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Effective-potential expansion method for the many-body problem at finite temperatures.
II. Application to a one-dimensional electron system with a repulsive 5-function interaction
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A one-dimensional many-electron system with a repulsive 5-function interaction is studied by the
application of the variational method developed in the preceding paper [Takada and Kita, Phys.
Rev. A 42, 3242 (1990)] in order to illustrate its actual implementation. Our results on the grand

potential, the entropy, and the specific heat are compared in detail with the exact ones that are cal-
culated by the numerical solution of the coupled integral equations obtained by the Bethe ansatz.

I. INTRODUCTION

In a previous paper' (hereafter referred to as I), we
developed a variational scheme for calculating thermo-
dynamic properties in an interacting many-body system.

In the scheme, an effective potential V was introduced to
define a trial density matrix p which was substituted to
calculate the grand potential 0 in the Gibbs variational

principle. In an expansion up to second order in V, we
obtained an expression for 0 as

Q=Qo+(P —Ho)o —f dr( V(r)(8 —Ho —V))oc

+ d1 d2V1HHOV 2 OC
0 —P/2

(T,f dr, f dr, V(r, )V(r, )),c, (1.1)

where 8 is the Hamiltonian of the system and Ho is a
suitably chosen noninteracting Hamiltonian whose grand
potential is given by Ao. We refer the reader to I for the

definitions of other symbols in (1.1). Basically, both Ho

and V are determined by the Euler-Lagrange-type equa-
tions derived by the functional derivatives of (1.1).

In this paper, we apply (1.1) to a one-dimensional elec-
tron system with a repulsive 5-function interaction to il-
lustrate how actual calculations are done in the present
method. There are mainly two reasons why we are in-
terested in the system. First, we can compare our results
with the exact ones in this system. The exact solution is
available in the form of the coupled equations which were
derived on the basis of the Bethe ansatz. These equa-
tions can be solved numerically to give the exact result.
Second, as an extension of our work on the electron gas
in which the many-body effects of a long-range Coulomb
repulsion are the primary concern, we make our first at-
tempt to study those of a short-range Coulomb repulsion.
In particular, we can investigate the correlation effect ex-
clusively in the system with the 6-function interaction,
because electrons with parallel spins do not interact due
to the Pauli principle. Our present study may also give
some light on the study of the electron correlation in the
one-dimensional Hubbard model ' in which the lattice

structure is considered explicitly instead of the continu-
um nature of our system.

In Sec. II, we give the Hamiltonian of the system. In
Sec. III, we make a brief review of the coupled equations
for the exact result. Our numerical method to solve the
equations is also explained there. %'e present our varia-
tional calculation in Sec. IV. For comparison, we also
give the result in the second-order perturbation theory in
Sec. V. The calculated results, both exact and approxi-
mate, are shown in Sec. VI. Summary and discussion are
given in Sec. VII. As in I, we use units in which
8=k~ =1.

II. HAMILTONIAN

The Hamiltonian for the system is given by

A'=H, + f',
with

(2.1)

k

k, cT

(2.2)

&—7)'
Ck+q ~Ck q gCk'~Ck

k, k', q

(2.3)

III. EXACT SOLUTION

The exact solution for the model (2.1) at finite tempera-
tures was obtained in the form of integral equations
through the Bethe ansatz '" by Takahashi and Lai.

in second quantization, where ck (ck ) is the annihila-
tion (creation) operator of an electron with momentum k
and spin o and m is the mass of the electron. The total
volume (or length) of the system is taken to be unity.

When we reduce units by measuring momenta and en-
ergies in terms of the Fermi momentum kF and the Fermi
energy kz/2m, respectively, we find that the system is de-
scribed by only one parameter, namely, the strength of
the bare interaction V. In our new units, the single-
particle energy is represented by k and the total number
of electrons Ã is given by 2/m.
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The thermodynamic properties including the excitation
spectrum involved in the solution were discussed in some
detail by Lai. Usuki et al. ' reported some results on
the low-temperature specific heat obtained by the numeri-
cal solution of the integral equations. However, the in-
formation of these works is limited. Here we give rather
detailed numerical results of these equations for arbitrary
T and V in the absence of the magnetic field. We present
the way to obtain the numerical solution in this section.

According to Refs. 3 and 4, there are two sets of the
coupled nonlinear integral equations. The first set for
Ir(k ) and e„(k) (n = 1,2, . . . } is composed of

([0]+[2])(1+e" )0„

=[1](o'„,e " ' +o„+,e "+'
) (n =2, 3, . . . ) .

(3.8)

This set can also be solved iteratively. We start from the
value of the noninteracting system for o „(k)as

o'„'(k)=-
(k —P)/T + 1+ ( —k +P)/T

a =k p —g—[n ]T ln(1+e " ),
n=1

(3.1)
1 1

n—, n+2-
(k 2 P)/y 1 + (k —P)/T

([0]+[2])e,=[1][—T ln(1+e " )+ T ln(1+e ' }],
(3.2)

and

([0]+[2])e„=[1][Tln(1+e " ' )+ Tin(1+e "+' )],
(n=2, 3, . . . ) (3.3)

with the definition of [n ] by

(3.4)

We solve (3. 1)—(3.3) iteratively. For an initial step of
the iteration, we take the value of the noninteracting sys-
tem for e„as

(3.9)

N= —= J p(k)dk .
2

(3.10)

Once the functions ~, p, e„, and O.„are obtained, we
can evaluate all the thermodynamic quantities. For ex-
ample, the internal energy E is calculated as

E= k~p k dk, (3.11)

the pressure P = —0 is obtained by

A first-iteration value for p comes from (3.6). The subse-
quent procedure to obtain the convergent values for p
and 0 „ is quite similar to that mentioned for (3.1)—(3.3).
Thus we will not repeat it here. The chemical potential p
is determined by the condition

e'„'(k) =—T ln n—0 1

I +e(k —p, )/T

1
X n+2-

(k —p)/T
(3.5)

P ln( 1+ e
—K(k)/T)dkT

2'
and the entropy S is given by

S= E—pN —0
T

(3.12)

(3.13)

oc

(1+e'~ )p= + g [n]o'„,
27T

(3.6)

([0]+[2])(1+e' )o,=[1](p+oze ' ), (3.7)

and

A first-iteration value ~"'(k) for ir(k) is obtained from
(3.1) with the use of this e'„'(k). Substituting these a'"(k)
and e'„'(k) into (3.2) and (3.3), we get a revised value e'„"
for e„. The integral equations (3.2) and (3.3) are solved

by converting them into a set of matrix equations. We
have made use of the fact that asymptotically e„(k) ap-
proaches the constant T ln[n(n+2)] as ~k~ ~ ~. The
revised value e'„"(k) is employed to obtain v '(k) through
(3.1). This process is repeated until the difFerence be-
tween ~™and x' "becomes negligibly small. The sum
over n in (3.1) is truncated at some finite value n, It is.
checked that the obtained values for ~ and e„converge if
we take n, =10.

With the use of ~ and e„ thus obtained, the second set
of the equations is given for p(k) and o „(k) as

IV. VARIATIONAL CALCULATION

To use (1.1), let us choose Ho and V as

and

HO —g ZkCk(rCkcr
k, o.

(4.1)

with

V= V g g Ck+qtCk q)Ck ~ }Ckt
q k, k'

(4.2)

Zk =k +F0+5k . (4.3}

Here V is the strength of the effective potential and the
prime in the sum denotes that the summation is taken un-
der the condition of qWO to exclude the Hartree term.
The quantity if0 represents the chemical-potential shift
due to the Hartree term. (The Fock term does not appear
in the present system. ) The two parameters Zo and V will

be determined variationally. The change in the one-
particle energy due to correlation is treated by 5k. We
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1n„—= (Ck~Ck~ &P=
1+ P(~k-P)1+e

with

Bnk

p
(4.4)

regard 6k to be of order V and thus we expand quanti-
ties in terms of 6k. For example, the Fermi distribution
function for ek is expanded as

ee + + — + +
W2 g g k k+q k+q' k' k' —

q k' —q'

q, q' k, k'

X G(ek+q —ek+kk. q
e—k.;P)

XG(Ek+q Ek +6k q Ek ', P),
W2 rf X k k +q k+q' k' k' —

q k' —q'

q, q' k, k'

(4.16)

and

1

P( k —po)1+e
(4.5)

and

XG(~k ~k+q++k' +k' —
q ) )

X G(ek ok+—q. +ok ek. —q;P), (4.17)

Pp=P Fp .

Similarly, the grand potential for H is given by

Op=Op+2 g b, knk
k

with

(4.6)

(4.7)

rrreh m m — + + +
~k +q nk+q'nk' nk' —

q
nk' —q'

q, q' k, k'

X G(ek+q —ok+ok ek q—;13)

X G(Ek+q —Ek+Ek'Ek
q ~P) ~

where ek =k and

(4.18)

—P(k —
)

Qp = 2T g ln—( 1+e '
) .

k

(4.8)

Q=Qp —Zp(N)+ V —(2V —V)VW, + VV W~

(8&, , Bnk
+V V Wq~

—2+6k
2

k BP

Here (8' &p and (8') are, respectively, given by

(4.9)

From (1.1) and the above prescription, we obtain 0 to
second order in V as

nk =1—nk
+ (4.19)

At zero temperature (P~~), the term e '~~ ' in

(4.12) disappears and G(b, ;P) is nothing but 5, i.e., the
energy denominator. At very high temperatures, G(b, ;P)
approaches I /2T. Thus in our formalism, the crossover
between the energy denominator and the temperature in
the correlation effect as discussed in Sec. I of I is incor-
porated by the use of this function G(b„P). As a techni-
cal merit, G(A;P) is analytic at b, =0 and is favorable for
numerical integrations. In fact, the term proportional to

and

(1V')p=2 g nk (4.10)

(a) w,

(N ) = &8),+ V'W, „—2 y S„
k

(4.1 1)

The quantities W&, W2&, and W2 represent contributions
from Figs. 1(a), 1(b), and 1(c), respectively. Introducing
the function (b) w

e
—(P/2) b

G(b, ;P)= (4.12)

we can give explicit expressions for W„W2&, and W2 as

Wl rf rf k k+q~k' k' q-
q k, k'

X G(Ek+q Ek+Ek q Ek ', P)

W~~=2+ g nk nk++qnk nk+ q(nk++q —nk )

q k, k'

X G(ek+q kk+ek q
ek—,P)—

and

W = W«+ W"~ —2W2 2 2 2 7

with

(4.13)

(4.14)

(4.15)

FIG. 1. Goldstone diagrams for (a) Wi, (b) W», and (c) 8'&.
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e '~ ' does not contribute to W, in (4.13}at any tem-

perature, but it is included for this convenience.
There may be several ways to give 5k, but we choose it

here so as to satisfy

where Qo(T, p, ) and (5 )0 are given by (4.8) and (4.10),
respectively, with po replaced by p. To determine the
chemical potential p, let us formally expand it in V as'

ank
V W~~=2+ 6k

ap
(4.20)

p po+p&+p2+ . (5.2)

where the subscript denotes the corresponding order in
V. By putting this expression into

1

1+(W2/W, ) V
(4.21)

Note that V is reduced from V by the factor
[1+(Wz/W&)V] '; thus our approach from the weak-

coupling limit is expected to have a wide applicable
range. Similarly, noting the fact that Zo appears in the
Fermi distribution function (4.5) in the form pa=a —

Zo,

we have

0= = —(8')—5n an
5Zo v

(4.22)

This is nothing but the thermodynamic identity to relate
the number of electrons to the chemical potential p.
With the use of (4.11) and 6„ in (4.20), we have an equa-
tion to determine po as

(4.23)

With this IM0, Zo is obtained from (4.22) as

Since it is not necessary in the following discussion, we
will not give an explicit expression for 6k here. This
choice for 6k is also found to be consistent with the gen-
eral thermodynamic principle: If we took 5k to be zero,
we would have got a nonzero entropy at T=O, because
the terms in proportion to W2~ in n depend on T linear-

ly at low temperatures.
From the Euler-Lagrange-type equation 5Q/5V=O

with Q in (4.9), we obtain an optimum value for V as

n
ap

(5.3)

and expanding each term in Taylor series about the value

p=po, we have

N= (8')0(po),

p, = VN/2,

(5.4)

(5.5)

Wl
V2

po

&t),
(5.6}

In the derivation of pz, the Hartree terms should be con-
sidered carefully in the perturbation theory, because
there is a strong cancellation among them. This trouble-
some process is avoided in our variational theory by the
choice of the effective potential in (4.2).

If (5.1) is expanded about p= po, we finally obtain

'2

Q(T,p)=00(T,po) —V — + V —W, +NN z po

2 a&A),

po

(5.7}

V

aw, aw,
V (2V —V) —VV

Bp Bp

B(A'),
(4.24)

Substituting these optimum values for the variational
parameters, we can calculate the free energy F, the entro-

py S, the internal energy E, and the specific heat Cv
through the usual thermodynamic identities.

V. SECOND-ORDER PERTURBATION THEORY

0( T,p, }=Q (T0,p ) + V

, a&N),—V' W, +-,'(&A'), )'
ap

(5.1)

Let us present briefly the results in the perturbation
theory to compare them with those in our variational
method. To second order in V, the grand potential
0( T,p) is obtained as

VI. CALCULATED RESULTS

In Figs. 2(a) and 2(b), we have given the results for 0
divided by N as a function of the bare interaction V for
T=O and 10, respectively. (Energies are in units of the
Fermi energy kF/2m. ) The curves indicated by "exact",
V and V represent, respectively, the results obtained by
the exact solution (3.12), our variational theory (4.9), and
the second-order perturbation theory (5.7). One can see
that the expansion in terms of V is far more effective than
that in V. The results in our approach are very close to
the exact ones up to V as large as 20. This wide applica-
bility of our formula stems from the fact that the expan-
sion parameter V is smaller than V. In fact, one can see
from Fig. 3 that the ratio V/V becomes more and more
reduced as V is increased. The ratio increases gradually
as the temperature is raised. In the high-temperature
limit, V becomes equal to V and the second-order pertur-
bation theory gives the same result as our formula. To
reach that limit, however, we need a very large value of T
which depends, of course, on V.

In order to see the difference among the exact results,
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10
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z
c; -12.0

-12.5—
0 10

V

FIG. 2. The grand potential as a function of V for (a) T=O
and (b) T=10. We indicate the exact results (3.12), our varia-
tional ones (4.9), and those in the usual second-order perturba-

2tion theory (5.7) by the symbols "exact", V, and V, respective-
ly.

our variational ones, and those in the second-order per-
turbation theory in more detail, we have plotted the
values for the correlation part of the grand potential
AQ/N=[0(T, pj —I10(T,po)]/N as a function of T at
V=5 and 10 in Fig 4. When V is smaller than about 2,
our variational method gives virtually the exact values
for 0 in the whole temperature region. Even when V is
much larger than that, we have found that our method
still provides the values for 0 very close to the exact ones
if T is larger than about 2V. For T larger than about 1,
our results always satisfy the variational upper-bound
property which is stated that a value for 0 estimated by a
variational method should be higher than the exact value.
For V larger than about 2 and T smaller than about 1,
however, the upper-bound property is violated. This in-
dicates that the series for 0, in V derived in Secs. III and
IV in I should not be cut off at second order in this tem-
perature region for V as strong as 2 or larger in the
present system. The deviation of our value for AA from
the exact one becomes most serious at T=0.4, though
the deviation itself is at most 11% even for V=10. This
error is much smaller than that of 55% in the second-
order perturbation theory. Nevertheless, our present
method as well as the second-order perturbation theory is
seen to reproduce the correct qualitative behavior of 0 as
a function of T in the whole temperature region.

We have calculated the exact values for the entropy S
in detail as a function of T for several values of V. The
results for S /N are given in Fig. 5. In the low-
temperature region, i.e., T less than about 0.2, S increases
in proportion to T. This behavior is consistent with the
Landau's Fermi-liquid theory. The T-linear coefficient
increases monotonically and approaches infinity as V is
increased. In the limit of V= oo, it is finite, but S/N it-

—0.5

1. 0

V=1

V2

V
2

/c:
v . V1Q

)
S)

05-

V=)Q

10

10

FIG. 3. Effective potential V divided by V as a function of
temperature for V= 1, 5, and 10.

FIG. 4. Temperature dependence of the correlation part of
the grand potential AQ/X—:(0,—00)/X for V=5 and 10,
where Ao is the grand potential of the noninteracting system.
The results in the exact, our variational, and the second-order
perturbation theories are, respectively, plotted by the solid, the
dashed, and the dotted curves.
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20 (a)

0.5—

ln2 exact

0

FIG. 5. The exact values for the entropy S/N as a function
of T for V=O, 5, 10, and 00.

(b)

self starts from ln2 which reflects the double degeneracy
of the spin degrees of freedom. Contrary to the low-

temperature behavior with the increase of V, S becomes
smaller than the corresponding one in the noninteracting
system for T larger than about 0.8. The overall feature o
S for T less than about 1 is very similar to that in the
Hubbard model ' Since the first increase of S with V
is attributed to the spin-wave excitations in the Hubbard
model, we can also explain the low-temperature behavior
of S in this system in terms of the same origin. This ex-
planation is also consistent with the analysis of Lai. e
have plotted the results for AS/N: (S—Sz)/N—as a
function of T in Fig. 6 for the cases of V=5 and 10,
where So is the entropy of the noninteracting system.
The solid and the dashed curves represent the exact and

0.5—

V=0

variational

0.3
(c)

0.2— I

I

~V~
I

0.5

v-0

Z'.

perturbation

exact

V

FIG. 6. The entropy AS/N=(S —So)/N as a function of T
f V = 5 d 10 where S is the entropy of the noninteracting0

system. The solid curves represent the exact results, w i e t e

dashed ones show our variational values.

FIG. 7. Specific heat Cy/N as a function of T. (a) Exact re-

sults for =. . . , aV=O, 5, 10 20 nd ~. (b) Our variational results for
V=O 5 and 10. (c) Results in the second-order perturbation

7

theory for V=O, 5, and 10.
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our variational results, respectively. As in the case of 0,
our variational method gives a qualitatively correct be-
havior. Quantitatively, we have obtained a large
enhancement due to the spin-wave excitations in S except
for T very close to zero. If we could have obtained a lit-
tle smaller value for V, we had an even better result.

The contribution of the spin-wave excitations ean be
seen more easily in the curve of the specific heat as a
function of T. The calculated results are shown for
several values of V in Figs. 7(a), 7(b), and 7(c) which are
given, respectively, in the exact, our variational, and the
second-order perturbation theories. As the exact calcula-
tion shows, the peak structure in the specific heat appears
at low temperatures for V larger than about 5. Such a
structure is absent in both the weakly interacting ( V=O)
and the "spinless" ( V= ~ ) systems in which the spin de-
grees of freedom do not play a role. In fact, the curve for
V= ~ is just the same as that for V=0 if we do not plot
it in T but in 4T. The peak structure in CV obtained here
is very similar to that of the one-dimensional Hubbard
model which has been found in both half-filled and non-
half-filled ' cases. The broad peak in the specific heat at
high temperatures ( T & 0.6) reflects the divergence in the
density of states at the band edge. This structure will
disappear in higher dimensions. Note also that we need a
very large T in one-dimensional systems to reach the clas-
sical limit (Ck =X/2). Our variational method as well as
the second-order perturbation theory gives a qualitatively
correct behavior of the specific heat in the whole temper-
ature region. Quantitatively, however, our results are not
good for large V, though they are much improved over
those in the perturbation theory. Here again, use of a lit-
tle smaller V would have given much better values for the
specific heat.

The gradient in the curve of S ( T) or CV( T) at very low
temperatures determines the effective mass m * for the

3.0—

electrons at the Fermi surface. The calculated results for
m * in the exact, our variational, and the second-order
perturbation theories are given as a function of V in Fig.
8. The value for m ' in the perturbation theory increases
in proportion to V, whereas the behavior of m * in our
variational calculation is different: It increases in propor-
tion to V for V smaller than about 3 but to V for V
larger than about 7. The exact theory gives a value be-
tween these two results. Of course, our variational result
is much closer to the exact value than that in the second-
order perturbation theory, but a much more sophisticat-
ed improvement seems to be necessary to obtain a correct
behavior of m ' as a function of V.

VII. SUMMARY AND DISCUSSION

We have shown an example of the actual implementa-
tion of the effective-potential expansion (EPX) method at
finite temperatures by applying it to the one-dimensional
many-electron system with the repulsive 5-function in-
teraction. It is demonstrated that, in spite of the calcula-
tion only up to second order in the effective potential, the
EPX method is effective in very wide ranges of both T
and the strength of the bare potential V. Even in the case
in which the result is not so good quantitatively, we can
always obtain a qualitatively correct result. This is very
important when we investigate the many-body effects in
an analytic approach as in the EPX method. In order to
build a new concept on the many-body effects, we do not
always need a very sophisticated method to give a quanti-
tatively very accurate result but rather a much simpler
and transparent one to give at least a qualitatively correct
behavior.

Since a general discussion on the problems related to
the finite-temperature EPX method was given in I, we re-
strict ourselves to the discussion on the improvement of
our method for the present system. Because the devia-
tion of our values for 0 from the exact ones becomes
largest at T around 0.4 in which the contribution of the
spin-wave excitations dominates, we need a better treat-
ment for the spin fluctuations in the choice of the

effective potential. For this purpose, we may give V as

2,0- V

V= —,
' g' g [V,(q)5 s5py

—V, (q)o s os]
q, k, k' a, P, y, b

1.0
0 10

V

20

FIG. 8. The effective mass m * for the electrons near the Fer-
mi surface at low temperatures divided by the bare mass m as a
function of V. The solid, the dashed, and the dotted curves cor-
respond, respectively, to the results in the exact, our variational,
and the second-order perturbation theories.

Xck+qack. qP k. ycks

where o. , o. , and o., are the Pauli spin matrices and the
prime in the sum over q, k, and k' denotes to exclude the
Hartree and the Fock terms. The potentials V, (q) and
V, (q) represent, respectively, the contributions from the
exchange of the charge and the spin fluctuations. We can
rewrite (7.1) as
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V (q) —V (q)v —1

k+q1 k' q—t k't k'I+ k+qt k' —q$ k't k$)
q, k, k'

V,(q)+ V, (q)+2V, (k —k'+q)
Ck+qgCk q jCk $Ck )

q, k, k'
(7.2)

If we neglect the q dependence in both V, and V„ the
first term in (7.2) is irrelevant and we can see that (7.2) is
equivalent to (4.2) with V=(V, +3V, )/4. Thus the q
dependence is important for the improvement. However,
a preliminary calculation up to second order in V, shows
that we can obtain only a very modest improvement even
with the q-dependent V, . We do not think that a sub-

stantial improvement can be achieved by the fourth-order
calculation either, because the spin wave is a kind of col-
lective excitations and some kind of an infinite sum, or a
calculation up to an infinite order in V, (q) is necessary to
obtain a nearly exact result. We are planning to make an
improvement by taking some partial infinite sum. How-
ever, that is beyond the scope of this paper.
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