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Self-avoiding Levy walk: A model for very stiff polymers
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We propose a nou-Markovian extension of the Levy walk model of Shlesinger et al. [Sta-
tistical Physics, edited by H. E. Stanley (North-Holland, Amsterdam, 1986), p. 212], termed
self-avoiding Levy walk, to study a polymer configuration having a broad persistence length
distribution. We use the Flory-type argument in a manner analogous to the self-avoiding walk

and the self-avoiding Levy flight schemes to include the excluded-volume effect and find that
the Flory exponent vz varies continuously from the flexible limit [vz = 3/(d+ 2)] to the stiff
limit (vs = 1), when the spatial dimension d and the Levy index p are varied. We also discuss
the fractal dimensions and the morphology of Levy walks in comparison with the Levy Bights.

Various random-walk models have been studied to de-
scribe equilibrium polymer configurations (for a review
see de Gennesi) as well as nonequilibrium growth and
transport phenomena. In dealing with the former it
is necessary to include the excluded-volume effect, which
renders the problem non-Markovian. In such cases, the
Flory argument~ has often served as a good approxima-
tion to obtain t;he exponent v defined by

R~ ~N',

where R~ is the characteristic size of a polymer with N
monomers.

In this paper, we propose a model of a long-range self-
avoiding walk and apply a Flory approach. Consider
polymer configurations whose segment-size distribution
in the absence of the excluded-volume effect would be of
Levy type5

P(l) - l ' (2)

where p ) 0 is called the Levy index and l is the segment
size or the persistence length [proportional to the average
number of consecutive trans steps in the language of the
persistent random walks (PRW)].s

A relevant nonexcluded-volume walk model named
the (random) Levy walk (RLW) has been proposed by
Shlesinger, Iklafter, and West to study certain trans-
port phenomena in the framework of the continuous-
time random walk (CTRW). In the Levy walk model,
the walker starting at the origin makes l correlated steps,
with each step size being fixed, in a straight line in a
time proportional to l and then makes the next step in a
randomly chosen direction without waiting, where / has
the Levy distribution, Eq. (2). This can be expressed
by 0'(t, l), the probability density (in both the time and
space variables) to make a transition of displacement / in
time t, as

where p(l) is proportional to l ("+» for arbitrary dimen-
sionality d and l =

iL~, so that the angular integration of
p(L) reduces to Eq. (2). $(t~l) = b(t —l) is the conditional
probability distribution to make the transition in time t
given a displacement of l. This particular choice of the
coupled memory kernelro $(t~l) ensures the mean-square
displacement to be finite for finite time. Moreover, since
t is directly proportional to jt, t can be considered as the
number of individual steps in a segment in the Levy walk
model.

Thus their results for the mean-square displacement
([Ru(t)]2) as a function of time in the Levy walk s can
be viewed as that of the number of monomers (Ro N"')
in the polymer case in the nonexcluded-volume limit:

'N, 0&@&1, (l)=oo
Nf' i' ll', 1 & p & 2, (l) & oo, (l') = oo~o- &

(N ln N) l, ts = 2, (l ) log divergent
N l p)2, (l)&oo

(4)

where (l)((l~)) is the mean (square) persistence length.
Note that for 0 & p, ( 1, the exponent v takes on its
absolute maximum value, namely 1, and one may con-
sider this case as the stig regime. It should also be
noted that these results manifestly differ from those of
the Levy fiighti i4 for which (It.')il —

¹

" with
z ~ 0, 0 ( p ( 2, and N, being the number of seg-
ments. In fact, the statistics of the Levy walk is that of
the I evy flight as a function of the contour length of the
Levy trajectory.

We now turn on the excluded-volume effect so that the
walk becomes the self-avoiding Levy walk (SALW), where
the random walker cannot revisit the previously visited
sites. The Flory free energy can be written as the sum
of an interaction-energy term and an elastic (entropic)
term:

~(t I) = @(tll)p(l), + = &lit+ Fei.
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The identification of each term for the SALW is made
in analogy to the case of self-avoiding walk4 (SAW) and
self-avoiding Levy flights (SALF). If the persistence
length (I) is finite, then we let

III.RW

(&/(I) )'~
(6)

IV.SAW

where 0 oc (I) a" is the generalized Odijk excluded
volume~s with a being the excluded volume range (or
the monomer diameter). Hereafter, however, we assume
isotropic monomers with diameter equal to length, and
thus drop all reference to the unit of length. We restrict
our discussion to the cases where p ) 1 and d & 2 because
otherwise either the persistence length diverges or the
form of 0 is not suitable. An exception occurs at d = 1

where v = 1 trivially. We also take the elastic free energy
0

0

&Rpd

where the nonexcluded-volume end-to-end distance Rp is

given by Eq. (4) and o is some positive number whose
values are to be discussed later.

Minimizing I" with respect to R gives the Flory expo-
nent vF as

FIG. 1. Four distinct regimes of Levy walk with the self-
avoiding constraint according to the Flory argument. I, ran-
dom Levy walk (RLW); II, self-avoiding Levy walk (SALW)
for which d, = 4/(3 —p); III, random walk (RW); IV, self-
avoiding walk (SAW). The dashed line indicates the stiff
regime 0 ( p & 1 where u = 1.

RF N"",

(8)

N
z+ —— „»1, N/z+ » 1,Rd

VF=4

1, 0(Ij, (1
2+ o(3 —p)/2 4

) Gc )d+ 0 3 —p
3

d, =4, p&2.d+ 2

1& p(2

(9)

Note that in the stiA' regime 0 g p & 1, vF —— vp

= 1 because v cannot exceed unity in any case, and the
normal SAW result is recovered for p, & 2. Note also
that the d, is independent of o due to the choice of Flory
free energies as Eqs. (6) and (7). Therefore we expect
that there exist four distinct regimes for SALW in (d, p)
parameter space as shown in Fig. 1.

Despite the inherent approximate nature of the Flory
argument, we can check the consistency of the above ex-
pressions using the same criteria as in Ref. 20. Requiring
that the first term in the expansion of I";„t in terms of
the segment concentration and the ratio of any term to
its next-higher-order term be much greater than unity,
that is,

2+ ovp
vF ) d( dc)d+ 0'

where vp is the non-excluded-volume exponent [Eq. (4)],
and d, = 2/vp at and above which vF ——vp. It can easily
be shown that vF thus obtained is always greater than
vp and less than unity for any finite value of o. in relevant
dimensions. Thus we have for SALW, for d & 2,

we obtain the condition

1
& d & 4/(3 —p).

vp + I/O'

Since the lower limit of this conditon is always less than
2 [see Eq. (4)] but recalling that we must restrict our
approach t;o d & 2 in addition, the final condition is 2
& d & 4/(3 —p), which conforms to our result in Eq. (9).

It still remains to determine the cr in Eq. (9). Without
any explicit form of the entropy of the Levy walk known,
but having in mind the unique characteristic of the Levy
walk that its individual step size is fixed but its moments
of segment size diverge, we first propose two possible val-
ues of tT in analogy to SAW (Ref. 4) and SALF (Refs.
14, 15, and 18) for 1 & p & 2, namely, a = 2 and p.
Thus one obtains, for 1 & p ( 2,

d+ 2

if o = 2 is chosen, or

(I + S )(4 —
S )

2(d+ p)

if o = p is chosen. It should be noted that both choices of
cr ensure the continuity of VF at the boundaries p = 1, 2
in Eq. (9). Even if these expressions looks quite different
in their form, their numerical values are very close to
each other: the maximum difference is about 0.018 at
p = 2(v 3 —1) and d = 2.

On the other hand, Bouchaud and Daoud used a dif-
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ferent value of 0. for the node-avoiding Levy flight due
to de Gennes's analysis of a stretched flight in terms
of Pincus blobs, r namely cr = 1/(1 —uo), which in turn,
when applied to the case of SALW [o = 2/(p —1)], sug-

gests yet another estimation of the Flory exponent for
1(p(2,

(3) + ~
d(p —1) + 2

(14)

This particular choice of cr automatically ensures a cor-
rect value of v~ at d = 1 and makes the lower limit of
condition (11)unity independent of uo. The continuity of
v~ at p, = 1, 2 is again secured by vF . Figure 2 provides
a brief comparison of these suggested Flory exponents
together with vo at d = 2, 3.

Finally, we would like to discuss the fractal dimension

d/ = 1/v of the Levy walks in contrast to that of the Levy
flights. The introduction of self-avoidance lowers the
fractal dimensions in both cases for d ( d, and both be-
come SAW for p & 2, d & 4. It is interesting that the
morphology of turning points of the SALW is exactly the
same as the path-avoiding Levy flight (PALF). ts The dif-

ference comes only from the way in which the intermedi-
ate points in the segments are weighted: the segments of
SALW can be viewed as a rigid rod with a uniform mass
density, but those of PALF as an unpenetrable massless
rod with a unit mass attached at the end of each segment.

Yet this simple difference leads to dramatically differ-
ent behaviors especially for 0 & p, & 1, where df SALQf
= 1 independent of p but dj p~gF, though not known
for arbitrary d and p, is expected to behave as the ran-
dom Levy flight for small p (d/pALp = p exactly for
d = 1, 0 ( p & 1).ts zz This seems to suggest that the
statistics of a. polymer modeled by the SALW in the stiff
regime is essentially characterized by the longest single
segment in the whole polymer.

This point is more effectively illustrated if we particu-
larly look at the discretized version of the random Levy
distribution'

a —1 ) Aaa", a, b&l,
n=O

which can be easily shown to be equivalent to Eq. (2) with

p = lna/In b when averaged into continuum as I -+ oo.
Apart from the self-avoidance, Eq. (15) indicates that the
appearance of segment size I is more likely than that of
size lb by a factor of a for any l = 1, b, b~, . . . .

Let 1m~ = b be the largest segment just generated,
then the total contour length (or the number of steps in

the Levy walk) is, on the average,

bM + bM-la + bM-2a2 + + aM

For large N and a/b & 1 (p & 1),

max

1 —a/b

which implies that the largest segment in a RUV takes
a finite fraction of the contour length of the whole walk.
Since even when the excluded-volume effect is included,
vy ——1 is unchanged from vo ——1, this discussion is
consistent with the behavior of the SALW in the stiff
regime. On the other hand, for large N and a/b & 1

(p & 1), we have

aM
Pf ~

1 —b a
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FIG. 2. The comparison of the Flory exponents obtained from various forms of the elastic-energy term suggested. The
lowest solid line represents the random Levy walk (RLW) exponent [see Eq. (4)] and the three upper lines the suggested Flory

exponents (SALW): solid line for uv = (5 —y) j(d + 2), dotted line for uv ——(1 —p)(4 —p)/2(d + p), and dashed line for

vv ——(1+p)/[d(p —1) + 2]. Note that all three Flory exponents continuously vary from v = 1 to vsAw = 3j(d + 2) over the(3)

region 1 & p. & 2.
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which implies

N L" „
Although vF is greater than vo for this region of p, it is

still expected that even in the excluded-volume case the

largest segment would not dominate the behavior of the
whole polymer.
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