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Unified Faddeev treatment of high-energy electron capture
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A second-order Faddeev scattering formalism is developed for treating high-energy electron cap-
ture in nonrelativistic ion-atom collisions. The approximation to the exact capture amplitude en-

compasses both forward-angle and large-angle scattering. Comparison with forward-angle experi-

mental data for protons on hydrogen and helium at energies of a few MeV shows very good agree-

ment. The contribution of the internuclear potential to the amplitude is analyzed, and an explicit

explanation of its effects as described by the eikonal transformation is given in a multiple-scattering

approach. The amplitude is shown to be well behaved for singly charged incident ions.

I. INTRODUCTION

Electron capture at high impact velocities has proven
difficult to treat theoretically largely because multiple-
scattering contributions play a more important role in
this process than in direct excitation. Experimental mea-
surements of the differential electron capture cross sec-
tion at energies of a few MeV by Horsdal-pedersen,
Cocke, and Stockli for proton-helium' collisions and by
Vogt et a/. for proton-hydrogen collisions have not only
demonstrated the importance of these contributions but
have also provided a more stringent test of models
representing them.

Originally, Thomas proposed a double-scattering
mechanism as the only means, in a classical setting, of
ridding the electron-projectile subsystem of its large
internal momentum, thereby allowing capture to occur.
The mechanism, shown schematically in Fig. 1(a), refers
to an initial scattering of the electron off the projectile at
roughly 60' to the incident direction followed by another
collision, this time off the target nucleus, which redirects
the electron to the forward direction. Since the projectile
mass Mp is much greater than the electron mass m, the
final electron-projectile bound system is detected at the
very small angle (m/Mp)sin60' (equal to 0.47 mrad for
incident protons). The 60' results from conservation of
transverse momentum in the first collision on assuming
the electron's speed after the collision equals that of the
projectile.

A second possible double-scattering mechanism was
later pointed out [Fig. 1(b)]. In this one the projectile
suffers a collision with the target nucleus as well as the
electron, and the final bound system is detected at rough-
ly 60' to the forward direction for heavy targets. A third
possibility [Fig. 1(c)] can also be envisioned in which the
projectile scatters off the target nucleus (at 60 in the
figure) and the recoiling target nucleus then collides with
the previously passive electron, sending it in the direction
of the projectile. However, this last mechanism is not
classically allowed.

In a quantum-mechanical treatment of electron
transfer, each of these mechanisms can contribute to the

po

(a)
lv'l=l vl

600

ssV —~ p

A&V

T ~
x Jw6P

—~ Q

~ e ~ p

(b)

p
V

ep

(c)
~ e

V

FIG. 1. Schematic representation of the double-scattering
mechanism involving the projectile P, target-ion T, and electron
e: (a) P-e collision followed by T-e collision, (b) P-e collision fol-
lowed by P-T collision, and (c) P-T collision fo11owed by T-e col-
lision.

overall capture amplitude at any angle as a result of the
momentum spreads of the initial and final bound states.
On the other hand, as the electron must attain a final ve-
locity of the order of the projectile's velocity v, minimum
momentum transfers of the order of —,'v must occur in

each two-body collision. Consequently, the two-particle
potentials are deeply probed. Additionally, the scatter-
ings themselves are not truly elastic due to initial and
final bindings of the electron to relatively moving nuclei.
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The second-Born (82) approximation to the exact
charge-transfer amplitude, including internuclear terms,
provides the lowest-order quantum-mechanical represen-
tation of all of the double scattering mechanisms, ' but
because of the hard-collision and relative-binding aspects
of the process this amplitude does not adequately repro-
duce the experimental results. The purely electronic
part of the amplitude (not including the internuclear
terms) gives too large a cross section with the wrong
shape. Furthermore, it has been shown within a high-
velocity peaking approximation that the partial ampli-
tudes arising from the internuclear terms interfere and
indeed cancel with the internuclear first-Born amplitude
at near-forward scattering directions of the projectile.
This result is in correspondence with the zero contribu-
tion of the internuclear terms to the total cross section
which is known from the eikonal transformation, but is
at odds with the appearance of the nuclear scattering
contribution at angles slightly away from the forward
direction.

Within a multiple-scattering formalism, the question
thus arises of how a better description of the experimen-
tal data can be obtained, how binding effects of the active
electron affect the scattering, how the internuclear
scattering contribution can be included, and yet how the
conceptually simple picture of the scattering existing in
the Born theory can be retained. Specifically, how is the
differential cross section derived from the partial ampli-
tude involving only electronic-nuclear potentials modified
when a better description of the Coulomb scattering in-
cluding binding effect is incorporated into the formalism,
and when contributions from terms involving the internu-
clear potential are included?

An alternate and mathematically sounder theoretical
decomposition of the entire collision process into two-
body collisions is the scattering formalism of Fad-
deev. ' '" Related treatments are those of Watson' and
Lovelace. ' This approach (FWL) to the collision pro-
cess developed through second order is applied here to
electron transfer. The resulting amplitude has several ad-
vantages over those of other high-order theories. A
straightforward interpretation of the amplitude is
afforded by its derivation through the simple replacement
of the two-body potentials of the second-Born amplitude,
except for the electronic part of the first-Born amplitude,
with two-body transition operators, thereby automatical-
ly including infinite-order perturbation series in the treat-
ment of each of the individual scatterings. Moreover, the
replacement of potentials with transition operators
affords the highest extension in second order of the Born
approximation. An ability to deal with forward-angle
and large-angle projectile scatterings within the same for-
malism also offers a unity of treatment. It is shown that
in the second-order approximation used here, the inter-
nuclear contribution does not vanish in the differential
cross section and in fact reproduces the effects of the
eikonal transformation. Essentially, one obtains electron-
ic capture superimposed on nuclear Rutherford scatter-
ing. ' For collisions involving ions, modified Faddeev or
other approaches" are needed to obtain a well-behaved
Neumann expansion of the transition operator, although

lower-order truncations of the expansion can be we11

defined.
An exact numerical calculation of the amplitude is ex-

tremely difficult and is not attempted here. However, an
approximate evaluation is presented which relies on the
smallness of the binding effects by employing near-the-
energy-shell approximations' for the two-body transition
matrices and on the further neglect of other factors all of
which introduce errors on the order of the electron mass
over heavy-particle masses and of the order of the square
of the nuclear charges over the impact velocity squared.

Only forward-angle transfer is considered in the
present article, but large-angle transfer could also be
treated since the internuclear potential is included in the
formalism. Calculated cross sections and the experimen-
tal data for proton-hydrogen' and proton-helium col-
lisions are compared with results obtained from other
symmetric and asymmetric theoretical formalisms, in-
cluding the second-Born, continuum distorted-wave
(CDW), ' and strong-potential Born' ' (SPB) approxi-
mations to the exact amplitude.

The contributions from terms involving the internu-
clear potential are treated separately. In particular, the
amplitudes with and without internuclear terms are com-
pared and the former shows good agreement with experi-
ment at angles beyond the Thomas peak where the inter-
nuclear scattering is the main feature of the cross section.
Furthermore, the contributions of the internuclear terms
are seen to be in good agreement with the eikonal repre-
sentation of the nuclear scattering. '

When nuclear scattering is neglected from the outset,
the FWL amplitude reduces to a purely electronic part
which can be derived within a distorted-wave Born for-
malism (hereafter DWB), as has been shown by Taulbjerg
and Briggs. Treatments of this amplitude have ap-
peared elsewhere, ' but without the present orientation
where connections with the B2 approximation are
stressed, internuclear contributions are considered, and
off-the-energy-shell effects are explicitly treated.

The plan of the paper is the following. An outline of
the FWL formalism is given in Sec. II. In Sec. III, the
application to electron capture is presented within a
second-order approximation. The reduction of the ampli-
tude to a form involving two-body T matrices is given in
Sec. IV. Near-the-energy-shell approximations are intro-
duced and the amplitude evaluated in Sec. V. Section VI
presents calculated results and compares them with ex-
periment and other theories. Concluding remarks are
made in Sec. VII. Finally, three Appendixes present
some of the details of the discussion. A very limited set
of the present results has appeared elsewhere. In the
following discussion, atomic units are used but the elec-
tron mass m is retained in places for clarity. A plane
wave of index k represented in coordinate space r is nor-
malized as (r~k) =e'"'.

II. FADDEEV-WATSON-LOVELACE
SCATTERING FORMALISM

A three-body collision is considered in which a projec-
tile ion P is incident on a target consisting of an active
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electron e and a target ion T. Both the target and projec-
tile ions may contain nonactive electrons. It follows then
that the two-body interactions between each pair of the
three particles may assume the more general modified
Coulomb' form, which still includes the pure Coulomb
case.

The collision of the projectile and target system can re-
sult in three possible exit channels:

P+(T+e)',
P+(T+e)~ (P+~)*+T

P+T+e,

(la)

(lb)

(lc)

for excitation, rearrangement, and breakup, respectively,
where the asterisk allows for excited states of the (T+e)
or (P +e) aggregates. For the third channel, in general, a
bound-state spectrum does not exist. A transition opera-
tor corresponds to each of the channels in the collision
process: Tz for excitation, T„ for rearrangement, and
'Tz for breakup. We are interested in process (lb); pro-
cesses (la) and (lc) are not treated here.

The goal of the Faddeev-Watson-Lovelace scattering
formalism, as in any Faddeev approach, " is to construct
a set of operators and equations which they satisfy so that
free propagation of one of the particles accompanied by
any order of multiple scatterings of the other two is not
allowed, although each of the individual scatterings may
be represented at a higher level, e.g. , through the use of
two-body transition matrices. Such a procedure avoids
the ensuing singular nature of the amplitude representing
these types of subcollision. The actual transition opera-
tors for the individual scattering processes are then ex-
pressed in terms of the FWL operators. For potentials
which are Coulomb-like at large distances, the Faddeev
procedure should be modified' to account for the long-
range distortions of the potentials, so that a Neumann ex-
pansion [Eq. (2) below] of the transition operator is well
founded. However, if a certain order of the expansion in
the original Faddeev equations can be shown to be well
behaved and because the relation of the Faddeev expan-
sion to the Born expansion is straightforward (as is seen
below), it is still worthwhile to investigate the application
of these equations to cases containing Coulomb-like po-
tentials. It could be the case also that in an approximate
form, the results are in accord with those obtained from
the more rigorous theory, particularly so if good agree-
ment with experiment is found. This then is the rationale
behind the present study.

In order to keep the discussion self-contained, a brief
presentation of the original Faddeev approach is out-
lined. Corresponding to the specific final-state interac-
tions Vp Vy and Vzz-, the FWL "transition'* operators
'T7,„'T7;, and V'7,7, or collectively T, (a = Te, Pe, and
PT), are introduced. The defining equations are

where

G '(E)=(E —H, —V„V—„V-„&-Z)
is the full Green's operators of energy E satisfying an
outgoing-wave boundary condition and q is an
infinitesimal. The free-particle Hamiltonian of the sys-
tem in the total center-of-mass frame is denoted by Ho.

Individual two-body transition operators with free
propagation of the third particle are defined as solutions
of the Lippmann-Schwinger equations

'T7; =[1+7'r,GO (E)]V7; =[1+Vr, 67+;(E)]V7;,

T7,, = [1+5'7,,G 0 (E)]VP, =[1+VP, GP+, (E)]VP, ,

TP7 = [ 1 + TP7 G P (E ) ]VP7 = [ 1 + VP 7'GP7 ( E ) ]VP7'

with Go+ (E) denoting the free Green's operator
(E —Ho+i 7))

' and 6,+ (E), the Green's operator
(E Ho —V—, +i'} for the interaction V, of two parti-
cles and free propagation of the third.

The equations for the 'T, are derived using the relation

V7;6+(E)=T7,60 (E)[1+(VP, + VP7. )6+(E)]

and ones analogous to it for the I'-e and I'-T interactions
which are obtained by permutation of the potentials, and
the definitions of the two-body transition operators. A
unique set of equations" is found, in matrix form, as

0 T8 T8 TTg

'T7,, = 7'P, + TP, 0 7'7,, Go

+PT

77;
(2)

+PT +PT +PT+PT

+E +Pe ++PT (3a)

Y~ = Vp, + '7 J., + Yp~, (3b)

after some manipulations. Zeros along the diagonal of
the square matrix ensure the absence of terms represent-
ing multiple scatterings of the same two particles with
free propagation of the third one.

Equation (2) can be solved approximately by iteration
as a Neumann expansion. The first-order solution is
7,"='T, for a =Pe, PT and 77",=0; the second-order
solution 7, ' is obtained by substituting T," into the
right-hand side of Eq. (2); the third-order solution 7, ' is
obtained by substituting 0, ' into the right-hand side; the
procedure is followed until the desired order of the solu-
tion is found. Considerations of the convergence of this
procedure or of the compactness of the kernel ma-
trix, ' '" while being extremely important in the general
setting, are beyond the scope of the present work.

In terms of the previously defined FWL operators, the
individual channel transition operators assume the
forms"

= V7 [6 (E)( VP + VP7 )]

'TP, = V7,,[1+6+(E)( VP, + VP7. )],
)(Vp +VpT))

T~ = Vp~+T~, + Yp, . (3c)

An approximate treatment of V'z in Eq. (3b), for exam-

ple, is obtained by employing the corresponding order of
the 7; found using Eq. (2).
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III. APPLICATION TO ELECTRON TRANSFER

The present discussion of the FWL formalism centers
on the transition operator Tz representing electron
transfer. A second-order approximation to the "T, is
used for calculating 'Tz. Following Eqs. (2) and (3b},one
finds

&s —+~ V»—.+&z'+ 7'pr

=t Vp, +&r, Go+(E)&p, ]j

+~&pr+7»r Go+«)7», +7'r, Go'«)7»rl
=Pe+ T»

The various contributions to Wz' have been collected
into two sets of terms defined as 'T, and 7'„. These two
parts arise, respectively, from terms containing only
electronic-nuclear operators and terms containing inter-
nuclear operators. The operators 7; and 7'„describe
different aspects of the capture problem, namely, the
direct transfer of the electron and the role of the internu-
clear scattering. They also facilitate comparison with ex-
periment and discussion of the eikonal transformation of
the amplitude and of distorted-wave and second-Born
treatments of the process.

The positions of the constituents of the system are
represented by three sets of Jacobi coordinate vectors,
each pair of which consists of a relative coordinate vector
of one particle taken with respect to the center of mass of
the other two and an internal coordinate vector for these

I

R

FIG. 2. Jacobi coordinate sets rz, Rz, rp Rp' and r, R, corre-
sponding to the three unique two-partic1e center of masses.

two particles. The various sets of coordinate vectors are
shown in Fig. 2; they are related by the following trans-
formations:

rr=Prp+Rp =r+y'R,

Rr = —(1 —aP)rp+aR» = —a'r+(1 —y'a')R,
(5)

rz =arz —Rz =r —yR,

Rp =(1 aP)rz +PRz. =P r+(1 yP )R

Mass ratios in Eqs. (5) are defined as

a=Mr l(m +Mr), P=M»I(m +Mp), y =Mr/(M»+Mr ),
a'=m/(m +Mr), P'=m l(m +M»), y'=M»I(M»+M&),

where m is the electron mass and Mz and Mz- are the
projectile- and target-ion masses, respectively; they satis-
fy the relations a+a'= 1, P+P'=1, and y+ y'= 1.

Internal and relative reduced masses associated with
the three two-body combinations are defined, respective-
ly, as

p; =mM&I(m +Mr),
&; =Mp(m +Mr )/(m +Mp +My')

p,f =mM»/(m +Mp),

vf =Mr (m +Mp }I(m +M» +Mr )

p„=M»Mr l(M»+Mz. ),
v„=m(M»+M&. )I(m +M»+Mr ) .

In terms of the reduced masses and Jacobi coordinates,
the free-particle Hamiltonian assumes the possible forms

1
Ho = — V'R

1

2vf P 2I f 'P

1 ~2 1

2v~ 2p~

I

The total energy of the system is given by

1 2 1E = E,. +c,, = Ef+cf,
2v] 2&f

where K; and Kf are the initial and final heavy-particle
wave vectors and c, and cf are the initial and final
bound-state energies. The norm of a vector K is denoted
by K.

Individual two-body potentials, owing to the possibly
non-point-charge nature of the target and projectile ions,
may have complicated dependences on their respective
radial coordinates; however, they reduce asymptotically
to the forms

Vz;(rz ) — Zzlrz as rz—~00,
Vp (rp) Zp/rp as rp~ oo

Vpr(& )-ZrZ» /R as R ~ oo

The projectile and target nuclear charges in Eqs. (8) are
Zz and Zz and the corresponding asymptotic charges are
Z& and Z~. The shielding of the projectile and target nu-
clei by the nonactive electrons leads to the values Zz and

Z&, for neutral targets Z~ is unity.
Forming the matrix element of V'z ' between initial and
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final asymptotic scattering states, the second-order FWL
approximation to the exact capture amplitude at energy
E takes the form

&FwL(E)=&@f1&g'I@;&=&&'fl&, l@;&+&@f1&.l+; &

where the asymptotic states are given by

&RT, rT~4; &=e p, (rT),

& Rp rp I @f&
=e Pf (rp ) .

The initial (final) bound-state wave function is P; (Pf ).
A simple picture of the second-order transition opera-

tor given in Eq. (4), and thus of the amplitude in Eq. (9),
may be obtained by replacing the T matrices 7', in the
second-order terms by their lowest-order approximations
V, and by replacing the first-order 'TpT term by its
second-order version VpT+ VpTGO (E)VpT. One finds

the operator

Vn,',„=[ Vp, + VT, Gp (E)V, ]

+ [VpT+ VpTGO (E)VpT+ VpTGO+ (E)Vp~

+ Vr, G+ (E)V ], (11)

which is the second-Born approximation to 7'R. This
can also be derived from the definition of the transition
operator for capture by replacing the full Green's opera-
tor 6+(E) with the free Green's operator Go (E).

Returning to Fig. 1, the three double-scattering mecha-
nisms shown correspond to the second-order terms (con-
taining 60+ } in 7ii and 7iio . In the second-Born ap-

proximation, each of the two collisions are treated using
a simple (first) Born approximation to the scattering. The

I

IV. REDUCTION TO TWO-BODY T-MATRIX FORM

For each of the two-body collisions in the amplitude, it
is useful to integrate the third free-particle motion so that
two-body transition matrices can be obtained. In Sec. V,
these T matrices will be approximated by their near-the-
energy-she11 forms. Toward this end, the bound-state
wave functions are Fourier analyzed:

P, (rT)=(2m) ~ fdk;P;(k;)e

pf(rp)=(2') fdkfpf(kf )e'
(12)

Equations (5) are used to expand the plane-wave phases
as

second-order FWL approximation goes very much fur-
ther by treating each collision with a full two-body T ma-
trix, implying an infinite summing of higher-order Born
terms for each collision. It should be noted, however,
that an effect such as the distortion of the scattering of
one particle off the other by the interactions of these par-
ticles with the third one is not contained in the second-
order FWL amplitude.

If the interion (internuclear for bare nuclei) contribu-
tion to VR ' in Eq. (4) is small as is the case generally, for
example, for forward-angle transfer, then T„can be
neglected. The transition operator reduces to the
electronic-nuclear part

7„'=7',= Vp, + TT, GO (E)7'p, .

This version of the transition operator, in different form,
has been obtained elsewhere using a distorted-wave
Born formalism. The connection with the second-Born
approximation is analogous to that discussed above.

k; rT+K;+RT=[pk, —(1—ap)K, ].rp+(k, +aK, ) Rp—= t, rp+(k, +aK, ) Rp

=(k; —a'K, ) r+[y'k;+(1 —y'a')K;] R=(k; —a'K, ) r+U, R,

kf 'rp+Kf +Rp =[akf +( 1 ap)Kf ]'rr+ ( kf +pKf )'RT = tf 'rT+( kf +pKf )'RT

=(kf +p'Kf ) r+ [—y'kf + ( 1 —yp') Kf ] R =—( kf +p'Kf ) r+ Uf R .

The electronic scattering energies (total energy minus heavy-particle energies) are given by

E =E — (k +a. K;}, E =E — (k —PK )
1 1

i 2~ i i & f 2~ f f
Vf 1

(13)

(14)

These various relations [Eqs. (12)—(14)] and Eq. (7) are used in the development below, first for the electronic part and
then for the internuclear part of the amplitude.

A. Electronic-nuclear terms

The first-Born and higher-order parts of the amplitude are separated, giving

~, =&ef~ V„~e, &+&of~ "r„G,+(E)v„~e, &

= A~i+A, (15)

where Az, is the first-Born amplitude and A,' ' is the partial amplitude representing the higher-order scattering terms.
Substituting Eqs. (12) and (13) into Eq (15), the partial ainplitude A,' ' becomes
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A,' '=(2n) fdkfdk;pf(kf)p, .(k, )( k—f+pKf, tf ~'T~, GO+(E)'T~, ~k, +aK;, t, ) .

Letting Go and Yz, act on the Rz plane wave to the
right and "Tz; act on the Rz plane wave to the left, in-

serting a complete set of plane-wave states in rz and Rz
between the V'z, and Go factors, and applying Eq. (5),
one obtains the expression

A,' '=(2a) fdkfdk ff(k'f )P, (k, )

X Tr, (tf, k, +a(kf —K);Ef )

XGO (E;)TP,(kf+P(k;+J), t;;E;)

when the 5 functions arising from the heavy-particle in-
tegrations are used to evaluate the momentum integrals
of the complete set.

Initial and final heavy-particles velocities are defined in
terms of the initial and final wave vectors as v, =K, /v,
and vf =Kf/vf. The notation m/M is introduced to
stand for either m/Mp or m/Mz. One can show that
vf /v; = 1+0 (m /M), and, for forward-angle capture,
that vf v, = 1+ 0 (m /M); therefore, the projectile veloci-

I

ty is written simply as v. When terms of the order m/M
are neglected, the expressions

t, =k; —v, E, =-,'U —v-k, +c, ,
2

tf kf +vy Ef 2
U +v kf +Cf

(16)

are obtained.
The target-ion and projectile momentum transfers ex-

perienced during the collision have been defined as

J=aK, —Kf, K=pKf —K, .

They can be written as the vector sum of a component
along v and a component perpendicular to it. The com-
ponents parallel to v are E,= —v/2+(e; —ef)/v and
J,= —v /2+ ( sf —e; ) /v, and the components perpendicu-
lar to it are K~ for K and —Ej for J. Momentum con-
servation in the process takes the form

K+J+v=O .

The two-body transition matrices Tz, and TI, are
defined as

T3;(k', t;F)=(k' V7, 1+ s+ V,
' —

V~, +(g1

2pc

Tp, (k', k;e)= k' Vp, 1+ e+ V, —Vp, +i'1

2pg

v„~),
' —1

Vp, k);

they are completely off the energy shell, that is, k %2pe
and k' %2pe, with p, denoting p, for Tz; or Juf for Tp, .
The scattering energy is given by e, . The free-particle
Green's function in momentum space assumes the form

G 0+(E;)= IE, —[kf+p(k;+ J)] /2p;+irij

With these reductions, the partial amplitude is written

A,' '=(2m) f dkfdk;$ f(kf )P;(k;)

X TP, (kf+v k'+kf K Ef )

XGO (E;)Tp,(kf+k;+J, k; v;E;) . —

(18)

Beginning with the far right-hand side of this equation,
the interpretation of the amplitude is of the scattering of
an electronic "wave packet" with momentum distribution
k, determined by p, centered about —v in the projectile
frame. The energy of each component k; of the packet is
E;. The wave packet collides with the projectile suffering
a transfer of momentum k&

—K such that after the col-
lision the momentum becomes k, +k&+J. The off-the-
energy-shell scattering is described by the transition ma-
trix Tp, . Subsequently, the packet propagates freely to
the next collision as represented by 6 o+.

Switching to the target frame, one must boost the
momentum components of the packet by v so that

G 0 (E;)=[E;—(k, +kf+ J)'/2+i']
=[Ef—(k;+kf K) /2+i']—
=6 o+(E~) (19)

which will be useful later.
Before considering the internuclear terms, we note that

I

k;+kI+ J becomes k;+k& —K. The corresponding shift
in energy is

bE= —,'[(k, +kf —K) —(k;+kf+J) ]

=(k;+k ) v+ —,'(K —J )

= (k +kf ) v+ (ef —e, ) .

Thus, in the target frame the wave-packet components
have the energies

E, +DE =EI .

Finally, in the collision with the target ion a momentum
transfer —k, —J occurs, giving a final momentum of
kI+v; i.e., the packet then has a distribution of mornen-
tum kf about v given by pf. The second collision is de-
scribed by the transition matrix Tz;.

From this discussion and using Eq. (6), it follows that
the free Careen's function assumes the two equivalent
forms
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the first-Born amplitude is readily evaluated using Eqs.
(6), (13), and (17) to give

A(l)= dkfdk, - f' kf; k

AB, = 47—r {K 2e—f )Q f( K)p;( J) . (20)
X &kf+p'Kf, Uf ~'TpT(E)~k, —a'K;, U; & .

The well-known dependence of this partial amplitude on
high-momentum components is evident since K-U and
J~U

After the Green's function in 'Tpz operates on the plane
wave in r, the 5 function ensuing from the r integration
forces the equality

B. Internuclear terms

A„= & C fl'T»lc, &+ &~f17„G~+(E)7»l~, &

+&@flvpTGo (E)Tp, l@, &

—= A'"+ A' '+ A'
n n

is introduced.

(21)

The partial amplitude A„containing the internuclear
terms is reduced in this section. The notation

kf =k; —a'K, —p'Kf =k, +J+K=k, —v,

which is valid, as before, to order m /M.
When the kf integration is performed using the 5 func-

tion, one obtains

A„'"=fdk;pf(k, —v)p;(k;)Tpr(U; —k, J,U, —;E„),
(22)

where

1. First-order internuclear term
E„=E —(k, —a'K; ) /2v„. (23)

The first-order part of A„ is simplified using Eqs. (12)
and (13):

I

If k; =0, the momentum transfer is —J, and when k; =v,
it is K. The two-body internuclear transition matrix is
defined as

1
TpT(k', k; e ) = k VpT 1+ e+ Vtt Vpz + t ri

2Pn
VpT k

In approximate form, neglecting m /M terms, one has

A„'"=f dk;pf'(k, —v)p;(k;)TpT(p„v k; J,p, „v—;E„)— (24)

with E„=—,p„u . While Eq. (24) is conceptually useful, it cannot be used to approximate the two-body transition ma-

trix, as is apparent from Appendix A; Eq. (22) must be used instead.

2. Second-order internuclear terms

(a) Term including TT, . Using Eqs. (12) and (13) gives for the first term

A„' '=(2n)f dkfdk;. pf(kf )p;(k, )& kf+pKf, tf ~—'Tz;Go (E)7pT~k, —a'K, ,U, & .

Letting the operators 'TT, and Go+ act on the Rz plane wave to the left and the operator TpT act on the r plane wave to
the right, inserting a complete set of plane-wave states in r and R between the Go and TpT factors, and using Eq. (5),
one derives the expression

A„' '=(2m)J dkfdk. ;p f'(kf )p, (k, )T (rt fk;
—a'(kf K);Ef )6 0+(Ef )Tpr(—U; —kf+K, U, ;E„) (25)

when the 5 functions arising from the r and R integrations are applied to evaluate the momentum integrals of the com-
plete set. The momentum-space Green s function in this expression is given by

G o+(Ef )= IEf —[k, +u'(K —kf)] /2p;+i']
(b) Term including Tp, . Equations (12) and (13) give for the second term

fdkfdk;pf'(kf)p;(k;)&kf+p'Kf, Ufl'TpTGO (E)'Tp, ~k;+aK, , t, & .

Letting the operators Go+ and Tp, act on the Rp plane wave to the right and the operator 'TpT act on the r plane wave
to the left, inserting between the TpT and Go+ factors a complete set of plane-wave states in R and r, and using Eq. (5),
one obtains the expression

A„' '=(2') ' f dkfdk, pf'(kf )$, (k, )TpT(Uf, Uf+k, +J;E„)Go (E, )Tp, {—kf+p'(k, +J),t, ;E, )

when the 6 functions arising from the r and R integrations are applied to perform the momentum integrations of the
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complete set. The momentum-space Green's function is given by

G o+(E, )= IE; —[—kf+P'(k; +J)] /2pf+iriI

V. APPROXIMATE EVALUATION
OF THE AMPLITUDE

Although the amplitude given in Eq. (9) permits a con-
ceptually straightforward interpretation, its evaluation is
conceptually daunting since it involves two-body transi-
tion matrices as opposed to the two-body potentials ap-
pearing in the B2 approximation. A further complication
arises in the application to proton-helium collisions
where the simple analytic form of the pure Coulomb po-
tential is no longer valid. Since an exact evaluation of the
amplitude is so diScult, an approximate treatment is
used here based on the recently derived near-shell form of
the two-body T matrix for a modified-Coulomb potential.
This is a first look at results of the FWL formalism. The
near-shell form is applicable provided the off-shell energy
defect can be shown to be small. This is the case if one of
our basic assumptions, viz. , that (Z~/U) and (ZT/U) be
small, is invoked.

An approximate evaluation has the advantages of iso-
lating the important mechanisms of the capture process
at the impact energies considered and allowing connec-
tions to be drawn with the more well-known methods for
treating the high-energy capture problem such as the B2
approximation. Therefore the partial amplitudes of
AFwL given in Eqs. (18), (22), (25), and (26) are approxi-
mated to order (Zp/v) and (ZT/v) in this section.

For modified Coulomb potentials, the two-body transi-
tion matrix' reduces to a generalized elastic scattering
amplitude multiplied by so-called off-energy-shell factors
when the energy shell is approached. The limiting form
mimics the known behavior for the pure Coulomb poten-
tial with the differences that the charge of the long-range
pure Coulomb part of the modified Coulomb potential
appears in the off-shell factors and that the Coulomb
scattering amplitude is replaced by the sum of the ampli-

I

tude for the Coulomb potential and the amplitude for the
short-range part of the potential.

When the modified Coulomb potential is well
represented by a scaled pure Coulomb potential in the
inner region, the sum of the Coulomb and short-range

amplitudes is approximated by the Coulomb amplitude
for the screened potential. Such a simplification works
when the impact energies are large, so that the individual
collisions of the doubling scatterings are hard ones and
the momentum transfers are large.

Appendix A gives a derivation of the near-shell form of
the pure Coulomb two-body transition matrix. It lists
also the analogous result for the modified Coulomb po-
tential and the result when the inner form of the modified
potential is Coulomb-like. Appendix B gives a discussion
of order of magnitude estimates of certain parameters on
which the Coulomb T matrices in the present work de-
pend. In Appendix C, it is shown that for singly charged
ions incident on neutral atoms the total amplitude A„wL
is well behaved: nonintegrable singularities are not
present. If this were not the case, the approximations in-
troduced below would not be quantitatively based, but
only qualitative. In general, the conclusion is that the
near-shell forms can be used to the order of the square of
the projectile or target nuclear charges over impact ve-
locity. The reader is referred to the Appendixes for de-
tails.

A. Electronic-nuclear terms

Because of the presence of the bound-state wave func-
tions, the integral in the second-order electronic term
[Eq. (18)] is dominated by momentum values in the re-
gions k, &ZT and kf &Z~. Consequently, the near-shell
approximations to the T matrices in A,' ' are

Q

Tp, (kf+k, +J,k, v;E, )= —4nZ—pe [I'(1+ivp) I (1 iv )/I (1—+ivp)]

X(8E, )"'" "'[(k —2e;)/G o+] "Ik, +Jl

and

'7TVT,(kf+v, k,. +kf K;E, ) = —4wZT—e [I (1+ivT) I (1—
ivT )/I (1+iv )]

x(8EI) ~[(kf 2ef)/G o ]—

with the Sommerfeld parameters given by p= vZp /(2E, )', vp =Zp /(2E; )', v'T = ZT /(2Ef )', and
vT=ZT/(2Ef )' . Using these expressions and the ls hydrogenic wave function in momentum space

$„(k)=2 ~ Z i /m(k +Z )

the amplitude is written
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~ I (1+iv') l ll —iv ) „ I (1+iv') I (1 —iv )""T
1(1+iv, )

' r(1+iv, )

i (2v& —
v& ) —2+2i v& 2 i (2v& —

v& )
—2+2t'vr

X Jdkfdk, (k —2E ) (k —2Ef) [G+(E )] (28)

where G &(E;) is a quadratic approximation to the
Green's function [Eq. (19)] in which the k; kf term is

neglected:

6 0+(E, )=G &(E, )=[ —,'(u —K +e, ) —kf J+k, K

,'(k, +—kf)+i'] (29)

and where now

vp =Zp /uq vp =Zp/u

vT=ZTlu, vT=Zr/u .
(30)

The evaluation of the six-dimensional integral in Eq.
(28) proceeds by reducing it to two radial integrals
through straightforward angular integrations along with
radial integrations by part. The radial variables are then
written as k; =k cose and kf =k sin8. By means of
Cauchy's integral theorem, the integration path for k
along the positive real axis is converted into two straight
lines, one from 0+i0 to k„+ik and the other from

k„+ik to ~+i0, with k„and k denoting constants.
The deformed path is parametrized on the real-line seg-
ment (0,1). In this manner, the singularity in the Green's
function is avoided during the integration. The 0 and
parameterized k integrations are performed numerically
using an adaptive quadrature routine. Tolerances were
given as 10 and 10, respectively. The output of cross
sections was explicitly checked. Better than four-digit
accuracy is maintained, even in the difficult Thomas peak
region.

If the remaining quadratic terms k, and kf in Eq. (29)
are neglected, an approximation to the free Green's func-
tion is obtained which is linear in k; and kf. When this
linearized Green's function is substituted into Eq. (28) the
integrals can be evaluated to give a closed-form expres-
sion for the electronic part of the FWL amplitude in
terms of F4 generalized hypergeometric functions. A dis-
cussion of this version of the amplitude is presented else-
where. Such a treatment is valuable for its isolation of
the velocity dependence of a high-order multiple-
scattering amplitude.

B. Internuclear terms

1. First-order internuclear term

The T-matrix approximation in the first-order internuclear term in Eq. (22) is

Tpr(U; —k; J,U;;E„)=4—nZpZTe [I (1 tvpT) —I ('1+ivpT)/I (1—ivpT)]

X(8E„) I [(k;—v) —2sf ](k; —2e; )] k;+Ji

with the Sommerfeld parameters given by vpr=p ZpZr/(2p E )'~ and vpr=p„ZpZT/(2p„E„)' . Using the same
approximations as in Sec. V A, one finds the partial amplitude

(1)— 7/2 pT pT pT 2 " "pT "PT= —(Z,Z, )2r2 "»
(4p~u )

fr I 1 lvpT)
—2+i v'

X fdk, {[(k,—v) —2ef](k; —2e;)] ~k;+J~

where now

vpr =Zp ZT /u& vpT =ZpZT /u (31)

The p„ factor appearing in this intermediate version of 3„"'arises because the inner and outer charges of the modified
Coulomb potential are not equal.

The remaining integral is evaluated by treating the two dominant peaks in the integrand at k; =0 and v as if they
were separate peaks and by neglecting the k,- variation about the peaks of the other factors. This is justified if the two
peaks are well separated in momentum space, as is true for U ))Zp and U &&ZT. Noting that

dk(k +Z ) +"=n Z '+ "I ( —' —iv)/I (2 iv)— (32)

the result



340 STEVEN ALSTON 42

r(1 —i v'„)r(,' —i v'„)r(1+ i v„)g(1) 25 1/2(Z Z )5/2e PT (4 2) PT PT

(1 i—
ver�)r(1

—i vpT )

2i v —2 I —2 —2I 2i —2X[ZZ (u+Z ) K +ZZ (u+Z) J ]

is obtained, assuming c., =c.„=—
—,'ZT and cf =c„=—

—,'Zp. The relation K= —v —J has also been used.

(33)

2. Second-order internuclear terms

(a) Term including TT, . The T matrix approximations to the term in Eq. (25) are
a

Tpr(U; —kf+K, U, ;E„)= 4nZpzre [I (1 iv—pr) I (1+ivpr)/r(1 —i vr')]
—i(2v —v ) iv'

X(8E„) [(k —2E;)/6 +] ~k
—K

and
7Tv

TT, (tf, k; —a'(kf —K);Ef ) = —4nZre '[I (1+iv'T) r(1 —i vr )'/I ( I+i VT )']

x(8Ef) ' ' [(kf —2Ef)/60 ]

where the Sommerfeld parameters are vpr=p„zpzr/(2p„E„)', vpr=i „Zpz2/(2p„E„),', VT=ZT/(2Ef )', and

VT=ZT/(2Ef) . Retaining only those terms in the integrand in which the momentum variation is rapid in the sense
used in Sec. V B 1, one obtains the intermediate expression

„.. r(1+iv', )'r(1 —iv, ) .„. r(1 —iv'„)'r(1+iV„)
r(1+ i v, ) I (1—ivpT)

, i2(2 T vT) 2+2~vT ] 2 ' «T+jvpT 2
—i(2vpT —

vPT
—2 2ivPT—

X f dk dk (k —2E ) ("
Using Eq. (32) gives the result

W'"'= —2'(Z Z )'"Z
r(1+iv')r('+iv')I (1—iv )I (1 —Lv )r( — Iv', )r(1+iV,, )

X
(1+iv )r(1+iv )(1—iv' )r(1 —iv„)

~ j2(2 T T) 2+2lvT'
~ 2 2

—
1
—ivT+'vpT, 2

—i(2vpT —
~pr '"PT

(34)

where V~T, vpr, VT, and VT are defined in Eqs. (30) and (31).
(h) Terry including T . The T-matrix approximations to the other second-order internuclear term Eq. (26) a«

7 T(Uf Uf+k, . +J;E„)=4TTZ Zre [I (1 ivy&) r(—1+&v T)/r(1 ivpT)]
—i (2v' —v ) iv'

X(8E )
' "PT PT [(k —2s )/6+] ~k,. +J~

and
a

7p (
—kf+p'(k, +J),t, ;E, )= —4irzpe . [1(1+ivp) I (1—ivp)/I (1+ivp)]

X(8E;) ' ' [(k —2E;)/6O ]

Z Z /(2~ E )
//

~pT =~ Z~ZT/~2~„E ) ~~ =Z~/{2E, )', and ~~ ——Z~ r ~2E
those terms in the integrand in which the momentum varlatlon ls rapid as was done above, one 6nds the expression

r(1 —iv;, )'r(1+iv„) „. r(1+iv', )'r(1 —iv, )

I (1 iv )— I(1+iv )

(2 ) —2 —2' —] v — (2 —
)

—2+2
X(4iMu ) J ('u +c) (2u) '

u

—2— 2+x fdkfdk;(k —2e, ) P(k2 —2e )
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which becomes

A' '= —2(ZZ ) Z Z e eP T T P

I'(1 —iv' )I ( —,
' —iv' )I (1+iv )I (1+iv' )I ( —,'+iv' )I (1 i—v )

( 1 ivpr)l (1 ivp7. )(1+ivp )I ( 1+ivp )

X(4p„v ) J —,'(v —Zz) 2v v
—i (2vpr vpT ) 2 2l vpz

~ p p
1+ I vpr I vp l2(2vp p) —2+2& vp'

where vpz, vpz, vp, and vp are given by Eqs. (30) and (31).
3. Total internuclear term

(35)

Combining the terms in Eqs. (33)—(35) and regrouping some of the factors, one finds

I (1 i v—pz)I ( ,' i—vpz—)I'(1+i vpz) —i(2v —v jA„=2(ZZ ) e (4 v 2) PT YPT

(1 i vp—r )I'(1 i v—pr )

Z ~ "» 2~~~&Z '"»(v2+Z2)

(2 ' — ) —2+2
L2

2iv —2+'
+Z J 2m'~Z (v +Z )

„a I (1+ivp)I ( ,'+ivp)I (—1 ivp)—
(1+iv' )I (1+iv )

Q ~ Q i (2il2" (36)

which is symmetric in the two charges, momentum
transfers, etc. The dependence of Eq. (36) on K and
J reflects the nuclear Coulomb scattering. Also
noteworthy is the appearance of two terms of opposite
sign in each set of large parentheses. Ignoring the
different multiplying factors and neglecting factors of or-
der (Zp/v) and (Zz /v), a cancellation of contributions
would be expected in Eq. (36).

10

VI. RESULTS AND DISCUSSION 10

Sections VI A and VI B present results calculated using
the FWL formalism and compares them with other
theoretical results and with experimental results. The in-
ternuclear contribution is discussed in Sec. VIC. Al-
though only a small angular region from 0 to 1 mrad is of
interest, one should still keep in mind that there are four
separate subregions involving different scattering effects:
first, an extreme forward direction where the first-Born
term dominates; second, an interference region where
large cancellations of the various terms occur; third, the
Thomas peak region where double-scattering dominates;
and finally, the region beyond the secondary peak where
internuclear scattering takes over. Extensive analysis of
the many different contributions is made.

A. Proton-helium collisions

Results for proton-helium collisions are presented in
Figs. 3—5. Figure 3 compares ful1 FWL calculated cross

10
7.40 MeV

10 0'0 I

0.40.2 0.80.6 1.0
8, b (m, ra, d)

FIG. 3. Differential cross sections for ls~ls capture in

2.82-, 5.42-, and 7.40-MeV proton-helium collisions. Results of
Faddeev-Watson-Lovelace (FWL) calculations including the in-

ternuclear terms in the amplitude are compared with the experi-
mental data of Horsdal-Pedersen, Cocke, and Stockli (Ref. 1).
The theoretical results have been convoluted with the beam
profiles (Ref. 28).
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sections [i.e., ones derived from the sum of A, in Eq. (28)
and 3„ in Eq. (36)] with the experimental data of
Horsdal-Pedersen, Cocke, and Stockli' for the incident
proton energies 2.82, 5.42, and 7.40 MeV. These energies
correspond respectively to the velocities 10.6, 14.7, and
17.1 a.u. The data, which include capture to all excited
states, have good statistics (significantly better than for
hydrogen targets); individual points are estimated to be
accurate to within 30%. The theoretical cross sections
have been convoluted with the experimental beam
profiles and are for 1s ~1s capture only. In the numer-
ical calculations, the values assumed for the charges in
the Sommerfeld parameters are Zz = 1.0, Zp = 1.0,
ZT=1.6875, and ZT=1.0. This figure shows extremely
good agreement, both in magnitude and shape, between
theory and experiment at all three energies.

In Fig. 4, the FWL cross sections and experimental
data at 2.82 and 5.42 MeV are compared with the contin-
uum distorted-wave cross sections of Rivarola, Salin, and
Stockli' and the transverse-peaking SPB cross sections of
Alston, ' both of which are also convoluted. It is seen
that the FWL results agree significantly better with the
data than do the CDW or SPB results. Up to about 0.2
mrad where the first-Born amplitude dominates, the vari-
ation is smallest but even in this region there are
differences of 50%. Beyond the Thomas peak at -0.5
mrad where the nuclear scattering produces the main
effect, the FWL and CDW curves agree better. In this re-
gion, the SPB curve becomes too small due to the omis-

sion of the nuclear part. The largest differences are found
between 0.2 and 0.4 mrad, reflecting significant cancella-
tion of the different parts of the amplitudes there. This
exposes the level of accuracy to which secondary contri-
butions are treated as well as the inclusion of different
higher-order effects in the separate theories. These
differences are discussed further below. Finally, rather
large differences are also found at the Thomas peak, even
though one might have expected better agreement be-
tween the theories because of the applicability of the clas-
sical picture at this angle. It should be noted, however,
that some of the large differences seen in Fig. 4 are exag-
gerated as a result of the convolution process, as compar-
ison with Fig. 5 shows.

Figure 5 presents unconvoluted cross sections calculat-
ed using the FWL formalism without the internuclear
terms, i.e., the DWB theory of Taulbjerg and Briggs,
and compares them with corresponding values of the
CDW, SPB, and B2 theories. The small differences be-
tween the three unconvoluted curves in the forward-peak
region again reflect the dominance of the first-Born am-
plitude whose contribution is identical in the DWB, SPB,
and B2 theories and which is included in another manner
in the CDW theory. Beyond the Thomas peak region at
0.47 mrad, the DWB and B2 curves agree very well and
the SPB curve has the same slope and curvature but is
shifted upward due to the overall momentum-transfer
dependence having a different multiplicative coefficient.
The CDW curve has the nuclear contribution included,

10
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8(~b (7TL7 Q, CE)

0.8 1.0

FIG. 4. Differential cross sections for 1s ~1s capture in 2.82-

and 5.42-MeV proton-helium collisions. Results of (FWL)
(solid lines), SPB (long-dashed lines, Ref. 19), and CDW (short-
dashed lines, Ref. 17) calculations are compared with the exper-
imental data of Horsdal-Pedersen, Cocke, and Stockli (Ref. 1).
The theoretical results have been convoluted with the beam
profiles (Ref. 28).

10 0'0 0.2 0.4 0.6
8& t, (m.md)

0.8 1.0

FIG. 5. Differential cross sections for 1s ~1s capture in 2.82-

and 5.42-MeV proton-helium collisions. Results of unconvolut-
ed (DWB) (solid lines), SPB (short-dashed lines, Ref. 19), CDW
(long-dashed lines, Ref. 17)", and B2 (dotted lines) calculations
are compared.
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explaining the difference of this curve here.
To study the FWL and 82 amplitudes further, it is use-

ful to compare the second-order parts of these complex
amplitudes. Figure 6(a) shows the imaginary parts of the
amplitudes. At the Thomas peak (or hump), there are lo-
cal maxima that represent scattering via on-energy-shell

10 -6

intermediate states. Within the 82 approximation, the
peaking of the imaginary part of the amplitude and the
association with on-she11 scattering are expected features
if the free Green's operator is written as a sum of
principal-part and 5 function terms: Go+ (E)=P(E E—')

i—m5(E. E—), noting in addition that the potentials and
wave functions are real. In a classical and, consequent-
ly, on-shell treatment of the capture process a similar
peak in the amplitude is found. 3 A comparison of the
imaginary parts of the FWL and 82 amplitudes shows
that the FWL treatment of this component of the scatter-
ing is not appreciably modi6ed. Even though a con-
sistent treatment of off-energy-shell effects has been in-
corporated in the FWL approximation, the off-shell
effects vanish. For angles to the left of Thomas peak, the
FWL curves becomes much smaller than the 82 curves,
the more so for the higher energy. The very large
differences are not reflected in the differential cross sec-
tions since in this region the imaginary parts are consid-
erably smaller than the real parts. [See Fig. 6(b)].

Associated with the much less accentuated dips in the
82 cross sections relative to the FWL (or DWB) cross
sections in Fig. 5 {for helium only a shoulder appears) are
the smaller real parts of the second-order term of the B2
amphtude in Fig. 6(b). The absolute values of the real
parts are actually plotted in Fig. 6(b) and the sharp dips
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FIG. 6. (a) Real and (b) imaginary parts of the FWL (solid
lines) and B2 (dashed lines) amplitudes are shown for 1s —+1s
capture in 2.82- and 7.40-MeV proton-helium collisions.

FIG. 7. DifFerential cross sections for ls~ls capture in
2.82-MeV proton-helium collisions are shown. An FWL calcu-
lation performed using a scaled-charge pure Coulomb formal-
ism is compared with the experimental data of Horsdal-
Pedersen, Cocke, and Stockli (Ref. 1). The theoretical curve has
been convoluted with the beam profile (Ref. 28).
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in the curves reflect the real parts passing through zero.
Since the Thomas peak or shoulder results from a partial
cancellation in the amplitude of the real first-Born term
(for is~is capture) with the real part of the second-
order term, much more cancellation takes place in the
FWL amplitude. According to the above decomposition
of the free Green's function, the real part of the second-
order contributions to the B2 amplitude represents
scattering via off'-energy-shell intermediate states,
which have no classical analog. According to the experi-
mental data, the FWL treatment of this part of the inter-
mediate scattering is much better. The inclusion of the
"off'-shell" Q factors of Eq. (A4) in the calculation is the
reason for the improvement. ' The shifting of the sharp
dips in the real parts of the FWL curves relative to the
82 curves is due to the intermediate terms. The D%'B
real parts go through zero in a manner similar to the B2
real parts.

In Fig. 7, a cross section derived using an FWL formal-
ism' with pure Coulomb potentials is compared with the
helium data. The calculation is performed using pure
Coulomb T matrices approximated by their near-shell
representations [see Eq. (A3)]. Equations (28) and (36)
can be used by simply employing the charge Zz-=1.6875
instead of 1. A comparison of the FWL curves in Figs. 3
and 7 reveals little change over much of the angular re-
gion. From roughly 0.3 to 0.6 mrad, however, consider-
able differences are apparent. The large change in the
local-minimum region is not unexpected considering the
cancellations of various terms there. The significant vari-
ation at the Thomas peak, though, points out differences
in the treatment of the off-shell effects and the necessity
of using the better, modified Coulomb potential approxi-
mation. Similar results (not shown) are also found for
5.42 and 7.40 MeV collisions.

presently are. A recent, improved-peaking calculation of
the SPB amplitude by Macek and Dong' gives much
closer agreement with the FWL results, more like the
transverse-peaking results seen in the helium case above.
Both of the SPB results could be modified by recent work
which would lead to larger cross sections.

A comparison of unconvoluted DWB, SPB, and 82
cross sections is given in Fig. 9. The relative positions of
the cross sections in this figure follow quite closely those
for the helium case in Fig. 5 except that the exaggerated
peaking of the SPB curve results from the use of the full-
peaking approximation instead of the more accurate
transverse-peaking approximation there. A boundary-
corrected second-Born approximation has also been
developed. For 5-MeV collisions, the unconvoluted 1s-1s
cross section calculated using this theory follows the
DWB cross section fairly closely, especially in the local-
minimum and Thomas peak regions, though it is lower by
perhaps a factor of 2 in the extreme forward direction.
Since the boundary-corrected second-Born approxima-
tion gives a better account of the Coulomb scattering of
the problem by means of asymptotically correct scatter-
ing states, the agreement is very encouraging, but a for-
mal justification appears difficult to obtain.

C. Internuclear contribution

Consideration of the internuclear amplitude [Eq. (36)]
shows that a contribution of the first-order Tp~ term

10

B. Proton-hydrogen collisions

Results for proton-hydrogen collisions are presented in
Figs. 8 and 9. The full FWL cross sections are compared
in Fig. 8 with full-peaking SPB cross sections and the ex-
perimental data of Vogt et al. for proton energies of 2.8
and 5.0 MeV. The velocities corresponding to these ener-
gies are 10.6 and 14.1 a.u. , respectively. The data are es-
timated to be accurate to within 50% and include capture
to all final states. The SPB results were calculated using
Eq. (5.8) of Macek and Alston. ' The theoretical ls~ls
cross sections have been convoluted with the experimen-
tal beam profiles. '

Starting at roughly 0.3 mrad, the SPB cross section is
seen to become larger than the FWL cross sections, with
a maximum difference at the Thomas peak. The curves
converge again at larger angles. For the lower energy
collisions, the SPB curve is too high relative to the exper-
imental data. At the higher energy, the SPB curve fits
the data better in magnitude, but the FWL curve fits the
shape of the cross section around the Thomas peak
better. Although hard to estimate, the contribution of
excited-state capture is expected to contribute more rela-
tive to ground-state capture in the Thomas peak region.
This would make the SPB results higher still than they

10 —3

I

0.2 0.6

F1G. 8. Differential cross sections for 1s~ ls capture in 2.8-
and 5.0-Me V proton-hydrogen collisions. Results of FWL
{solid lines) and SPB (dashed lines, Ref. 18) calculations are
compared with the experimental data of Vogt (Ref. 2). The
theoretical results have been convoluted with the beam profiles
(Ref. 31).
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10

the angular region beyond the local maximum, the
enhancement of the FWL cross sections relative to those
obtained from the purely electronic term is apparent.
The FWL curves exhibit a E (or J ) momentum
dependence in this region consistent with the Coulomb

o 10
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0.0 0.2 0.4 0.6
O... (mruct)
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FIG. 9. Differential cross sections for 1s~ ls capture in 2.8-
and 5.0-MeV proton-hydrogen collisions. Results of unconvo-
luted DWB (solid lines), SPB (short-dashed lines, Ref. 18) and
B2 (long-dashed lines) calculations are compared.
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arises for each of the second-order terms, which appear
with opposite signs. If the off-shell effects and the expli-
cit nature of the Coulomb scattering are neglected by set-
ting the Sommerfeld parameters equal to zero, one finds,
to orders (Zp/v) and (Zrlv)2 (which are the orders of
our approximations overall), that the internuclear term
vanishes. The resulting amplitude is the second-Born ap-
proximation.

This behavior of the second-Born approximation to A„
was first noted some time ago. In the FWL case, howev-
er, A„ is not zero to leading order because the factors
multiplying the common velocity and momentum-
transfer dependences are not the same in the different
terms and thus do not cancel. In other words, the
coherent addition of the double-scattering partial ampli-
tudes and the single-scattering nuclear amplitude in A„ is
not zero when a proper treatment (by use of T matrices)
of each two-body collision is considered.

Considering Fig. 6(a) again, one notes that beyond 0.5
mrad the imaginary part of the 82 amplitude decreases
rapidly as opposed to the imaginary part of the F%L am-
plitude. Noting also that the real parts of the B2 and
FWL amplitudes in Fig. 6(b) converge, roughly, to each
other, one concludes that the nuclear scattering contribu-
tion is contained largely in the imaginary part. The
reason for this behavior is not known.

Figures 10(a) and 10(b) compare the full FWL cross
sections (unconvoluted) with the DWB cross sections ob-
tained when the internuclear terms are removed. Proton
energies of 2.8 and 5.0 MeV for the hydrogen target and
2.82 and 7.40 MeV for the helium target are treated. In

10

10

10
b

10
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FIG. 10. Comparison of F%'L difterential cross sections for
1s~1s capture calculated with (solid lines) and without (dashed
lines, D%'B) the internuclear terms in the amplitude for (a)
proton-hydrogen and (b) proton-helium collisions.
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scattering of the projectile off the target nucleus. Since
A, exhibits a I( dependence at angles larger than the
Thomas peak, so that its contribution can be neglected, it
follows that the total cross section factors into the prod-
uct of electronic and nuclear parts, ' as Eq. (36) shows.
Compare this with the discussion at the end of this sec-
tion.

The helium data in Fig. 3 support the higher FWL
curves extremely well while the hydrogen data in Fig. 8
do not really extend to large enough angles except,
perhaps, in the 5.0-MeV case where the slope of the FWL
curve agrees with the data. The agreement of the FWL
cross sections with the data beyond the Thomas peak and
the formal discussion of the amplitude in the preceding
paragraphs show that A„gives the first explicit represen-
tation in a multiple-scattering formalism of the mecha-
nism by which the internuclear potential contributes to
the capture of the electron. This is in contrast to the
second-Born approximation where no such contribution
at all is found.

At angles less than 0.2 mrad, the internuclear terms do
not modify the electronic amplitude appreciably, and the
height of the Thomas peak is not altered to within the ac-
curacy of the present approximation. In the vicinity of
the local minimum, however, the two sets of curves differ
considerably. It is this angular region which is most sen-
sitive to the approximations used because of the cancella-
tion of the various terms in the full amplitude. The rela-
tively large changes are thus not surprising. However,
this region contributes only slightly to the total cross sec-
tion.

10

In Fig. 11, a comparison of the uncovoluted FWL and
CDW curves reveals agreement beyond the Thomas
peak. The CDW theory includes the internuclear contri-
bution via the eikonal transformation of the electronic
amplitude. The good agreement gives further evidence
for the conclusions drawn above about the internuclear
terms included in the FWL theory. The eikonal transfor-
mation of an electronic amplitude shows how the internu-
clear contribution can be represented though a multipli-
cative phase factor and it thus provides a method for in-
cluding the effects of the internuclear potential; however,
it does not elucidate a mechanism of the nuclear scatter-
ing in a multiple-scattering theory. The FWL theory
does because it shows how incomplete cancellation (i.e.,
interference) of the various scattering terms occurs in A„
when these terms are accurately described through the
use of T matrices.

The large differences between the FWL and DWB
curves in the vicinity of the local minimum similarly re-
sult from cancellation of the second-order terms with the
first-Born term and thus are expected to expose non-
leading-order components of the second-order terms
which, however, are not treated as accurately as the
leading-order components. The convoluted DWB cross
sections (not shown) give agreement comparable to the
FWL ones in the forward-peak and Thomas-peak regions
but not as good agreement with experiment in the
minimum region.

When the Coulomb and off-shell natures of Eqs. (28)
and (36) are neglected (by once again setting the Sommer-
feld parameters equal to zero) the expression for the B2
amplitude in the same approximation is derived. As a
consequence of this connection and the specific forms of
the factors which become unity one equating the parame-
ters to zero [see Eq. (36)], the pronounced structure
(peaks or valleys) exhibited by the B2 amplitude at
specific and not necessarily small critical scattering angles
exists also in the FWL amplitude, and at the same angles,
although the shape and height of the structures will be al-
tered. This conclusion follows even though infinitely
many terms in each of the potentials have been summed
in the FWL amplitude.

VII. CONCLUSION
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FIG. 11. Comparison of unconvoluted F%L (solid lines) and
CD~ (dashed lines, Ref. 17) differential cross sections for
1s~ ls capture calculated for 2.82- and 5.42-MeV collisions of
protons on helium.

In summary, it has been shown that a second-order
Faddeev expansion of the transition operator for electron
capture leads to differential cross sections in excellent
agreement with experimental data for proton-helium col-
lisions and good agreement for proton-hydrogen col-
lisions. Significant improvement is obtained over results
of other theories. An explanation has been given for how
the contribution of the internuclear potential arises and
fits within a time-independent scattering formalism. Fi-
nally, a direct and explicit relation of the FWL theory to
the second-Born theory has been derived. A simple pic-
ture of capture involving double scatterings is maintained
while a much more accurate treatment of each of the
scatterings is employed. Comparison of the various
theories with experiment reveals an acute need for more
accurate data and better control of the incident beam
width.
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APPENDIX A: NEAR-SHELL CQULQMB 1 MATRICES

The pure Coulomb two-body transition matrix is
defined as

Tc(k', (Cc)=(k' Vc (+ c— 7,' —Vc+iq1 2 (A 1)

with Vc= Z/—r and (rIk) =e'"'. Shastry, Kumar, and Callaway have reduced this T matrix to a form involving
hypergeometric functions, namely,

Tc(k', k;s)=(2n) Vc(k' —k) 1+ [x+ zFt(1, 1;2+iv;x+ )
—x 2Ft(1, 1;2+iv;x )](1+iv)(t+ t —)

(A2)

with

x~ =(1 t~ )—
t~ = 1+(2/5)[1+( I +5)'i ],
5 = (2pe —k ' )(2pe —k ) /2pe Ik' —k

I
~,

v=pZ/(2pe+i rt)'~2,

and rt~O+. The dimensionless quantity 5 isolates pa-
rameters relative to the (nonrelativistic) off-the-energy-
shell scattering, including the off-shell energy defects, the
on-shell energy, the momentum transfer of the scattering,
and the reduced mass p.

If either of the energy defects are small and the energy
e or magnitude of the momentum transfer Ik' —kI is large
so that 5 is small, an approximate expression for the T

I

matrix can be derived. Expanding the radical in t+ in
powers of 5 and neglecting quadratic and higher terms,
one finds that

t+ =4/5, x = —5/4, t =5/4, x =1+5/4 .

One also finds that 5(t+ t ) =4. —
With these approximations, the factor x+ 2F, ( 1, 1;2

+iv;x+) gives only a second-order contribution. Ana-
lytic continuation of the other hypergeometric function
gives

[ivl(1+iv)]x 2F&(1,1;2+iv;x )

=1—II (1+iv)I (
—5/4)

to the same order. The T matrix expression in Eq. (A2) is
thus seen to assume the form

T (k', k;e) =(2n ) V (k' —k)II (1+iv)I ( —5/4)

'V (k' —k) II"(I+ ' )I'[ —(2pe —k' ')(2pe —k')/8peIk' —kI'] (A3)

Tc(k', k;e)= —2nQ(Z, k', e)Q(Z, k, e)ff ), (e),
where the so-called off-shell factor is given by

Q(Z, k, )=ee ~2I (1+iv)[(2pe k)/8pe]— (A5)

f (e)=( —2Z/Ik' —kl)e '[Ik' —kI/(k'+k)]'"

is the generalized elastic Coulomb scattering amplitude
with cro=argI (1 iv)—

For the case of a modified Coulomb potential

when 5 is small, where Vc(k) = —(2/m )'~~Z/k ~.

This equation can be recast as a relation between the
off-shell T matrix and the on-shell scattering amplitude
fz z(e), written in slightly generalized form. ' The re-
sult is

T~c(k', k;e) = —2nQ(Z', k', e)Q(Z', k, e)

X[f), ), (e)+fq ),(e)], (A6)

with fz."z(e) denoting the elastic scattering amplitude for
the short-range part of the potential. The Coulomb part
of the modified Coulomb amplitude is a function of the
asymptotic charge Z'.

At large impact velocities and deep penetration of the
potential, the modified Coulomb potential is approximat-
ed in the inner region by a pure Coulomb potential with
an effective charge Z',

V~c(r) - Z'/r as r +o—o, —

where Z' is the charge of the asymptotic pure Coulomb
part, one can show that the T matrix Tst&(k', k; s)
reduces to the analogous pure Coulomb form
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with

x [lk —kl/(k +k)]"", (A7)

v'= pz'/(2ps+i g)' (A8)

This formula is used for the calculation of the various
partial amplitudes in the present work.

APPENDIX B: ORDER OF MAGNITUDE
ESTIMATES OF T-MATRIX PARAMETERS

V (r)=V, (r):——Z'Ir+Vo,

where Vo is chosen to make the ground-state energy of
the potential agree with the experimental binding energy.
Given an effective Coulomb potential, the modified
Coulomb amplitude is approximated by a pure Coulomb
amplitude, and thus one writes

T~c(k k', ;s)= —2mQ(Z', k', E)Q(Z', k, E)

x( —2z /lk' —kl)e '"

where Z stands for Zz or ZT. Combining these relations
gives at least the estimates

5; =0((ZT/u) ) «1,
5f =0((Zp/u)') «1 .

For A„"', the 5 parameter for TpT in Eq. (22) is

5„=[2p„E„—(U, —k, —J) ]

x(2p„E„—U,') /2p, „E„k,+Jl',

(B1)

where U, =y'k, +(1—y'a')K; and E„=E—(k,—a'K;) /2v„. Using the definitions of J and K; and
writing all factors to order m /M, one finds the relations

2e, —k; =0(ZT) for k;=0
2E„—U, /p„= '

2E; —(k, —v) =0(u) for k, =v

2Ef —(k; —v) =0(u )

Following the discussion of Appendix A, if approxi-
mate forms of the two-body T matrices are to be derived,
one must show that the dimensionless 5 parameters on
which the T matrices in the FWL amplitude depend are
small. This analysis, which is based on order of magni-
tude estimates using the pure Coulomb case, is performed
here. Although a similar analysis for the modified
Coulomb case is not a trivial generalization' of the pure
Coulomb case, it is a necessary condition for the applica-
bility of the near-shell approximation to the modified
Coulomb T matrices.

Considering A,' ' in Eq. (18), the 5 parameters for Tt,,
and TT, have the forms

for k, =0
2E~ —(Ui —ki —J) /p~= '2e k2 0(Z~)Ef i P

for k, =v

0(u ) for k, =0
E'=0(u ) for k, =v

E„/p„=O(u ) .

It follows from these expressions that the estimates

0((ZT/u) ) (&1 for k, =0
5 ='

0((Zplu) ) &(1 for k, =v (B2)

hold.
In the partial amplitude A,' "of Eq. (25), the 5 param-

eters for TT, and TpT are

5; = [(k, +kf +J ) 2pf E;]—
X [(k, —v) —2pf E, ]/2pf E, lkf —Kl

5f = [(k, +kf —K) —2p;Ef] 5T= I 2p, Ef —[k, —a'(kf —K)] ]

X (2p; Ei —tf )/2p, Ef lkf —k, +vl',

5„=[2p„E„—(U, —kf+K) ]

X [(kf + v) 2p; Ef ]I2p; E—f lk(+ Jl

respectively. As noted in Sec. V, the peaking of the ini-
tial and final bound-state momentum wave functions
P;(k, ) about k;=0 and Pf(kf ) about kf =0, implying
that k; ZT and kf (Z~, means that

x (2p„E„—U,') /2p„E„ l kf —K l',
respectively. Using Ef =v (kf —K)+s; (see Appendix
C), neglecting terms of order m/M, and assuming again
the peaking of the bound-state momentum wave func-
tions, one obtains the estimates

(k; —v) 2pfE, =k; —2E—, =0(ZT),

Ikf —Kl'=0 (u'),

E, =O(u ), 2Ef —k, =O(U j,
2Ef —(kf+v) =2sf —kf =0(ZP),
lkf —k, +vl =0(u ),
Ef =0(u-),
2E„—U, /p„=2m, —k, =0 (ZT ),
2E„—(U, —kf+K) /p„=O(u2),

lkf —Kl =0(u ),
E, /p„=O(U } .

(kf+v) —2p, Ef =kf —2Ef =0(ZP),

lk, +Jl =0(u ),
Ef =0(u ) .

Furthermore, one has the range of values

(k, +kf —K) 2p;Ef =(k;+kf +J—) 2pfE, —
04'U ) for Ei=0
0(Z ) for Ki=u
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Combining these estimates the 5 parameters become

5r=O((Zp/u) ) «1,
5„=0((Zulu)') « I .

(B3)

then 1+iv=0, and so the T matrix is singular. The ener-
gies where this occurs correspond to bound states. On
the other hand, if k'~k, so that 6~ (x), one has

t+ = 1+2/6' x = + —'6' t+ —t =4/5'

In the partial amplitude A,' ' of Eq. (26), the 5 param-
eters for TI,~ and T~, are, respectively,

5„=[2p„E„—(Uf+k;+J) ]

X (2p„E„—Uf )/2', „E„ik;+ J~

5p= t2pfE; —[ —kf+P'(k;+J)] )

X(2pfE; —
t; )/2pfE; ~k;

—kf —v

where Uf = —ykf +(1—yp')Kf. Using E; = —v (k;
+J)+sf, neglecting terms of order m/M, and assuming
the peaking, one finds the estimates

2E„Uf /p—„=2ef—kf =0 (Zr ),
2E„—(Uf +k;+J) /p„=O (v ),
k, +JR=0(v ),

E„/p„=O(v ),
2E; —kf =0(v ),
2E, —(k; —v) =2e; —k, =0(Zr),
~k,

—kf —vl =0(v'),

Ef =0(u') .

Combining these estimates, one obtains the 5-parameter
sizes

5p =0((Zp /v) ) « 1,
5„=0((Zr/v) ) « 1 .

(B4)

In conclusion, the estimates listed in Eqs. (Bl)—(84) are
seen to be small and thus near-shell approximations to
the respective T matrices are valid.

APPENDIX C: INTEGRABLE SINGULARITIES
OF THE AMPLITUDE

When considering near-shell approximations to the
two-body T matrices appearing in the second-order FWL
amplitude, the question arises as to the possible presence
of nonintegrable singularities, for if such singularities
are present, the approximations are not quantitatively
based, but are rather only conceptual in nature. It is
shown here that no such singularities overall are present
in the amplitude for the case when singly charged ions
are incident on neutral targets. Only the simpler case of
1s~ls transfer is discussed, although the conclusions
hold for excited states as well. First, an explicit demon-
stration of the singularities is given for pure Coulomb po-
tentials.

Using the expression [Eq. (A2)] for the Coulomb T ma-
trix in terms of 2E, functions, it is clear that singularities
are contained in certain of the individual terms of the
amplitude: one notes that if v Z/(=2e+i ri)'~ +i,=

and

~F, (1,I;2+i vx +) =+—,'(1+iv)5' [C +ln(+ —,
'5' )],

with C a constant. Therefore the T matrix assumes the
form

Tc(k', k;e) =(2m )
i Vc(k' —k)

X t 1+(2iv/5'")[»( —,
'5'")—»(-,'5'") l I

= (2n. )' V (k' —k)(1+4m v5 '
) (Cl)

where the actual sign (unimportant for our purposes) de-

pends on the phase of 5. That is, the leading-order term
in the approximation to the fu11 two-body T matrix at
small momentum transfers is the potential itself, which is
singular.

The partial amplitude A,' ' consists of a double integral
over k, , kf involving, among other factors, the T ma-

trices Tz;(kf +v, k, +kf K;Ef ) a—nd Tp, (kf +k, +J,k,
v;E; ). T—he first one depends on Zr/(2Ef +i')' and

the second on Zpl(2E;+i')' The.se quantities can
equal +i, since, from the definitions of E, and J„one has
that E; = —v (k;+J)+sf and Ef =v (kf —K)+E;, with

c;= —
—,'Z~ and cf = —

—,'Zp. Further, the relation
v+J+K=O shows that a momentum transfer k, +J
occurs for the first T matrix and kf —K for the second T
matrix.

Thus, for pure Coulomb T matrices, A,' ' is seen to
contain two singularities at k; = —J and kf =K, each of
which are the confluence of two separate singularities.
The confluences of singularities are not integrable. In the
more general case of a modified Coulomb potential, the
singularities arising from zero momentum transfers are
still present as they result from scattering at large dis-
tances where the potentials reduce to pure Coulomb
form. The other singularities are present as well, as fol-
lows from an eigenfunction expansion of the Green's
functions present in the T matrices, since they result from
T matrix energies coinciding with specific bound-state en-
ergies: a term is present in the expansion (the ground-
state term here) whose energy denominator vanishes at a
certain momentum transfer.

It can be shown that the other terms 'Tz;Go+ (E)7pz.
and Tpr Go+ (E)7'p, of the FWL amplitude contain
analogous singularities, but only one each since the P-T
interaction does not support a bound-state spectrum. In
combination with the above singularities, though, which
are independent of each other, consideration of the sums
V'r, GO (E)[V'p7+'Tp, ] and [Tpr+'Tr, ]GO (E)7p, is
necessary.

Taking the long-range forms [Eq. (Cl)] of the square-
bracketed terms since it is the zero-momentum transfer
limits which concern us, and expanding them in common
coordinate vectors, one Ands
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Vp, (rp) Zp/rp= Zp/~arr R—r~ as rp~00

Vpz'(R ) ZpZz' /R: ZpZr /I a'rr +Rz. I

=ZpZr/~ —P'rp+Rp~ as R ~ Oc,

Vz;(rr) — Zr/—rr Zr/'lPrp+Rpl &s rr

For capture to and from bound states and for large inter-
system coordinate separations, one finds

'Tpr+ Tp, —Vpr+ Vp,

=Zp(Zr' —1)/Rr Z—p(a+a'Zr )rr.R&/R z,
'7pr + 7 r, —Vpr + Vr,

(Zp 1 )Zz /Rp + (P+P Zp )Z rrp 'Rp/Rp
For singly charged ions, the long-range Coulomb force
vanishes and the corresponding zero-momentum singu-
larities cancel, leading to a finite amplitude in this case.
This conclusion renders the analysis of Appendix A valid
from a quantitative point of view.
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