doubling
bifurcations, leading to chaos and period windows in the
chaos regions. Again, the bifurcation sequence is often
abruptly interrupted by tangent bifurcation halfway.
These futures can be well understood by the cubic map
which is suggested by Holmes to represent the Poincare
map of the Duffing equation. ' The numerical results
show that the Duffing equation has a bifurcation struc-
ture similar to Eqs. (22). It is consistent with the fact
that both of them have a similar potential (i.e., they have
the same class-A singular points) in the unforced cases.

Up to date, the only analytical and relatively general
way in dealing with the bifurcation to subharmonics and
chaos in the forced planar diff'erential system is the Mel-
nikov method. It is considered to be valid, as the exter-
nal force and the dissipation are weak and the auto-
nomous system is near the parameters of the orbit of cer-
tain periods or that of homoclinic (or heteroclinic) orbit.
Recently, some numerical results indicated that the Mel-
nikov function is not a good criterion for predicting
chaotic attractor. Its threshold is often lower, some-
times much lower, than the true boundary of observable
chaotic motion. ' It is suggested ' that the trans-
verse intersection of stable and unstable manifolds pre-
dicted by the Melnikov function might have some rela-
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tion with the fractal structure of the basin boundary.
With the arguments in Sec. III and the phase portrait of
Fig. 5, we would like to make some further remarks on
the Melnikov method.

First, it is obvious that the Melnikov function criterion
for the transverse crossing of stable and unstable mani-
folds of the homoclinic (or heteroclinic) orbit cannot be
applied to the orbit connecting class-B singular points,
for instance, to Eqs. (23) and (28) (as a =b and g=g„
there indeed exist heteroclinic orbits). The heteroclinic
orbits connecting class-B singular points are not the sad-
dle connected orbit. In fact, a small perturbation may
definitely destroy the saddle-node points, and then no
more stable and unstable manifolds of the unforced sys-
tem remain at all. This fact is substantially different from
the situation of class-A points where the saddle points are
structurally stable against small perturbations. Second,
even for Eqs. (22) and the Duffing equation (25), which
serves as the most typical example for the application of
the Melnikov method, the Melnikov function poorly pre-
dicts observable chaotic motion and subharmonics. In
Fig. 5, the various straight lines predicted by the Melni-
kov function for subharmonics and chaos are presented
to compare with the numerical results. R„ indicates the
critical condition for n subharmonics of which the trajec-
tory is trapped in a single potential well, while R„ indi-
cates that of the trajectory circling around large loops in-
cluding both wells. Ro denotes the threshold for the
transverse crossing of the stable and unstable manifolds
of the saddle. For chaotic motion, our result agrees with
Refs. 38 and 40 where for small B the Melnikov criterion
is lower than the actual threshold of chaos. What we
would like to emphsize here is that for the criterions of
subharmonics, the correspondence is even poorer. Actu-
ally, there is not a visible correspondence between the
theoretical predictions and numerical results. According
to the theoretical analysis, various periodic orbits should
appear before and after Ro. These orbits may possibly
appear as the ratios of the periods of the unperturbed or-
bits to the period of the force are rational numbers. It
suggests a certain kind of period-adding sequence (see the
straight lines of Fig. 5 and those in Fig. 4.6.3 in Ref. 2)
and, possibly, quasiperiodicity in between. However, so
far no such kinds of bifurcation sequence and quasi-
periodicity have been observed. When the system is
trapped in a single basin, we find 1P in most cases or
period-doubling leading to chaos in a narrow parameter
region in which the trajectory passes by in close vicinity
to the saddle. No sequence of subharmonics indicated by
R„, n =2m +1, m =0, 1,2, . . . , has been found. When
the trajectory flies among the different basins, one again
finds period doubling and, in most cases, chaos and nar-
row period windows. The straight lines predicted by the
Melnikov function have nothing to do with the actual bi-
furcation boundaries in any cases of Fig. 5. The most
serious problem is the complete inconsistence of the
theoretical and numerical results at small dissipation and
forcing. It is expected that the Melnikov method, based
on the perturbation procedure, must work better for
small B and E. However, the results are to the contrary.
As B and E are small, no subharmonics or chaos exists.

It seems that a small perturbation may offer a radical
change of the bifurcation figure to Hamiltonian systems
since, as B =0, the motion of the forced system of (25) is
very much deviated from that of 0 &B« 1, where the
response of the unforced system to the periodic force is
purely 1P whatever E in Fig. 5. This observation is
sharply in contradiction with the Melnikov theory. ' '

This disagreement in the Duffing equation should be
carefully examed since the Duffing equation has been so
extensively used to demonstrate the Melnikov method.

C. Bifurcation diagram of the forced two-box Schlogl model

E
160

ol
2 2.8 2 4.4 24 g

FIG. 6. Bifurcation figure of Eqs. (28}. /=8, and co=2vr All.
the notations are the same as in Fig. 2.

As expected, the bifurcation phase portrait of Eqs. (28)
differs radically from that of the Duffing equation, while
it is essentially identical to that of Eris. (23). In Fig. 6, we
fix (=8 and vary E, and a & a, =&8(. Thus no limit cy-
cle exists for the given parameters. When E is small and
the system is trapped in a single region, we always find 1P
motion. For very large B, the system can be completely
controlled by the force and has 1P motion again. At the
intermediate values of E, the force is large enough to
drive the system travel in various basins and is still not
strong enough to completely control the system; then one
may find bifurcation regions where various bifurcations
to subharmonics, quasiperiodicity, and chaos arise. In
the bifurcation region at relatively small E, one finds an
apparent Farey frequency-locking sequence and quasi-
periodicity between the various period regions. Period-
doubling bifurcations and chaos can only be observed in a
small region of large E; actually, they can be found only
on the top of the bifurcation region. These features are
the same as those of Eqs. (23). The head of the bifurca-
tion region is not shown in Fig. 6 because one cannot see
the extension. (One cannot see the head after E & 300.)

The bifurcation structures of both Eq. (23) and (28) are
similar to that of the forced limit cycle system (24) al-
though they have no limit cycle at all without the exter-
nal force. The only common feature of all these three un-
forced systems is that they have the similar potentials of
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which each takes a minimal value at a one-dimensional
set I,.

All the findings in the present section are favorable for
the following two conclusions. On the one hand, the
structure of the potential defined in Sec. II or, say the
classification of the two kinds of singularities based on
the potential forms (12) and (13) really have physical
consequence. On the other hand, the arguments in Sec.
III may be successfully used for clarifying the potential
and distinguish the classes of the singularities when the
form Eqs. (12) cannot be obtained explicitly. The second
conclusion is very much desirable for applying the
analysis of this paper to more general and physically
relevant situations.

VI. CIRCULATION, POTENTIAL,
AND BIFURCATIONS

x =ax —x —g(y —x),
~=+ —~' —Px —y),

(34)

becomes a two-box diffusion Schlogl model (see Refs. 42
and 43). The essential change is that now Eqs. (34) be-
come purely gradient and the corresponding FPE (4)
satisfies detail balance. Applying a periodic force on (34)
and examining the output in a wide region by changing a,
g, E, and as well as the frequency of the force, only 1P
motion can be found. We have not yet succeeded in un-
derstanding this matter. However, no evidence is against
this observation.

All the models considered in the presentation have
multiple fixed-point attractors in the autonomous cases
apart from Eqs. (24), which has a single limit cycle attrac-

By dividing the drift of the FPE (4) or, say, the field of
the differential equations (2) into a gradient part and a
circulation, we defined the potential of the system, $0,
which is a Lyapunov function of the deterministic system
and is related to the stationary solution of the FPE in the
sense stated in Sec. III. Then we classified two kinds of
singularities around which the potential has substantially
different structures and revealed how the dynamics of the
autonomous planar systems and the corresponding forced
planar systems is affected by the different potential struc-
tures in the vicinities of these two classes of singular
points. In this section, we summarize the main findings
in all our models.

A remarkable point is that the existence of the circula-
tion seems to be necessary for the forced systems to bifur-
cate from 1P motion. If an autonomous planar system is
purely gradient [i.e., f (x,y) =0 in Eqs. (12)], one can nev-
er find any attracting trajectory other than 1P orbit when
the system is forced by a periodic input. We have exam-
ined this fact by taking various equations and varied the
control parameters in wide regions. For instance, for all
Eqs. (22), (23), (24), and (28), one can find nothing but 1P
motion without the circulations (i.e., put g—=0) no matter
how we change a, E, and co. We have replaced (

—
gy, gx)

in Eqs. (28) by ( —g(x —y), g(x —y)). This slight change
in the linear terms completely alters the results. Now the
autonomous system,

tor. In the multiple-basin cases, the bifurcation of the
forced system from 1P motion can be observed only as
the trajectory reaches the vicinity of a saddle point or
passes over saddle points to circle about various static
equibria of the autonomous system. With class-B stable
points, bifurcation from 1P has never been found in our
simulation when the system is trapped in a single basin.
For class-A singular points, period doubling leading to
chaos may be found before (but very near) the trajectory
passes the saddle and enters new basins.

Note that all the above is observed in multibasin sys-
tems. By attracting basins, we mean the potential basins
which are identified without the external force. Howev-
er, only the attracting basins of the weakly forcing system
can be approximately characterized by those of the auto-
nomous system. Then the previous argument makes
sense only if the forcing is not too strong. When E is
very large, the trajectory takes large loops and does not
feel the multiple basins of the unforced system at all.
Thus all bounded systems can be regarded as a one-
potential-well system for very large E. There have been
many publications considering one-potential-well sys-
terns, such as the forced soft spring system, the Duffing
equation with positive stiffness, ' the Duffing equation
with unbounded trajectory, and so on. It has been
shown that a strong force may completely change the
basin structure of the unforced system. We believe that a
comparison of forced one-potential-well planar systems
with those of multiple-potential-well systems will be use-
ful for understanding the bifurcation mechanisms in
different potentials.

When a planar system is driven by a periodic force to
the bifurcation conditions, two kinds of responses are ob-
served as we have stated in Secs. IV and V. A striking
point is that these two kinds of behavior do exist in many
systems. Actually, most of the known forced planar sys-
terns of physical importance can be brought into one of
these classes. All forced limit cycle systems, such as the
forced Van der Pol oscillator, including its various
modifications, ' and the forced Brusselator, may
have a similar behavior such as Eqs. (24), (23), and (28)
when the trajectory is not too far from the limit cycle of
the autonomous system. The other systems, such as the
Duffing equation, the Josephson junction system ', the
superconduct quantum interference device (SQUID) sys-
tem, and so on, have a behavior similar to Eqs. (22) and
(25). It can be easily examined that for the latter class of
equations, all the singular points, around which the tra-
jectory may travel at the parameters taken, are of class A.
In this presentation, for the first time, we point out that
systems like Eqs. (23) and (28) may behave like a forced
limit cycle system, although the autonomous system con-
tains no limit cycle. These systems must have singulari-
ties of class B which are considered to generically exist
and to be structurally stable. In fact, the two-box cou-
pled Schlogl model is rather typical, and it represents a
large class of the systems. For instance, two independent
one-dimensional differential equations with multiple
basins can fall into the class of (27) when they coupled by
linear curl terms. In this presentation, we show two
different ways to make a limit cycle of the autonomous
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VII. POTENTIAL, CLASSIFICATION
OF SINGULARITIES, AND GENERAL

FOKKER-PLANCK EQUATIONS

Up to now, the study of the structure of the potential
and the classification of singularities has been based on
the potential originating from the Hamilton-Jacobi equa-
tion (7), which was derived from the FPE (4). Different
kinds of noises may be added to the deterministic Eqs. (2)
and result in rather distinctive FPE's. Now problems of
conceptional importance arise: whether the classification
of the two classes of singularities makes sense if the noise
added to the deterministic equations are different from
(3), and whether the classifications of the singularities
from different kinds of FPE's are identical. A negative
answer to any of the above may substantially limit the
significance of all the previous results. It is very much
appreciated that the answers are positive.

Let us start from the most general two-dimensional
Langevin equations

x =C](x,y)+&e[k„y](t)+k]2y2(t)],

y =C2(x,y)+&E[k2]y](t)+k22y2(t)],
with

(f,(t) ) = (y, (t) ) =(y, (t)y",(t') ) =0,
(f ](t)f'](t') ) =Ã(t —t'),
(y2(t)y2(t')) =2&(t —t') .

(35)

Since we are concerned with only the leading terms of e,
the Stratonovich or the Ito interpretations on the sto-
chastic processes do not make a difference. In the weak-
noise limit, the Langevin equations (35) can be
transformed to the FPE:

system disappear. One way is via Hopf bifurcation; then
the limit cycle turns out to be smaller and smaller, and
finally collapses to a fixed point. The other is via saddle-
node bifurcation; then the limit cycle turns slower and
slower, and finally vanishes at a finite circle via a "crisis."
It is interesting to see that, by applying a periodic signal
the characteristic features of the limit cycle system are
lost after the limit cycle disappears in the former case,
while still being kept in the latter case.

More complicated systems may produce more complex
bifurcation figures. For instance, more islands of bifurca-
tion regions may exist; the two kinds of bifurcation
figures may appear, simultaneously, in a single system in
different parameter regions or different variable ranges if
such a system contains both kinds of singularities.

with

h]](x,y}=k]]+k]2, h22(x, y)=k2]+k22,

h]2(x,y)=2(k„k2, +k, 2k22) .
(37)

It is obvious from (37) that the diffusion matrix of (36) is
non-negative for any (x,y). Inserting

o(x,y)
+])]](x,y)

E
p (x,y) =N exp

+@$2(x,y) + (38)

into Eq. (36) and keeping only the leading terms of I/e,
we arrive at the general Hamilton-Jacobi equation

aj, ay, ay,
C, (x,y)+h „+h,2Bx By Bx

a
+ C2(x,y)+h, 2 +h22

B 0 =0 . (39)
By

Suppose that we are able to divide the drift (C, , C2) to
the following form:

C](x,y}=h»g](x y}+h]2g2(x y}+d](» y},
C2(x,y) =h]2g](x,y)+h22g2(x, y)+d2(x, y),

with

(40)

Bg]

By

Bg2

Bx

B2@,

Bx By
(41)

$0= —(h]]g] +h22g2+2h]2g]g2) 0, (42)

due to the non-negative of the diffusion matrix. Thus Po
must take extrema at all the asymptotic sets of (2). Let us
consider a limit cycle system. ])(]0 should take extrema at
the entire circle of the limit cycle, namely, the constraints

a@, a
(43)1

B 2

must be hold on a one-dimensional closed curve. Thus it
is convenient to rewrite (g„g2) by (ga, , ga2) as we did
for (8). Then Eqs. (40) can be replaced by

g]d]+g2d2=0 .

It is evident that the function ])(]D(x,y} must be a solution
of the Hamilton-Jacobi equation (39) and a Lyapunov
function of the deterministic system (2):

Bp (x,y, t)
Bt

[C, (x,y)p (x,y, t)]B

B
[C2(x,y)p (x,y, t)]

By

B2 B2
+e h„2+h

Bx By

B2+2h, 2 p (x,y, t),
Bx By

(36)

C](x,y) =t g(», y}[h]]a](x,y)+h]2a2(x y)]
—vf(x, y)a2(x, y),

C2(x,y) =]Mg(», y)[h]2a](x,y)+h22a2(x, y)]

+vf(x, y)a, (x,y),
a(ga, ) a'@,

By Bx By

a(ga, )

Bx

(44)

(45)

Now the drift can no longer be divided to a pure gradient
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part and a vertical circulation as we did for (7). Never-
theless, the functions Q(x,y) and f(x,y) still have similar
meanings as Q(x,y) and f (x,y) in (12). Let us call the
sets f=0 and Q=0, f', and f'z, respectively. According
to (44), we again find that the singularities of Eqs. (2)
come from two origins:

a, (x,y)=&z(x, y)=0, class A

Q(x,y)=f(x,y)=0, class B .
(46)

go=go= —,'ay —
—,'a(2x —x ) .

With class-A singular points, the potentials $0 really take
local minima, maxima, and saddles at the stable, unsta-
ble, and saddle points, while with class-B singularities,
the potential remains fiat on the entire circle f'z. The sit-
uation is exactly the same as that encountered for (12) in
Sec. II.

The problem remaining is to identify the two sets of
(46) to those of (14) and (15}. The identification is con-
vincing if we notice that all the arguments in Sec. III are
completely valid for class-A and -B singular points
defined in (46). Now many FPE's, or precisely, many
Hamilton-Jacobi equations, which are different owing to
distinct noises, correspond to a unique set of determinis-
tic equations (2). For classifying the two classes of singu-
larities, each Hamilton-Jacobi equation requires the same
conditions (Sec. III). For instance, for a limit cycle sys-
tem, all f'z must be identical to the same limit cycle what-
ever the diffusion matrix of Eq. (36}. As the limit cycle
disappears via saddle-node bifurcation, the singular
points appearing in the deterministic system (2) must be
of class B. This fact is not affected by the difference of
the noises. In fact, it is easy to prove that the curves f'z

defined for different noises must identical no matter
whether the limit cycle exists or not (i.e., no matter
whether f', and f'z intersect each other or not).

Actually, as k» =kzz=1 and k,z=kz, =0, Eqs. (45)
and (46) recover (12) and (14), (15), respectively. It is
reasonable to conclude that as we slightly change the
form of noises, the classes of the singularities of the po-
tential must remain the same while the form of the poten-
tial is modified. By continuously varying the noises bit by
bit, the conclusion must remain truly independent of the
noise form. Then the identity between (14), (15},and (46)
is rigorously proved. Thus the classification of the singu-
larities should be considered as the intrinsic property of
the deterministic equations (2) since it is independent of
the concrete form of the noises.

The above justification may tremendously enlarge the
application range of the potential analysis. Given certain
deterministic planar equations, an explicit form of Eqs.
(46) may not be available for certain noises, but it can be
analytically presented for an alternative choice of
Langevin forces. Thus the possibility of finding an ana-
lytic form of the potential may be considerably enlarged
by properly choosing the noises. For instance, with the
unforced Duffing equations (25), no explicit solution of
(12) can be obtained. However, if the noises are given by
kit =kiz=kzi =0 and kzz= 1, Eq. (39) can be exactly
solved, namely,

Thus one can definitely conclude that all the singular
points in the Duffing equation are of class A because they
directly come from the extreme points of the potential.
This conclusion justifies our analysis in Sect. V and shows
that the discussion based on the arguments of Sec. III is
reasonable. In fact, for a large class of deterministic
equations

y = —ay +f(x),
(48)

which are nonlinear oscillators with linear damping and
include all the DuSng equations, the Josephson junction
equations, the SQUID system, and so on without forcing
its special forms, the classification of the singularities can
be identified. %ith the noninvertible diffusion matrix
(h zz

= 1, and all the other elements of the diffusion matrix
vanish), we may easily identify

go=f0= ,'ay a —ff (—x)dx, (49)

VIII. SOME OPEN PROBLEMS

The present paper suggests a classification of two kinds
of singular points based on distinct potential structures
and emphasizes the influence of the potential on the
deterministic systems in both of the autonomous and
periodically forced circumstances. Nevertheless, several
problems are open. Despite some reasonable analytic ar-
guments and numerical observations that validate the
classification, no mathematically precise criterion is
defined to distinguish the two kinds of singular points.
The transition from one kind of singularities to the other
may be regarded as a sort of phase transition, and it can
occur only under some critical conditions. It is still open
as to how to specify the critical conditions. It is numeri-

which is the exact solution of the well-known Kramers
equation. " Therefore, all the singular points in this kind
of equation are of class A. According to our observations
in Secs. IV and V, we may conjecture that they should
behave as Eqs. (22) and (25) with a periodic forcing.

The finding in this section is significant. $0, represent-
ing the stationary solution of the FPE (36) in the weak-
noise limit [see (38)], is identical to fo if no intersection of
f'~ and f'z exists. When the intersections of both curves

A A
exist, $0 differs from tPO. $0 really has a local saddle at
the saddle points of class A, while it has a discontinuity
of its first-order derivative at those of class B. (For de-
tails, we refer to Ref. 16). Thus for $0 the two classes of
singularities of the deterministic equations (2) are also
distinguished. Probability of the FPE is a measurable
quantity. By measuring the stationary probability distri-
bution of the FPE with small diffusion strength, one may
realize the form of (44) and practically distinguish the
two kinds of singular points indeed, no matter whether
we can analytically realize (12) and (44) or not. Since the
FPE has been extensively used to study the potential of
nonequilibrium systems, the results of this work may be a
useful step toward a better understanding of the evolu-
tion of the macroscopic variables on the basis of their
nonequilibrium potential.
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cally observed that the outputs of the forced systems are
radically diferent if the singular points the trajectory cir-
cles around are diferent. The mechanisms underlining
these observations are still unknown. The models sug-

gested in the presentation deserve further investigation

by some other methods, for instance, by examing the
features of the trajectory, extracting the corresponding
return map, clarifying the symbolic dynamics, detecting
the basin boundaries, or manifesting the multifractal
structure of the strange attractors and so on. They will

be our future works. We hope that the present work may

stimulate a study treating forced planar differential equa-
tions in various groups, such as one-potential-well sys-
tems, multiple-potential-well systems, forced limit cycle
systems, systems with class-A or -B fixed-point basins,
and so on, and clarifying the common features of bifurca-
tions in each group and main di8'erences in distinct
groups.
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