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An alternative approach for treating strongly interacting statistical systems with strongly singular
potentials is developed. This approach combines both the advantages of decoupling procedures for
Green functions, which eliminate divergences caused by singular potentials, and the advantages of
perturbation theory, which is a regular procedure that makes it possible to construct subsequent ap-
proximations above the chosen decoupling. The resulting iterative sequence of Green functions
generates corresponding sequences of observable quantities. To improve the convergence of the
latter sequences a method is suggested based on the renormalization-group ideas. A simple illustra-
tion is given.

I. NONIDEAL SYSTEMS

By an "ideal statistical system" is usually understood
to be one possessing any of the two following properties:
Either there is no particle interaction or there is an abso-
lutely regular space structure. These properties, al-
though quite different, have a common feature that is an
idealization of a system. For example, a system with no
interparticle interactions is called an ideal gas. A system
having an absolutely periodic crystalline lattice is called
an ideal crystal.

Systems deviating in a small way from these idealized
properties are called weakly nonideal. Thus, a weakly
nonideal gas is a system of particles with very weak in-
teractions. A weakly nonideal crystal is a solid with a
lattice whose periodicity is slightly disturbed by a small
number of defects. The weakly nonideal systems can be
treated by perturbation theory starting from a corre-
sponding ideal picture.

When the ideality of a system in one of the two possi-
ble meanings is strongly disturbed, the system is called
strongly nonideal. Generally, such strongly nonideal sys-
tems display at least one of the following five properties:
strong interactions between particles, strong singularities
of the interaction potentials, strong many-particle corre-
lations, strong fluctuations inside the system, and strong
space irregularities. Below, a more detailed explanation
of these properties is given.

(i) Strong particle interactions One calls an .interaction
strong if the mean potential energy of the system Ez is of
the order or greater than the mean kinetic energy F&.

In this situation the standard perturbation theory dealing
with the series in powers of the potential energy leads to
unreasonable results, unless some resumm ation tech-
niques are invoked.

(ii) Strong potential singularities Let a system. of N
particles inside a d-dimensional region V be described by
the set of variables

x;=Ix; ~a=i, 2, . . . , dI, i =1,2, . . . , N .

Each pair of particles interacts with each other through
interaction potential v(x;, x ), iWj. This potential is

called strongly singular if it is not integrable in the region
with a finite measure, that is, when the integral

diverges for any fixed

x EV, mes V& 00 mesV—: x,
V

p(x;, x, )Wp(x, )p(x, ) (iWj),

even if this product is symmetrized or antisymmetrized,
according to the statistics of particles. It is just such a
factorization that leads to divergences when using pertur-
bation theory for strongly singular potentials. Therefore,
to treat the latter, it is absolutely necessary to consider
strong pair correlations.

( iv ) Strong local fluctuations The appearanc. e of
strong fluctuations is directly connected with strong in-
terparticle correlations. There are two kinds of fluctu-
ation: homogeneous and heterogeneous. The first kind
corresponds to elementary excitations arising above a

where mes denotes measure. These strongly singular po-
tentials are quite familiar for a number of realistic sys-
tems. Examples are the Lennard-Jones, Buckingham and
others widely used in statistical mechanics, and the
hard-core potentials used in nuclear theory. The small-
distance behavior of such potentials in the real space is as
v (r) - r " (n ~ 3), which just yields their nonintegrability
for the real-space dimension d =3. In the case of strong-
ly singular potentials the standard perturbation theory is
of no sense at all as far as all terms of the expansion
diverge.

(iii) Strong pair correlations In genera. l, the correla-
tions between particles are described by one of the repre-
sentations for reduced density matrices p(x, ,x2, . . . , x, )

(j ~ 2); they may be correlation functions or Green func-
tions. Strong pair correlations mean that the two-particle
density matrix cannot be factorized into the product of
the single-particle density matrices,
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ground state. For instance, acoustic waves or spin waves
are of this kind. These excitations do not change the
homogeneity of matter. The role of these fluctuations be-
comes especially important in the vicinity of instability
points and second-order phase transitions. The fluctua-
tions of the second kind are called heterogeneous because
they drastically disturb the real-space structure of sys-
terns. Heterogeneous fluctuations can be of two types:
static and dynamic. The former, often called frozen, are
usually due to a large number of defects incorporated
into a lattice. The examples of systems with static
heterogeneous fluctuations are amorphous solids and spin
glasses. The configuration of static fluctuations for each
particular system is random in space but does not change
in time. The dynamic heterogeneous fluctuations also are
random in space but each of their configurations has a
finite lifetime. The examples are various structural fluc-
tuations near first-order phase transitions and, generally,
fluctuating nuclei of one thermodynamic phase inside
another.

(v) Strong space irregularities. These irregularities, as is
clear, are caused by strong heterogeneous fluctuations.
As a result we need to deal with nonuniform, or even
with nonequilibrium, systems having a random distribu-
tion of structure disturbances in space, and in the case of
dynamic fluctuations, in time as well. It goes without
saying that all this strongly complicates the description
of such systems.

The brief review of features of strongly nonideal sys-
tems shows that the properties of the latter are closely in-
terconnected, although different properties may need
different mathematical methods for their description.
From this point of view one can separate the first three
properties from the rest: strong particle interactions,
strong potential singularities, and strong pair correla-
tions.

As has been stressed above, in the case of strongly
singular potentials the standard statistical perturbation
theory' loses its sense because of divergences. This situa-
tion is relevant to the appearance of the ultraviolet diver-
gence in the quantum-field theory where it can be elim-
inated by means of the renormalization of interaction
constants. '

The sole known way in statistical mechanics to avoid
the divergences due to strongly singular potentials is to
invoke one of the variants of the so-called decoupling
procedure preserving pair correlations. One decouples
whether they are correlation functions, Green functions,
or wave functions. We may mention here the decou-
plings of Green functions yielding the equations of the
Bethe-Salpeter and Brueckner-Goldstone types, ' the
Kirkwood decoupling of correlation functions, and
coupled-cluster ' and Jastrow ' approximations for
wave functions.

However, the decoupling is not a regular procedure,
that is, it does not give a consistent method for finding
out successive corrections to the approximation chosen.

In this paper we suggest an approach for describing
strongly interacting statistical systems with strongly
singular potentials. The approach combines the advan-
tages of the perturbation theory that is a regular pro-

cedure and of the decoupling methods that eliminate
divergences. An iterative scheme is constructed that
starts from one of the decouplings, taking into account
pair correlations, and defines all further subsequent ap-
proximations, containing no divergences at any step. The
sequences of iterative approximations for observable
quantities are considered and a method to improve the
convergence of the sequences is advanced. The work has
been influenced by renormalization ideas of quantum-
field theory. Everywhere below A—:1.

II. GREEN FUNCTIONS

in which K(x) is the kinetic energy operator, and p(x, t),
the chemical potential including external fields, if any.
The two-particle interaction potential u(x, x ) is sup-
posed to be strongly singular in the sense defined earlier.

To simplify the expressions to follow we shall use the
abbreviation for functions

f (1,2, . . . , n ):f(x„t„x~,t2; —. .;x„,.t„).
and for differentials

d(1, 2, . . . , n ) =dx, dt, dx2dt2 —. . dx„dt„,
and introduce the interaction potential

u (1,2) =u (x, ,x2)5(t, t2+0)—
in which

(2)

5(t +0)—:lim 5(t +e) .

We shall deal with the causal Green functions, the
propagators. The single-particle propagator is defined as

Although, for describing statistical systems it is possi-
ble to use any many-particle function such as correlation
functions, Green functions, or wave functions, we prefer
to deal with Green functions whose analytical properties
seem to us to be the most convenient for achieving a
more elegant theory. In addition, the Green-function
technique makes it possible to present in a unified way a
general approach to different systems, either at zero or at
finite temperature, equilibrium or not.

The Heisenberg representation for the field operators
P(x, t) will be used where t ER is the time variable. All
internal degrees of freedom, like spin, isospin, color, etc. ,
can be included into the set x together with space coordi-
nates. In accordance with the Bose-Einstein or Fermi-
Dirac statistics, the commutation or anticommutation re-
lations, respectively, are valid

[g(x, t), g (x', t)]+ =5(x —x'),
[g(x, t), g(x', t)]+ =0 .

The Harniltonian of the system with binary interactions
u(x, x') has the form

H= f P (x, t)[K(x) p(x, t)]g(x, t—)dx

+,' f g (x, t)p (x', t)u(x, x')g(x', t)g(x, t)d» dx',
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G(1,2) = —i ( f'$(1)$ (2)), (3)

where T is the chronological operator ordering the time
variables so that t

&
& tz, and the brackets mean the aver-

age of an operator A,

following from definition (4), and defining the diagonal
single propagator as

G(1, 1)—= lim lim G(1,2) .
xg~xi fg~tl +0

( J)=Trpb",

(4)

p being the statistical operator. The two-particle, binary
propagator is

B (1,2, 3,4)= —( ~y(I )y(2)y'(3)1i'(4) ) .

With representation (8) self-energy (7) takes the form

X(1,2)=+i5(1,2)f v(1, 3)G(3,3)d(3)

5p(3)
i—f v(1, 3) ' G '(4, 2)d(3, 4) . (10)

f G '(1,3)G(3,2)d(3)=5(1,2),

in which the inverse propagator

(5)

here again the chronological operator arranges the time
variables in the order t, & tp & E3 & f4.

The equation of motion for the single-particle propaga-
tor can be written' in the form

Equations (5), (6), and (10) form a closed set of equa-
tions which one could solve by means of an iterative pro-
cedure. This is what one usually does in the perturbation
theory. However, the first term in Eq. (10), correspond-
ing to the Hartree approximation, diverges because of the
strong singularity of the potential v(1, 2). That is why
for such potentials the standard perturbation theory,
based on expression (10), makes no sense.

G '(1,2)= i E(1)+—p(1) 5(1,2)—X(1,2)
t}t i

(6) III. SMOOTHING FUNCTION

X(1,2) =+i f v(1, 3)B(1,3, 3,4)G '(4, 2)d (3,4),

the right-hand side of Eq. (5) being the 5 function

5(1,2)—:5(x, —x~)5(t, t~) . —

(7)

In the quantum-field theory X(1,2) is called the mass
operator.

From Eqs. (5)—(7) it follows that the equation of
motion for the single-particle propagator is a functional
relation Fi [G,B] between this propagator and the binary
one. Analogously, if one writes down the equation of
motion for the binary propagator, one obtains a function-
al relation Fz[B,G3] between propagator (4) and the
three-particle propagator

G3(1,2, 3,4, 5, 6)=i ( f'f(1)$(2)f(3)f (4)Q (5)g (6)),
in which t, & tz & t3 & t4 & t5 & t6, and so on; the equation
of motion for the n-particle propagator G„is a relation
F„[G„,G„+i]between this propagator and the higher-
order one. The infinite set of these equations is called the
hierarchical chain. To obtain a self-consistent set of
equations one may invoke an additional condition ex-
pressing one of the higher-order propagators through the
lower-order ones, thus breaking the hierarchical chain.
This is just what is called the decoupling procedure that,
as is evident, does not formulate a regular way for finding
out further approximations. We shall follow another
path.

Let us notice that self-energy (7) contains not an arbi-
trary binary propagator, but a quasidiagonal one
B(1,2, 2, 3). For the latter, using the Schwinger varia-
tional technique, ' ' we can get the variational represen-
tation

is connected with the self-energy X(1,2) defined by the
equation

for any fixed t, , tz FIR and xz EV. This can be done by
defining the smoothing function as a correlation function.

Here, we introduce the one-particle density operator

p(1)—=Q (l)f(1) (12)

and the two-particle density operator

p(1, 2)=g (1)g (2)g(2)f(1) . (13)

To overcome the discussed diSculties we need to in-
voke some additional ideas and definitions. Remember
that in the quantum-field theory the elimination of the ul-

traviolet divergences can be done by rearranging the per-
turbation series so that just from the initial step we
should deal not with the so-called bare coupling constant
but with a renormalized one. ' Under such a renormal-
ization the whole structure of the perturbation series
changes transforming to an expansion over a renormal-
ized interaction parameter. If an analogous rearrange-
ment of the perturbation series in the statistical mechan-
ics are possible, this would mean that we could construct
an iterative procedure whose initial step would take into
account particle correlations renormalizing the bare in-
teraction potential, and thus eliminating divergences. As
a result of this rearranged iterative procedure we should
obtain an expansion in powers of a renormalized interac-
tion potential.

Let us introduce a new function s(1,2, ), which will

play the role of a renormalizing multiplier for the initial
interaction potential. Since this multiplicative renormal-
ization results in the smoothing of the strongly singular
potential, we shall call the new object s(1,2) the smooth-
ing function. To eliminate the divergences this function
has to make the product s (1,2)v (1,2) integrable, so that

f s(1,2)v(1, 2)dx, ( ao

B(1,2, 2, 3)=G(1,3)G(2,2)+
5p(2)

Operator (12) defines the average number of particles by
means of the expression
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N=&g&, g:—fj(1)dxi (14)

& p(1, 2) &
=

& p(1)p(2) &
—fi(1,2) & p(1) & .

The average particle density is given by the ratio

p=N/V (V=mesV) .

(15)

In general, the smoothing function describing pair corre-
lation can be defined as

&p(1,2) &

& p(1) & & p(2) &

(16)

Definition (16},to within the normalization, is what one
calls the second-order reduced density matrix.

A thorough study of general mathematical properties
of reduced density matrices has been done in the frame-
work of the representability problem. " ' More concrete
features of function (16) depend, of course, on the behav-
ior of the interaction potential. For instance, if the latter
satisfies the asymptotic condition

/x, —x, /~0
u(x x )~'

0, ~xi —xi~
(17)

which is usual for potentials of many statistical systems,
then one should expect the following properties of func-
tion (16). When v(x, ,x2)~~ with ~x, —x2~~0, this
means that the repulsion between two particles, ap-
proaching each other, is infinitely increasing, which must
yield the impossibility for these particles to be placed, at
the same moment, at the same space point, that is,

lim lim &p(1,2) & =0 .
/z] x2/ 0 /ty t2/ 0

(18)

The number-of-particle operator 8' commutes with Ham-
iltonian (1); therefore the average number of particles N
does not depend on time. The averages of the operators
p(1) and p(1, 2) are connected by the equation

equations discussed in Sec. II. Therefore, a particular
choice of the smoothing function corresponds to a partic-
ular choice of the decoupling procedure. Several possibil-
ities of constructing the smoothing function with proper-
ty (20) have been analyzed. '

IV. DOUBLING FUNCTION

Suppose that after invoking one of the decouplings the
smoothing function (16) has been explicitly defined. In
order to obtain a regular procedure that could give us the
corrections of all desired orders to the decoupling chosen,
we need yet to rearrange the equations of Sec. II.

Varying the equation of motion (5) with respect to the
chemical potential and using Eq. (8) we get the equation
for the quasidiagonal binary propagator

B (1,2, 2, 3)= G (1,3)G (2, 2)+G (1,2)G(2, 3)

+ G1,4G 5, 3
5G(6, 7)

X [B(6,2, 2, 7)

—G(6, 7)G(2, 2)d(4, 5, 6, 7)] . (21)

Equations (5)—(7) and (21) form a closed set of equations.
However, again we cannot iterate this set, as the first two
terms, entering into Eq. (21) and corresponding to the
Hartree-Fock approximation, being substituted into Eq.
(7), would lead to divergences because of the strong
singularity of the interaction potential u (1,2).

The principal step of our approach making it possible
to reorganize the equations is the introduction of a new
function D (1,2, 3) which we shall call the doubling func-
tion since its duty is to transform the one-particle propa-
gator to the two-particle one:

When v (x i,x2 )—+0 with ~x i
—x 2 ~

—+ 00 then we get two
noninteracting particles separated by a large distance.
The correlation between such particles should disappear,
which can be expressed with the help of the Bogoliubov
principle of correlation weakening' leading to

lim & p(1, 2) &
=

& p(1) & &P(2) &

(~l —~~) ~ oo
(19)

o, /x, —x, /
o, /r, —

r2/ o,
s(1,2)= '

1, /x, —x, f

(20}

An exact expression for the smoothing function is not
known, as far as the second-order reduced density matrix
& p(1, 2) & cannot be found exactly. One can find out sole-
ly an approximate expression for the density matrix after
invoking some decoupling for the hierarchical chain of

for any fixed t, , t2ER. Conditions (18) and (19) deter-
mine the asymptotic properties of the smoothing function
(16), which are

B(1,2, 2, 3):—s(1,2)fD(1,2, 4)G(4, 3}d(4) . (22)

X(1,2) =+if P(1,3)D (1,3,2) (d3),

where the renormalized smoothed potential

$(1,2) —= u (1,2)s (1,2)

(23)

(24)

appears. This potential, owing to the property (11), is al-
ready integrable.

Now we need to find out for the doubling function an
equation that would allow a consequent iterative pro-
cedure to be defined. Substituting Eq. (22} into Eq. (21}
and using the equation of motion (5) we have

Definition (22) separates out the two actions: taking ac-
count of correlations with the help of the smoothing
function and the doubling procedure realized by means of
the doubling function.

The advantage of using the doubling function becomes
evident if one rewrites self-energy (7) with definition (22)
getting
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s (1,2)D (1,2, 3)=5(1,3)6 (2, 2)+6 (1,2)5(2, 3)

5X(4,3)+f6(1,4) ' s(5, 2)fD(5, 2, 7)6(7,6)d(7) —6(5,6)6(2,2) d(4, 5, 6) .
56(5,6

Denote the zeroth-order doubling function

Do(1, 2, 3)=5(1,3)6 (2,2)+G (1,2)5(2, 3)

and introduce the operator X whose action on any three-point function f (1,2, 3) is given by the equality

X'f(1,2, 3}—=s(1,2)f(1,2, 3)+fG(1,4) ' (6(5,6)6(2,2) —s(5, 2)ff(5, 2, 7)G(7, 6)d(7))d(4, 5, 6) .5X(4, 3)
56 5, 6

(25)

(26)

(27)

With Eqs. (26) and (27) Eq. (25) can be written as

XD(1,2, 3)=Do(1,2, 3) .

Define the operator F, left inverse to X, as

YX=1 .

(28)

(29)

Y„—:g (1—X„),Yo ——1 .
m=0

As is clear,

= lim

(33)

Having $'acting on Eq. (28) we come to

D(1,2, 3)= YDO(1, 2, 3) . (30)

Equation (30) will play the major role in constructing an
iterative procedure for the doubling function.

V. ITERATIVE PROCEDURE

According to definition (27), the operator 5' is a function-
al of the self-energy, X=X[X]. Let X'„be the corre-
sponding operator functional of the nth approximation
for the self-energy X„,that is,

Considering Eq. (29) as a definition of the formal
operator $ =1/X', expand the latter in the Taylor series
at the point X= 1, which yields

(31)

Equations (23) and (30}define the self energy X and the
doubling function D, respectively, while Eq. (31)—(33)
and (27) define the operator P. Now we can organize the
following succession of approximations:

DO~X)~ 9) ~D, ~X2~ Y2~D2~

that presents an iterative procedure with the scheme

D„~X„+~i'„+~D„~+(n =0, 1,2. . . ) . (34)

X,(1,2)=+i5(1,2)f$(1,3)6(3,3)d(3)

+i/(1, 2)6(1,2) . (35)

Expression (35) is of the Hartree-Fock form, but with the
renormalized smoothed potential (24) which is integrable.
Thus no divergences appear.

Following scheme (34) further we get

Substituting the zeroth-order doubling function (26)
into Eq. (23), we have the first-order approximation for
the self-energy

X„—=X[X„]. (32) Yt =2 —X[X,] (36)

Define the nth approximation for operator (31) by and the first-order doubling function

D, (1,2, 3)=DO(1,2, 3)[2—s(1,2)]+if G(4, 2)[6(1,4)6(2, 3)p(4, 3)+6(1,3)G(2,4)p(3, 4)]d(4)

+ i f 6(2,2)[6 (1,3)G (4, 4)P(3,4)+6 (1,4)6 (4, 3)P(4, 3)][1—s(4, 2)]d (4) .

Using (37) for Eq. (23), we obtain the second-order approximation for the self-energy

X~(1,2)=+i5(1,2)f $(1,3)6 (3,3 }d(3)+i $(1,2)6 (1,2)

—f $(1,3)G (4, 3)[(5(4,2)G (1,4)G (3,2)+$(2,4}G(1,2)G (3,4)]d (3,4)

+f P(1,3,4)6 (4, 4)[P(2,3)6 (1,2)6 (3, 3)+P(3,2)G (1,3)6 (3,2)]d (3,4),

(37)

(38)
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where we have introduced the notation for the twice re-
normalized potential

$(1,2) =—$(1,2)[2—s(1,2)]
=u (1,2)s (1,2)[2—s (1,2)]

and for the vertex

(39)

VI. OBSKRVABI.K QUANTITIKS

From the equations of motion (5) and (6) it is clear that
propagators are functionals of the self-energy, G =6[X].
Really, the self-energy is just a part of the inverse propa-
gator (6). Therefore, the sequence {X„jof the iterative

approximations for the self-energy generates the corre-
sponding sequences {G„jfor the propagator approxima-
tions G„:—G[X„].What can be said about the conver-
gence of such sequences?

Remember that propagators are not usual functions;
they are distributions (generalized functions) whose
correct mathematical definition can be done through a
class of integral functionals, continuous linear forms.
In statistical mechanics such a natural class of function-
als is a set of observable quantities defined as averages of
corresponding operators. Let A = {A j be an algebra of
operators to observable quantities. The average of any
operator A EA, as is known, ' ' can be expressed by
means of propagators as an integral functional ( A ). In-
volving the nth approximation for propagators for calcu-
lating the average ( A )„weget the corresponding ap-
proxirnation for this observable quantity,

Thus the sequence of iterative approximations for propa-
gators yields the sequence {f„jfor each observable quan-
tity. It is emphasized that the question of convergence of
an iterative procedure for propagators has the correct
mathematical meaning solely as the question of conver-
gence of sequences {f„jfor observable quantities.

P(1,2, 3)=P(1,3)[1—s(2, 3)]
=u (1,3)s(1,3)[1—s(2, 3)],

taking account of triple correlations.
In this way we may find out any approximation for the

self-energy, and consequently, for the Green functions; all
approximations contain no divergences at any step, as
long as the initial interaction potential enters everywhere
solely through the renormalized smoothed potential (24).
A similar iterative scheme has been used ' to solve the
Bethe-Salpeter equation.

The constructed iterative procedure gives a microscop-
ic justification for the phenomenological method of
effective potentials that is sometimes used for sys-
tems with strongly singular potentials. In this method
one chooses some approximation for the self-energy in
the form equivalent to one of the approximations in the
standard perturbation theory, but replacing the initial
singular potential by a phenomenological one, whose pa-
rameters are to be defined by comparing calculations for
the chosen approximation with experimental data.

The iterative procedure constructed in Sec. V results in
the appearance of expansions in powers of the renormal-
ized smoothed potential (24). From the mathematical
point of view it is more correct to extract from the poten-
tial $(1,2) an efFective expansion parameter, which is di-
mensionless, and to consider expansions in powers of this
parameter. The latter is usually called the coupling pa-
rarneter and is defined by the identity

$(1,2):—gy(1, 2) (g =2ma Po),

where a is the nearest-neighbor distance and $0 a charac-
teristic potential strength. The physical meaning of the
coupling parameter g is apparent; it is an effective
strength of the potential energy.

In this way, each approximation for an observable
quantity should be considered as a polynomial of the cou-
pling parameter

Therefore, the question of the convergence of an iterative
procedure is to be formulated as the question of the con-
vergence of functional sequences {f„(g)j.

Although the potential P(1,2), according to (24), is a
smoothed potential, this does not necessarily require that
the coupling constant g be small. Because of this, the
convergence of a sequence {f„(g)j can be either very
poor or can be lacking completely. The standard situa-
tion is when lim„„f„(g)is an asymptotic series. If we
were able to calculate many first approximations f„(g),
then we could invoke some of the known techniques for
an effective summation of asymptotic series. In the ma-
jority of cases in order to obtain such an effective sum of
an asymptotic series with an accuracy of about 1% one
needs to know about ten approximations for f„(g).How-
ever, it is technically impossible to calculate so many ap-
proximations for strongly nonideal statistical systems.
The maximum that one is able to do for practically all
real statistical systems is to calculate a pair of approxima-
tions. How then can we succeed in obtaining reasonable
results in such a complicated situation when only several
first terms of a sequence are availab1e and the standard
resurnmation techniques are not applicable? In the next
sections we suggest a new method for giving us the possi-
bility to overcome these di%culties.

VII. CONVERGENCE AND SELF-SIMILARITY

Consider a sequence {f„(g)j of approximations for
some observable quantity. Generally speaking, this se-
quence is divergent. In order to make the sequence con-
vergent we have to rearrange it, involving again the re-
normalization ideas. ' Note that any observable quanti-
ty depends, in general, not solely on the coupling con-
stant but, in addition, on a number of other parameters,
either entering into the Hamiltonian of the system or be-
ing introduced under the process of a decoupling when
choosing the initial step of an iterative procedure. Let us
select one of these additional parameters, say z, em-
phasizing that f„(g) depends on it,
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Suppose now that there exists a new sequence [z„(g)j of
functions z„(g),such that after the replacement

z~z„(g), f„(g)~f„(g,z„(g)) (42)

in which s =s(e} We sh.all call the number n =s, begin-

ning from which the approximations f„+and f„cio-n

cide, with a given accuracy, a saturation number; and we

sha11 write, for brevity,

f„+z(gz„+z(g))=f„(g,z„(g))—(n ~s, p ~0),
meaning Eq. (43).

The convergence of a sequence may be achieved in

many ways. Therefore, in order to concretize the intro-
duction of the governing functions, let us strengthen the
requirement imposed on them, demanding that they not
merely make the sequence convergent, but that this con-
vergence be as fast as possible. The latter subtends the
validity of the fastest-convergence criterion,

f„+~(g,z„+(g))=-f„(g, z( g)) (n,p ~0), (45)

being the general definition for the governing functions.
To extract further information from criterion (45) let

us rewrite it in another form. Define the function g(f)
by the equation

the obtained sequence [f„(g,z„(g))J becomes conver-
gent. Replacement (42) just implies a rearrangement of
the iterative procedure by renormalizing some trial pa-
rameters. The functions z„(g), with n =0, 1,2, . . . .,
govern the convergence of the sequence [f„(g,z„(g))},
that is why we shall call them the governing functions.
Let us stress that as far as the choice of the initial step for
any iterative procedure contains some arbitrariness, it is
always possible to introduce an additional parameter and,
therefore, to define the governing functions. A concrete
example will be given later.

If the uniform convergence of the sequence

jf„(g,z„(g))J on g ER is assumed, then the Cauchy cri-
terion is true:

If.+,(g,z. +,(g)) f„(g,z—„(g)}~&e (n s, p 0),
(43)

This equation describes the self-similar functional trans-
formation. Thus, the fastest-convergence criterion (45) is
equivalent to the self-similarity relation (50).

VIII. CONTINUOUS ITERATION

Relation (50) can become much more useful if we apply
a trick defining a continuous iterative procedure. This
can be done in the following way.

Introduce the variable

t„=e"(n =0, 1,2, . . . ), (51}

and the functions

z(t„,g ) =z„(g),
f(t„,g, z(t„,g))—=f„(g,z„(g)).

Then, change function (47) for

(52}

t„~t~[1,~), (54)

and make an analytical continuation of all functions de-
pending on t„to functions of the continuous variable
(54). For instance, for function (53) we get

f(t,f)=f(t,g(f),z(t g(f))),
with condition (48) changing for

f(1 f)=f .

(55)

(56)

The self-similar relation (50) in the continuous represen-
tation reads

f(bt, f)=f(t,f(b, f)} (b—& I) . (57)

DifFerentiating Eq. (57) over t and making the substitu-
tions t ~1, b +t, we —have

(58)

where

(53)

Now replace the discrete variable (51) by the continuous
variable

fo(g, zo(g})=f
and denote the new function

(46)

y (f ) = lim f ( t,f ) . ——
&Bt

(59)

f„(f):f„(g(f),z„(g(f)))—
with the evident condition

(47)

fo(f) =f (48)

f„+p(f)=f„(fp(f)). — (50)

following from Eq. (46). In terms of function (47) the
fastest-convergence criterion (45) becomes

f.+t, (f) =f.(f) . —

Putting here n =0 and using Eq. (48), one gets f=f~(f), —
the substitution of which into the right-hand side of Eq.
(49) causes us to obtain

The obtained differential equation (58) with boundary
condition (56) is analogous to the renormalization-group
equations for invariant charges in the quantum-field
theory, where Eq. (59) is called the Gell-Mann —Low
function.

Integration of Eq. (58) over t H [t„,t, ] yields

f, [s'}

dg =s n (60)
f„~a~ y(y)

where definition (51) is taken into account,
f„(g)=f„(g,z„(g)),and f—,(g) is the sought self-similar
approximation for an e8'ective limit of the sequence
[f„(g,z„(g))].

Defining the Gell-Mann —Low function (59) we have to
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bear in mind that f(t,f), in accordance with Eq. (55), de-
pends on the variable t directly and through the govern-
ing function z (t,g). Therefore

Bf(t f) a a azf—(t,g, z) + f (t,g, z)
at

where

in which

g =g(f), z„=z„(g(f)),n (s .

Substituting Eq. (61) in place of y(f) in Eq. (60), and
defining another function,

1

(s n)y„,(f)—y„,( ):—

f, (g,z„) f„(g,z„)+—(z, —z„) f„(g,z„)
fl

(62)

we obtain

f, (g)

y„,y y=1. (63)

This is the main equation defining the self-similar approx-
imation f, (g) for the sought function.

What we finally need is an explicit equation to deter-
mine the governing functions. Their general definition
(45) in the continuous representation reads

j(t,f)=0, — (64)

which is the continuous form for the fastest-convergence
criterion. Comparing Eqs. (64) and (58) we see that the
general definition for the governing functions is

y(f(t, f))=0 (65)

The nullification of the Gell-Mann —Low function is
called, in the renormalization-group theory, the fixed-
point condition. We could find from Eq. (65) the govern-
ing function z(t, g) if we worked in the continuous repre-
sentation. However, we always have to return to the
discrete representation where (and solely where) all our
quantities can be explicitly determined. As far as in the
discrete representation the derivatives over t have been

g =g (f), z =z(t, g(f)) .

Everything would be nice if we knew how to define the
differentiation over the continuous variable t, since in
reality we have only the discrete variable t„.To sur-
mount this problem we must return to the discrete repre-
sentation defining the derivatives over t by corresponding
finite differences. Thus, we can construct a discrete ana-
log for the Gell-Mann —Low function

f, (g,z„)—f„(g,z„)
y„,(f)= + f„(g,z„),

s —n s —n Bz„

(61)

presented by the two-point finite differences, the discrete
analog of the Gell-Mann —Low function (61) contains two
governing functions. Consequently, the nullification of
y„,(f) would give us a connection between z, (g) and
z„(g),but not their individual definition. Returning to
the discrete representation we are able to find out only
relative fixed points, defined not by the zero of the total
derivative (64), but by the derivative along a way
prescribed by some additional rule. The simplest ways
are either when f(t,f} is changing with t under fixed
z(t, g), which leads to

f, (g z. } f.(g z. }=o (66)

or when f(t,f) is changing with z(t, g) under fixed t,
which yields

a f„(g,z„)=0.
Pf

(67)

and for function (62)

y„,(f)=[f,(g (f),z„(g(f)))—f„(g(f),z„(g(f)))]
(69)

Finally, note that when zo(g) cannot be defined from

Other ways are possible, each of which may be fixed, for
instance, by adding a relation between z, (g) and z„(g).
Any of these ways gives a relative fixed-point condition
from where the governing function z„(g)is to be found.

The fixed-point conditions of type (66) have been intro-
duced in Refs. 28-30 and later used for describing
strongly anharmonic quantum ' and quasiclassical
crystals, for calculating the ground-state energy of an
anharmonic oscillator and for considering the solid-
liquid phase transition. ' The conditions of the type in
Eq. (67) have been applied for calculating the ground-
state energy of anharmonic oscillators and of some oth-
er models. The method using the conditions of the type
in Eqs. (66) or (67) is called the modified perturbation
theory.

In Refs. 28 —37 the definition of z„(g)by one of condi-
tions (66) or (67) and its substitution into f„(g,z„(g))has
been the final result.

Contrary to this, in the approach of the present paper
the definition of the governing function z„(g)with one of
the fixed-point conditions is only the initial step, after
which three others are to follow, when we have to calcu-
late the function g(f) from Eq. (46), the function y„,(f)
given by Eq. (62), and integrate Eq. (63) defining the self-
similar approximation f, (g) for the sought function.
This procedure of the renormalization in the vicinity of a
relative fixed point must essentially improve the accuracy
of results.

Among the two simple fixed-point conditions (66) and
(67) the latter seems to be preferable for reducing func-
tions (61) and (62) to simpler forms. Thus, if we adopt
Eq. (67) and find g(f} from Eq. (46}, we have for the
Gell-Mann —Low function (61)

f, (g (f),z„(g(f))) f„(g(f),z„(g(f))—)
y„,(f)= s —n
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condition (67), we can put

z0(g):—z, (g) .

Now the whole procedure of finding out the self-similar

approximation for any observable quantity is completely
defined by the scheme

z„(g)~g(f)~z„(g(f))~y„,(f)~f, (g) .

The corresponding functions may be calculated with the

help of Eqs. (67), (46), (69), and (63).

eo(g zo} —zo

3g+z, +z',
e, (g, z, )=

4zi
(75)

4z2(3g +z2+z& ) —(6g +z2 —z3~)2 —6g2
e2(g, zz) =

where z„(g)are governing functions.
Take n =1 and s =2 for the formulas of Sec. VIII.

The fixed-point condition (67) becomes

IX. SIMPLE EXAMPLE e, (g,z, )=0,
z f

(76}

Let us illustrate on a simple model how to calculate ob-
servable quantities in the self-similar approximation.
Consider the so-called y model whose Hamiltonian cor-
responds to the scalar-Geld theory. This model, as is
known, is equivalent to the anharmonic quartic-oscillator
model ' with the Hamiltonian

1 d mugH=- + X2+Xm 2X4,
2m

(71)

in which m, co, and A, are positive parameters; for sim-

plicity the one-dimensional case is assumed,
x E( —co, + ao ). Let us find out the ground-state energy
of the model. Note that the standard perturbation theory
in powers of A, diverges ' for any A..

First, we have to introduce the governing functions.
As has been discussed in Sec. VII; this can be done by in-

cluding a trial parameter, for example, incorporating this
parameter into the initial form of either the self-energy

Xo or the propagator Go, or what is the same, into the in-

itial approximation for the Hamiltonian Ho. Choose the
latter in the form

from where the equation for the governing function z&(g)
follows,

z3) —z) —6g =0 . (77)

Seeking for the real solution of this equation we get

(2/&3)cos(a/3), g ~ g0

A++A g~g

where the notation is used

(78)

a =arccos(g /g0 },

A —+=(3g)' ' 1+ 1— gp

' 2 j. /2 ' 1/3

go= —=0.06415 .1

e0(g, z, (g)) =f, (79)

The function g (f ) is to be found from Eq. (64) together
with Eq. (70), that is, from the equation

1 dHo=- +
2m d~2

t?7 NO
2

2
X (72)

which gives

z&(g)=2f . (80)

AH =H H0=(m/2)(co ——co0)x +A,m x (73)

in which coo is just the trial parameter. The iterative pro-
cedure for the system with Hamiltonian (71), starting
from the approximating Hamiltonian (72), is equivalent
to the perturbation theory with respect to the effective in-
teraction

Combining Eqs. (77) and (80), we find

g (f )
= (4f ' 1} . — —

3

For the function (69) we have

y»(f) =[e2(g(f),z, (g(f)))—e, (g(f),z, (g(f)))]

(81)

(82)

We introduce the dimensionless quantities

E A, o
e(g)= —,g=, , z=

M Q) CO

where E is the ground-state energy for Eq. (71). Using
perturbation theory over Eq. (73) we get the approxima-
tions e„(g,z) for the dimensionless ground-state energy.
Then, according to Eqs. (41) and (42), we come to
e„(g,z„).Thus, for the approximations up to the second
order we obtain

from where, involving Eqs. (75), (77}, and (81), we come
to

y, z(f)= —768f /(4f 1)—(83)

Function (83) should be substituted into Eq. (63), i.e.,
into the integral

e, (g)

f y»(V»dV =1. (84)

in which e, (g)=e, (g, z, (g)) and e, (g) is the sought self-

similar approximation for the ground-state energy. In-
tegrating Eq. (84}we obtain
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4e, (g) —1

4e, (g}—1

1=exp
4e, (g) —1

1

4e, (g) —1

1

24

z, (g) =1+3g——", g +108g —","g (g «go}, (86)

in the weak coupling limit, and

z, (g)=(6g}' '+-,'(6g) ' ' ——,', (6g) ' ' (g »go), (87)

in the strong coupling limit. Using Eqs. (86) and (87), we
obtain from Eq. (85) the asymptotic expressions for the
ground-state energy in the self-similar approximation

(g)1 +3g75g2+3675g3236487g4
2 4 32 256 2048

in the weak coupling limit, when g ((go, and

(88)

e, (g) =0.667 37g' +0.15003g ' —0.012 72g ' (89)

in the strong coupling limit, when g )&go.
Compare these asymptotic expressions with the exact

expansion

(g) 1 + 3g 21gz+ 333g3 30885g4

for the weak-coupling limit, ' when g~O, and

e,„(g)=0.667 986g
'~ +0.143 67g '~ —0.0088g

for the strong coupling limit, when g~~. For a
more visual comparison let us rewrite the self-similar
asymptotic form for e, (g) and the exact expansion for
e,„(g)in the weak coupling limit as

e, (g)=-,' + —,'g —2. 344g + 14.355g —115.472g
(90)

(g)=-+-'g 2.625g'+20. 813g3
—241.289g

where g~O. As is obvious, the asymptotic expressions
for the self-similar approximation e, (g) and for the exact
expansion e,„(g)are very close to each other in both the
weak coupling as well as strong coupling limits.

The comparison of numerical results for the self-
similar approximation e, (g), given by Eq. (85) and of ex-
act numerical calculations for e,„(g),directly following
from a numerical solution ' of the Schrodinger equa-
tion with Hamiltonian (71), shows that the accuracy of
the self-similar approximation is of 0.1% in the whole
range of the coupling constant g E [0, ~ }. In the weak
coupling limit g~O, the accuracy asymptotically im-
proves, the error tending to zero.

It is also useful to compare our results with those of
the modified perturbation theory based on conditions
(66) or (67). The accuracy of this theory up to the second
order for the anharmonic oscillator has been thoroughly
studied. ' It has been found that this theory invok-

(85)

We analyze the asymptotic behavior of the self-similar
approximation e, (g). As follows from the expression of
the governing function (78}, the weak-coupling and
strong coupling limits correspond to g &(go and g )&go,
respectively. For the governing function (78) we have

ing solely the two-order expansion is not less accurate
than the methods of the Pade approximants and Borel
transformation requiring about ten perturbation terms.
The ground-state energy of the anharmonic oscillator,
calculated by means of the second-order modified theory,
has the best accuracy of 1% for arbitrary coupling con-
stants g E [0, ~ ).

From the latter comparison it follows that, invoking an
equal number of perturbation terms, the method of self-
similar approximations provides the accuracy by an order
better than the modified perturbation theory.

X. DISCUSSION

In the example of the Sec. IX we deliberately have lim-
ited ourselves by considering the self-similar approxima-
tions only up to the second order. This is not merely be-
cause the higher-order approximations involve much
more cumbersome expressions, but mainly because our
aim has been to construct an accurate method of calcu-
lating observable quantities for such complicated systems
for which, in principle, we are able to find out solely a
few terms of an iterative procedure. For these systems
the standard methods (for recent literature see Refs. 44,
and 45) of an effective summation of asymptotic series are
not applicable at all, since they need to include tens of
perturbation terms.

The method of self-similar approximations can be easi-
ly generalized to the case where there are several interac-
tion potentials, that is, several coupling parameters
g = [g ~a=1,2, . . . I. One of the possible ways ' to do
it is as follows. Take the number of observable quantities
f„(g)which is equal to the number of coupling constants.
Introduce the same number of governing functions
z„(g)= (z„(g)), obtaining the set f„(g,z„(g))
=

[f„(g,z„(g)) ). The governing functions are to be
found from one of the conditions like (66) or (67); for ex-
ample, from the equation

f;(g,z„)—f„(g,z„)=0,

or from the condition

f„(g,z„)=0,
l7

from which we get z„(g). The set of functions
g(f)=[g (f)I, where f =[f I, should be found from
the set of equations

fo (g, zo(g }}=f

Analogously, in the place of function (62) we get the set
of functions y„,(f)= Iy„,(f) I, and in the place of integral
(63) the set of integrals

f, (g)

f y„,(qo)d97 =1 .
f„[a)

In the present paper we have elaborated an alternative
general approach to treat strongly interacting systems.
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We have not considered here the last two properties of
nonideal systems, discussed in Sec. I, that is, strong fluc-

tuations breaking the uniformity of a system, and con-
nected with these fluctuations, strong space irregularities.
These questions are related to the problem of heterogene-
ous fluctuations. ' An original method to deal with
such heterogeneous systems has been advanced. 18,48,49

The method also is based on renormalization ideas, mak-

ing it possible to average over heterogeneous
configurations and to obtain a renormalized Hamiltonian
corresponding to an effective uniform system. This
method has been applied to several systems (for review
see Ref. 50) with infinitely long-range interactions. The
final version of this method and its application to realistic

systems with finite-range interactions is planned to be
given in a future paper.
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