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Effective-potential expansion method for the many-body problem at finite temperatures.
I. Basic formalism
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The effective-potential expansion method, namely, a variational approach to the many-body prob-
lem at zero temperature, is extended to nonzero temperatures by the introduction of a new trial den-

sity matrix in the Gibbs variational principle for the grand potential O. The trial density matrix
contains an effective potential as a variational parameter. We have given an expansion form for 0
in terms of the effective potential. Special care is taken to evaluate the entropy term correctly.

I. INTRODUCTION

In condensed matter and plasma physics, one of the
major problems is evaluation of the equilibrium thermo-
dynamic properties of an interacting many-particle sys-
tem. In the perturbation-theoretic approach, a formal
analysis to calculate the grand potential 0 has already
been given by the introduction of the thermal Green's
function. ' In general, however, the actual implementa-
tion is not easy and quantitatively good results can be ob-
tained only in rare cases. Thus many alternative methods
have been proposed so far. In particular, the imaginary-
time path-integral formulation is a powerful and versatile
approach. The formulation provides a useful starting
point to calculate the partition function directly in some
simple systems with the use of the Monte Carlo
methods. It also gives the so-called Feynman inequality
based on which a finite-temperature variational approach
is formulated. On the other hand, the finite-temperature
density-functional theory is not couched on the inequality
but on the Gibbs variational principle. '

The Gibbs variational principle is stated as follows.
~ ~ ~

For any density matrix p, i.e., for any positive-definite p
with unit trace Trp=1, the functional

Q[p) =Trp(H plV'+P 'lnp)—

satisfies

Q[p] ~ Q[p]= —P 'ln Tre (1.2)

in which the equality holds only for p=p. Here, H is the
Hamiltonian of the system, JM is the chemical potential, 0
is the total number operator, P= T ', and p is the grand
canonical density matrix, given by

p —e / re
—P( H —PN ) iT —P(H —PN )

This is the principle which takes the place of the
Rayleigh-Ritz variational principle at T=O, i.e., for the
ground-state wave function.

The variational approach has been found quite success-
ful in the calculation of the ground-state properties of the
interacting many-body problem. In particular, the Jas-
trow trial function is known to provide a rather accurate

description of the ground-state wave function for many
systems. There have been a lot of attempts to calculate
the energy expectation value for the ground state with
the Jastrow function either in the hypernetted-chain
methods or in the Monte Carlo methods. ' Thus it
would be very productive if we could extend the
Jastrow's approach to the finite-temperature problem by

giving some suitable trial p including the correlation
effect as in the Jastrow function. However, we soon real-

ize that the entropy term P 'Trplnp is quite difftcult to
calculate in this approach. Further, the Jastrow-type tri-
al function has a fundamental flaw in the finite-
temperature problem due to the absence of the energy
denominators in the definition of the correlation factor.
According to the perturbation-theoretic approach, the
correlation effect enters in the calculation of Q in a power
series of the matrix element (n P'~m ) of the interaction
potential f', but the actual expansion parameter is not
(n~P'(m) alone but (n~P~ m) divided by the energy
denominator E„' ' E' ' at T—=0 and (n~ 0~m )/T at
high temperatures, where E' ' is the eigenvalue of the
noninteracting Hamiltonian Ao. Since the Jastrow corre-
lation factor is, in a sense, defined in terms of some aver-

age value of

(n
~

V m ) l(E„' ' E' ')—
and has no energy denominators explicitly, the crossover
between the energy denominator and T with the increase
of T cannot be treated.

One of the authors has already proposed a variational
method at T=O with the energy denominators included
explicitly in the definition of the correlation factor. " It is
named the effective-potential expansion (EPX) method,

because an effective potential V is introduced as a varia-
tional parameter to construct a trial wave function and
serves as an expansion parameter instead of the bare po-
tential f in the perturbation-theoretic approach. Because
of this change of the expansion parameter, the expansion
series converges rapidly even in the strong-coupling re-
gion in many interesting systems. In fact, the EPX
method is found to provide a much better description of
the electron gas in the whole metallic-density region than
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the Jastrow-type approach. ' Thus in this paper, we ex-
tend the EPX method to nonzero temperatures by giving

an appropriate p. The actual manipulation of the terms

in Q[p] is illustrated in the companion paper [paper II
(Ref. 13)] by the application of our method to a one-
dimensional electron system with a repulsive 5-function
interaction.

This paper is organized as follows. In Sec. II we make
a quick review of the EPX at zero temperature and in

Sec. III we give a form of p which reduces to the EPX as
T approaches zero. In Sec. IU we show how to calculate

the entropy term in the formal expression for Q[p]. In
Sec. U we discuss two special cases to relate our formal-
ism to other approaches. In Sec. VI we give an expansion

form for Q[p] explicitly up to second order of the
effective potential. Calculations up to fourth order are
done in Sec. VII. In Sec. VIII we summarize our results
and suggest some systems to which our method can be
applied successfully. Finally, in Sec. IX we discuss ad-
vantages as well as disadvantages of the present approach
and indicate the direction along which our method may
be improved upon. Some useful mathematical formulas
are given in Appendixes A, B, and C.

II. THE EFFECTIVE-POTENTIAL EXPANSION
METHOD

We consider a system of N particles interacting with
one another through a two-body potential. The Hamil-
tonian of the system is written as

H=H, +P, (2.1)

n
OO

1
QO

g p, U (0, —~) ~0&,
n=O ' m=1

(2.2)

with U (0, —~ ) defined by

where Ho and V represent, respectively, the noninteract-
ing and the interacting energies of the particles. In this
paper, we need not specify 8 further. Our formalism can
be applied equally well to both fermions and bosons. We
can treat the electrons in the lattice, i.e., the Bloch elec-
trons as well as those in the homogeneous systems like
the electron gas.

In the EPX method, we take a trial function ~4o& for
the ground state as

~4, &
= U(0, —

) ~0&

U (0, —~)= ', f e dt, f eo ™dtT, [V(t, ) V(t )]L (2.3)

where p 's are arbitrary parameters and V(t) is defined
as

(2.4)

with some suitably chosen trial noninteracting Hamil-

tonian Ho and effective interaction V. The state ~0& is

the normalized ground state of Ho; T, is the symbol for
the time-ordered product in the usual sense; the subscript
L to the square bracket on the one hand denotes the in-

struction to consider only terms in which m Vs in the
bracket are connected with one another and, on the other
hand declares to exclude any term in which Vs in the

different square brackets are linked. The point here is
that we can control the link-unlink properties in the

correlation operator U(0, —oo ) by the introduction of the
L operator. We also note that the Hartree and the

Fock terms should be excluded in the definition of V, be-

cause these terms do not add any new intermediate state

to ~4o&. The effect of these terms can be included in Ho
as we shall see an example in the following paper. ' El-
imination of the Fock term is quite helpful in avoiding
the anomalous diagrams' which appear in the usual
perturbation-theoretic approach.

The energy expectation value for the trial function (2.2)
can be calculated in a similar way to the usual linked-
cluster theorem' and the result is given by

(@[Nil &E= =(O~U (0, )HU(0, — )~0&l(O~U (0, )U(0, — )~0&
(~14 &

OG OO

=(0~ g p U (0~) H g p U (0, —~) ~0&c,
m=1 m'=1

(2.5)

where U (0, 0D ) is defined by

~ m —o+ —o+ f
U (O, ao)= ' f e dti . f e dt T, [V(ti) V(t )]I

m! o 0 ttt
(2.6)



3244 YASUTAMI TAKADA AND TAKAFUMI KITA 42

and the subscript C means that only connected diagrams
linked to 0 should be considered in the evaluation of the
expectation value. The expression (2.5) is a power series

in V. Assuming that V is a good expansion parameter,
we evaluate E up to a certain order in V and then deter-
mine all the variational parameters included in the

definition of V and Ho by minimizing E. (Usually we give
some definite values for p 's by hand, though they can
also be determined variationally in principle. )

Tr [ F(P, O) [H p—N +P 'lnF(P, O) ] )

Tr[F(P, O)]
(3.9)

With the use of (3.2), the first term in (3.9) is rewritten as

—P 'ln[TrF(P, O) ]

Substituting (3.1) for p into the functional (1.1), we obtain

Q[p] = —P 'ln[TrF(P, O)]

III. TRIAL DENSITY MATRIX =Qo —P 'ln( U(P/2, 0)U(0, —P/2) )o, (3.10)

The functional (1.1) for the grand potential Q[p] is re-
duced to the expectation value of 8—pA' at zero temper-
ature. A natural extension of the EPX method is ob-

tained if we can give p so as to reproduce the form of
(2.5) for Q[p] with the replacement of 8 by 8—pk
Since the third equation in (2.5) shows that the operator8 is sandwiched by the two correlation factors, one
evolving from t = —00 to 0 and the other from 0 to ~,
we are tempted to express p as a product of two factors,
one defined in the interval [O,p/2) and the other in
[p/2, p]. (The latter can be converted into the interval

[—p/2, 0].) From this consideration, we give p as

p=F(P, O) /TrF(P, O), (3.1)

with

where Qo is given by

(3.1 1)

and the average with the subscript 0 is defined as

(3.12)

= ( U(P/2, 0)U(0, —P/2) ), —1, (3.13)

where the subscript C denotes to leave only connected
terms. We can apply the same theorem to the second
term in (3.9) and obtain

Employing the linked-cluster theorem, we can reduce the
logarithmic term in (3.10) into

ln( U(p/2, 0)U(0, —p/2) )0

F(P,O)=e ' U(P, P/2)U(P/2, 0)

o & ~U(P/2 ())]2 (
x i)2 (3.2)

Tr[F(P,O)[8 pN+P 'l—nF(P, O)]]

Tr[F(P, O) ]
= ( U(P/2, 0)[H pE+2P 'l—n(e e )]

Here the operators U, X, and Y are, respectively, defined
as x U(0, —p/2))oc . (3.14)

n
oo l 00

U(, ')= $ —
( g p~ U~(, r')

n=0 m=1

with

(3.3)
Here the meaning of the subscript C is a little different;

we consider diagrams which link the terms in U to those
inside the square brackets.

IV. BAKER-CAMPBELL-HAUSDORFF FORMULA

X= — (H pN)— —
0 (3.5)

and

X f dr, f dr T,[V(r, ) V(r )]L
T'

(3.4)

So far, the discussion has been quite formal and exact.
In the actual calculation of Q, the term ln(e e ) is most

diScult to evaluate. Since the operator Y can be expand-

ed order by order in terms of V through (3.3), (3.4), and

(3.6), let us expand ln(e e ) in terms of Y. For this pur-
pose, we employ the following Baker-Campbell-Hausdorff

formula valid for any operators (matrices) X and Y
1 A

!n(e&e r) =X+f dtip[ead~&~e t radI] Y
0

Y=lnU(P/2, 0) .

We have defined the operator V(r) by

&Ho —pN) ~ —&HO —pN)
V(r) =e ' Ve

and we can prove the following identity easily:

(3.6)

(3.7)

%„[ad(X);ad( Y), , ad( Y)]=X+
(n+ I )!

=X+Y+ —,'[X, Y]+—,', [X,[X,Y]]

+ —,', [Y, [ Y,X]]+ . (4.1)

U( r cr, r' cr ) =e———o.(HO —pN )—,o(HO —pS)
U(r, r')e (3.8) Here [X,Y]=XY YX, the oper—ator ad(X) is defined by
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n ~ Y) n =0)
[ad(X)]"Y= '

[ad(X)]" '[X, Y], n ~ 1

(4.2)

%„[ad(X);ad( Y), , ad( Y)]

)II[ead(x)e ( ad( 1')]
dt" t=O

(4.4)

a lna
a —1

(4.3)

and

and the functions + and 4'„are, respectively, given by
The first line of (4.1) is very useful and enables us to ex-

pand ln(e e ) in terms of Y as in the second line. A brief
derivation of the formula (4.1) is recapitulated in Appen-
dix A, an explicit expression for 0„ is given in Appendix
B, and useful identities are given in Appendix C.

With the use of (4.1), we can reduce (3.14) further as

U(H/2, 0) 0 H+2eH —'f de'Y[e e'e'e "'e'"']Y U(0, —Hi2))ee .

Tr[F(P, O)]
(4.5)

One note is necessary here when we expand

V. Although we can control the link-unlink

Vs inside the operator U(P/2, 0) by the L
cannot do the same thing for the operator
see an example in (6.6).

Yin terms of
properties of
operator, we

Y. We shall

V. SPECIAL CASES

If we take all the )M
's to be zero in (3.3), U(P/2, 0) is

the unit operator. Thus Y is zero. Then the functional 0
is given by

In general the calculation of (5.5) is as difficult as that of
the exact value Q[p]. Besides, we know from the first

that Q[p] becomes minimum for Ho+ V equal to H.
Thus one may think that (5.5) is totally useless. Howev-

er, there might be a situation in which V serves as a good
expansion parameter in the medium- or strong-coupling
region of the bare potential V. In that case the calcula-

tion up to a certain order in V in (5.5) will be very useful.
Unfortunately, we have not met such a situation until
now. As long as we confine ourselves to the calculations

up to second order in V, we come to know that the choice
of p&

= 1 and p =0 for m 2 gives much better results.

Q[p] =Qo+ (H —H() )p, (5.1)
VI. EXPANSION UP TO SECOND ORDER

and this is, of course, larger than the exact value Q[p],
namely,

—P 'ln Tre ' +(H Ho)0—
) —P 'ln Tre I " ' (5.2)

The inequality (5.2) is just the same as the one obtained
by Feynman and our problem is to choose the optimum

noninteracting Hamiltonian Ho.
If we take all the p 's to be unity in (3.3), both F(P,O)

and U(P, O) can be calculated formally by the same
method as in the perturbation-theoretic method. ' The
only difference is in the fact that the Hamiltonian H is re-

placed by Ho+ V in the present case. Thus the result for

F(((3,0) is

F(P,O)=e

and U(P, O) is given by

( U(P/2, 0) U(0, —)(3/2 })()c—1

=(U, (P/2, 0)),+(U, (0, —P/2) &,

+ ( U, (/3/2, 0 ) U, (0, —)33/2 ) ) (6.1)

where U, is defined in (3.4) with m =1. The terms like

( U, (P/2, 0) )Oc are zero, because these two U, 's are un-
linked. By using the expansion form (B2) for 2po, we can
prove the following equation for any operator A easily:

(q,[ad(X)]W &,=(a &, . (6.2)

Thus we can reduce the first term in (6.1) as

( U, (p/2, 0) )0= (2I(0[ad(X)]U, (p/2, 0) )0= ——( V)0 .

Hereafter we will consider the case of p, =1 and

)M =0 for m ) 2. Up to second order in V, (3.13) is ex-

panded as

U(P, O) =S(P,O) —= T,exp —f dr V(r)
0

The functional 0 is now calculated as

Q[p]=Q —P '[(s(P, O) &,
—1]

+ (S(P,O)(H —H() —V) )()c .

(5.4)

(5.5)

(6.3)

To reach the fina equation, we have used the identity

(C3). The same result is given for ( U) (0, —P/2) )0.
In order to get an expansion form of (4.5), we have to

expand Y through (3.6). If we write
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(') 1 -'2) l -( )

Y=Y +—Y +—Y +
2l

we obtain

Y = U, (f3/2, 0)= —f dr V(r)

and

(6.4)

(6.5)

w(2) = U, (P/2, 0) —Y (6.6)
~(2)

One might think that Y is zero, but actually it is not
zero. In the first term of (6.6), we consider only unlinked
diagrams by the construction of the trial density matrix
(3.1)—(3.4), but we have to include linked diagrams as
well in the second one. Thus we have to be very careful
about the link-unlink properties in the present formalism.
With the use of (6.5) and (6.6), we have

f dt +[e' ' 'e" '"']Y=——V+ —,'+o[ad(X)]U, (P/2, 0) —
—,'To[ad(X)] T,f dr, f dr2V(r, )V(r2)

0
(6.7)

where we have employed the identities (C3) and (C4). If the two Vs are unlinked in the third term, the contribution is
just canceled by the counterdiagram in the second term. Thus we have to include only the connected diagrams in the
third term of (6.7) and need not consider the second term. Substituting (6.7) into (4.5), we have an expansion as

Tr ]F(P,O) [A' pX+P—'InF(P, O) ]]
Tr[F(P, O)]

=(8—Ho —V&o—P (Co[ad(X)] T,f dr, f dr2V(r, )V(r~) &oc
0 0

+ ( Ui(P/2, 0)(H —Ho —V) &oc+ ((8—Ho —V) Ui(0, —P/2) &oc+ ( U, (P/2, 0)(H —Ho ) U, (0, —P/2) &oc .

(6.8)

Since the Hartree and the Fock terms are not included in the definition of V, the terms like ( U, (P/2, 0) (H —Ho) &oc
vanish.

Collecting terms in (6.1) and (6.8) and using (6.2) again, we obtain the following form for 0:

fI[p]=ho+ & ~ Ho &o+ & Ui(&/2»0)(~ Ho V) &oc+ & (H Ho V) Ui(0» ~/2) &oc

+ & Ui(P/2»0)(~ Ho)Ui(0» P/2) &oc P & Ui(P/2»0)U&(0» P/2) &oc

P '&T, f—"-dr, f dr2V(rl)V(r2)&Dc. (6.9)

It is not difficult to see that as T goes to zero, (6.9) ap-
proaches the expression (2.5) expanded up to second or-

der in V with 8 replaced by H pN, @~=1, and JL—t, =0
for m ~2. At high temperatures, i.e., when P is small,
the actual expansion parameter in (6.9) is easily seen to be

PV/2. Since this parameter is small for small P, (6.9)
provides an accurate description for Q.

If we write U, in terms of V, (6.9) can be reduced fur-

ther as

Q[p]=Ao+(H Ho&o —f dr( V—(r)(H —Ho —V) &oc

VII. EXPANSION UP TO FOURTH ORDER

Let us consider the third-order terms. It is clear that
(3.13) does not give any contribution. We divide the con-
tribution from (4.5) into three components:

(7 1)

with

QI3' =—,( U, (P/2, 0)'(H —H, ) U, (0, —P/2) &,

+f dr, f dr2( V(r, )(P —Ho) V(ri) &oc
0 —p/2

+—( U, (P/2, 0)(H —Ho)U, (0, —P/2) &oc,

(7.2)

I p p

2!P '
o

'
o

( T,f dr, f dr2V(ri) V(rz) &oc . (6.10) Q'i3'= —( U, (P/2, 0)Co[ad(X)] Y U, (0, —P/2) &oc,

(7.3)
This expression is more convenient than (6.9) for practi-
cal purposes.
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~ (3) 2 1 ~ (2) (I) 2 1 ~ ~()) (2)
Q(3 '= ——((Po[ad(X}]Y &oc+ — ()P) [ad(X);ad( Y' )]Y &oc+—,

,
( 4) [ad(X);ad( Y )]Y &oc

A(1) A(1) A(1)
+——( 4'2[ad(X);ad( Y ),ad( Y )]Y &oc

P 3(

A(2) A A(1) A(1)
+——( U, (P/2, 0) j)Ilo[ad(X)]Y +%)[ad(X);ad( Y )]Y I &oz

A{2) A A(1) A(1)
+ ——( t~Po[ad(X)]Y +%,[ad(X);ad( Y )]Y ) U, (0, —P/2} &oc . (7.4)

We cannot simplify (7.2) any further, but (7.3) is reduced to

Q2( '= —( U, (P/2, 0) VU, (0, —P/2) &()c (7.5)

(7.6)

with the use of the identity (C3). Similarly, using an identity for %2 as obtained for )p) in (C4), we can rewrite 03 into

A(3) A(3) 2 ( A A(2) A A(2) A(1)
03 '= ——,{Co[ad(X)]( Y —Z ) &oc+ —,

,
( [4)[ad(X);ad( Y )]—)I()[ad(X);ad(Z )] I Y &oc

A(1) A(2) A l'2) 2 l A A A(2) A (2)
+ — (%([ad(X);ad( Y )](Y —Z ) &oc+ ——( U((P, O)To[ad(X)]( Y —Z ) &oc,

where Z is defined by

p/2 A ' A(1) ] A(2) l A(3)
Z =ln Texp — dr V(r) =Z +—Z +—Z +

0 2t 3t

The first term of (7.6) is transformed further as

A{3) A(3) ] A(3) l p/2 A A(2) A(2) A—(Co[ad(X}](Y —Z ) &()c
————(S &()c

— f dr( V(r)S +S V(r) &oc

(7.7)

(3) P (2) -
1 &

—ad(X)= ——(S &
——S (e'"' '+1) '

V
3I OC 8 OC ~

ad(X)
(7.8)

A( j)
where S is defined through

P/2 A ( A())
T,exp — ~ V ~ =1+ —.

t
S

0
(7.9)

In deriving (7.8), we have used the following identities
valid for any operators 3 and B:

and

(f[ad(X)]A &,= & A &(), (7.10)

( kg[ad(X)]B &oc = ( [g[—ad(X)]A jB &oc, (7.11)

provided that f(x) is analytic at x =0 with f(0)= l.
[Equation (6.2) is a special case of (7.10).] Other terms in

I

(7.8) can be calculated in a similar way and the final form
for 03 ' is obtained as

'2
g(3)—

3 2 ad(X ) ad(X )

1 P P P A A A

r, f dr3f dr3f d~3V(T3)V(13)V(T3()PC .
3!P '

o o o

(7.12)

We can perform a similar reduction for the fourth-

order terms and find that at least up to forth order in V,

Q[p] is provided faithfully by the following expression:

Q[p] =Go+ ( U(P/2, 0)(H H() ) U(0, —P/2) —
&oc

——[(S(P,O) &()c
—1]

+—( [S(P/2, 0)—U(P/2, 0)]iso[ad(X)][S(0,—P/2) —U(0, —P/2)] &oz, (7.13}

A
S(r, r')=T, exp —f dr V(r)| (7.14)

We have not confirmed yet whether (7.13) still applies

where U is defined in (3.3) and (3.4) with p, (=1 and

p =0 for I ~ 2 and S is given by

beyond fourth order, but we anticipate that (7.13) may be
a good approximate expression for Q up to infinite order.

VIII. SUMMARY

The central result of this paper is (6.10) for the grand
potential Q. This is a direct extension of the EPX
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method in the two-body approximation' to finite temper-
atures. Since at high temperatures the expansion param-

eter in (6.10) is PV/2 and is much smaller than that at

T=0 which is V divided by a suitable energy denomina-
tor, the two-body approximation, i.e., the cutoff of the

series for 0 at second order in V, becomes much more re-
liable at these temperatures compared to the case of
T=O. Thus it is almost certain that our present method
will provide a very precise temperature-dependent
exchange-correlation energy E„,(n, T) as a function of
the electron density n in the whole temperature region for
the electron gas, i.e., the system in which electrons are
confined in a uniform neutralizing background and in-
teract with one another through a Coulomb potential. In
fact, E„,(n, T) is a very important quantity in the finite-
temperature density-functional calculations. We plan to
supply our results for E„, in the future.

Besides the electron gas, our method can be applied
successfully to any system at high temperatures. Of
course, at high enough temperatures, one needs not
resort to our method but to the usual perturbation-
theoretic approach and obtains the same results. Howev-
er, the point here is that with just the same labor to cal-
culate the terms in the usual perturbation series, one can
obtain the results valid in much wider applicable ranges
of both T and the strength of the bare potential, if one
employs our formalism. An example is given in the com-
panion paper. '

If we start with Ho not describing the normal state but
some condensed state like superconductivity, we can nat-
urally obtain some type of a gap equation at a finite tern-
perature. By solving the gap equation, we can discuss the
many-body effects on the transition temperature. This is
another area to which we plan to apply our method.

IX. DISCUSSION

The many-body effects in many-electron systems are
usually separated into two, i.e., the exchange and the
correlation effects. The former is the consequence of the
Pauli exclusion principle. This principle is satisfied com-
pletely only when each direct term is accompanied by its
exchange partner. In the perturbation-theoretic ap-
proach, it is usually quite dificult to include all the direct
and the exchange terms on the equal footing, because
some partial sum is almost always necessary and in such
a partial sum the exchange terms are neglected or treated
quite roughly. In our method, the partial sum is done im-
plicitly by the choice of the effective potential. The direct
and the exchange diagrams are defined on the basis of
this effective potential. Thus, as far as the direct and ex-
change terms are included in pairs, the Pauli principle is
satisfied completely in our method, even if we cut the
series for 0 at some finite order in the effective potential.
As a byproduct of this procedure, the convergence of the
series is sometimes found to be very rapid, even though
each higher-order direct term itself is large. Such a case
occurs when the contribution of each direct term is al-
most cancelled by that of its exchange partner. Although
this situation imposes the so-called negative-spin problem
for the Monte Carlo methods and is avoided, we wel-

APPENDIX A: DERIVATION OF FORMULA (4.1)

Consider the function, defined by

g(s, r ) =exp[5 I (r)], (A 1)

come such a case. In this sense, our method is comple-
mentary to the Monte Carlo ones.

The correlation effect in the metallic state is character-
ized by the change of the many-body wave function in the
Hilbert space in which there is a continuous spectrum of
the energy eigenvalues located without any energy gap
from the ground-state energy. In the correlation problem
of the continuous spectrum, the energy denominator
plays a very important role in the construction of the
wave function. Thus the theories ' based on the Jas-
trow wave function cannot be so accurate, because they
do not include the energy denominators in their formula-
tions from the beginning. In fact, quantities like the total
energy in which all the electrons participate may be cal-
culated rather well even by such theories, but quasi-
particle properties near the Fermi surface will not be
evaluated properly by them. The same criticism might
also be applied to the Monte Carlo methods, because
they can treat only finite-number systems in which the
spectrum of the energy eigenvalues is discrete. On the
other hand, our method as well as the perturbation-
theoretic approach can study the correlation effect in the
continuous spectrum of excited states. In particular, our
method will provide well-balanced values for both the ex-
change and the correlation effects with their full com-
plexities from the weak- to at least the medium-coupling
regions.

An apparent disadvantage of our method to the
perturbation-theoretic approach is that we cannot take
an accurate account of low-lying collective modes, be-
cause such collective modes can be included either by an
explicit sum of some particular terms up to infinite order
or by the use of the frequency- as well as momentum-
dependent effective potential. At present, we have not
succeeded in either way. An example is given in the com-
panion paper' in which we show that we cannot repro-
duce the contribution from the spin waves very accurate-
ly in the strong-coupling region, though we succeeded in
obtaining the correct behavior qualitatively. We need to
improve on our method in this direction.

Another direction to develop our method can be found
by the comparison of (6.10) with (5.5). As we have men-

tioned, the expansion parameter is PV/2 for (6.10) at

high temperatures, while for (5.5), it is PV which is worse.
Thus (6.10) gives a better result than (5.5) when we com-

pare the calculations up to second order in V. The reason
why the factor 2 appears in the foriner case is that in (3.2)
we have divided the interval (0,/3) into 2. If we divide the
interval into M instead of 2, we may expand with the ex-

pansion parameter PV/M. A systematic increase of M
will give progressively better results. Nevertheless, (5.5)
also seems to be very important and may provide a very
good starting point to include some particular terms up
to an infinite order for the description of collective
modes.



42 EFFECTIVE-POTENTIAL EXPANSION. . . . I. 3249

with

f'(t)=—ln(e e' ) .

By taking the derivative with respect to s, we obtain

(A2)

APPENDIX B: EXPRESSION FOR %'„

With the definitions of (4.3) and (4.4), we readily obtain
the expression for +o as

(A3)

We also take the derivative with respect to t and define
the function as

(A4}

q( [ad(X)]=(P[e' ( ']=
—ad(X)

1 —e

The expansion form

(Po[ad(X)]=1+—,'ad(X)+ g Kz [ad(X)] ~

p=1

(B1)

(B2)

By taking the difference between the derivative of (A3)
with respect to t and that of (A4) with respect to s, we ob-
tain

is useful in the actual calculation, where Ez is the
coefficient of the 2pth-order term in the series

~h = df —d(f')h .
Bs dt

(A5)
X oo

=1+—,'x+ g E2 x ~ .
1 —e 2p

p=l
(B3)

With the initial condition f(0, t ) =0, this equation is
solved iteratively to give

Introducing

with

Y=h (1,t ) =4[—ad( f')]
dt

(A6) e ad(X)e t ad( Y)
7

we can derive the expression for (ll, [ad(X);ad( Y)] as

(B4)

oa n —1

@(~)= g nl

Therefore we have

e —1
(A7)

1
4) [ad(X);ad( Y)]=—lnA (t) 1+

dt A(t) 1—f=O

[ ad( f )]
—( Y (1([cad(r)]y

dt

in which (1( is defined in (4.3).
Now we show

(A8) = —ln A (0) A '(0)
A(0) —1 A(0) —1

ad( f') ad(X) t ad( Y) (A9)

+—1 A(t)dt, () A(0) —1
(B5)

For the purpose, we note the following identities valid for
any operators Vand W:

With the use of (4.1), the term (d!dt)in'(t)~ 0(is calcu-

lated as

(A10) d—lnA (t)~, „=)po[ad(ad(X))]ad( Y)

and =ad( (Pc[ad(X ) ]Y), (B6)

e e e =exp[e' 'W] . (A 1 1) where the second equality can be derived through
Jacobi's identity for any operator W:

With the use of (A10), (Al 1), and the definition for I in
(A2), we have

exp[e' ' 'W]=e "e e

=exexp[e'' ' 'W]e

[ad(X), ad( Y) ]W =ad( [X,Y])W .

Then we can rewrite (B5) as

4) [ad{X);ad( Y)]= —Co[ad(X)]ad( Y)
ad(X)

(B7)

=exp[cad(x)et ad(f') W] {A12)
+ad(%0[ad(X)] Y) —ad(X )

1 —e

Since (A12) holds for any W, (A9) should be valid. By
substituting (A9) into (A8) and integrating both sides of
(A8) with the initial condition f'(0) =X, we obtain (4.1).

We can perform a similar calculation for %„and the re-
sult is



3250 YASUTAMI TAKADA AND TAKAFUMI KITA 42

%„[ad(X);ad( Y), , ad( Y)]= ad(%„,[ad(X);ad( Y), , ad( Y)]Y)—ad(X)
1 —e

e ad(X)
ad('Pk, [ad(X);ad( Y), , ad( Y)]Y) . (B9)

Here g is defined by

„[ad(Y)]
e

—ad(x)

and the last summation is taken under the condition
I

m=n —k, m &1.
j=1

APPENDIX C: USEFUL IDENTITIES FOR %'„

(B10)

(Bl 1)

—(p/2)(HO —pR+ v j & p/2 — x z=e T,exp — dr V r =—e e
0

(Cl)

where X are Z are, respectively, defined in (3.5) and (7.7).
By taking the logarithm of (Cl) and applying the Baker-
Campbell-Hausdorff formula (4.1), we obtain the identity

p ~ 4„[ad(X);ad(Z), ,ad(Z)]——V= g Z (C2)
n=0 (n+ 1)!

By the same method as is known well in the usual
perturbation-theoretic approach, ' we can prove

Expanding Z in the power of V and comparing terms or-
der by order in (C2), we have a series of identities:

p/2 ~ p0'o[ad(X)] —f dr V(r) = ——V,
0 2

Cp[Ed(X)] T f dT jjdT2V(T~)V(Wp) f

'"GATV—

(t)
0

+4, ad(X);ad —f dr V(r) —f dr V(r) =0,
0 0

and so on. Note that these identities can also be proven directly by the integral of ~ with the use of the relation

V( & )
—

&
—

( 2r/P)ad( x ) V

(C3)

(C4)

(C5)
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