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Singular continuous quasienergy spectrum in the kicked rotator with separable perturbation:
Possibility of the onset of quantum chaos
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We prove that the quasienergy spectrum of the kicked quantum rotator model with separable po-
tential that has been recently introduced by Combescure [J. Stat. Phys. 59, 679 (1990)] is singularly
continuous under certain conditions. The time evolution of this system is numerically investigated
in detail.

I. INTRODUCTION

Recently a great deal of work has been devoted to
time-dependent quantum systems beyond the usual per-
turbation theory. ' The motivation of these papers was to
investigate to what extent chaotic behavior displayed by
the classical time-dependent systems is present in their
quantum counterparts. Along this line of research the
numerically, most thoroughly, investigated model is the
so-called kicked quantum rotor that corresponds to the
classical map of Chirikov and Taylor. The result ob-
tained for it was, however, disappointing: It appeared
that for small coupling constants (which by the way, were
large enough for the classical system that was completely
chaotic) this system displays recurrent behavior associat-
ed with the pure pointness of its quasienergy spectrum.
The nonrecurrent pattern appeared only if the driving
pulses were rationally connected with the internal fre-
quency of the free rotor. These "quantum resonances"
that are connected with the absolutely continuous part of
the quasienergy spectrum represent, however, completely
different behavior than the expected chaotic one. They
sim. ply describe the resonant energy accumulation inside
the system. The chaotic behavior (if any) is expected to
take place for nonresonant frequencies only.

These desultory numerical results (known also as the
quantum suppression of chaos) obtained a clear heuristic
explanation in the work of the Fishman, Grempel, and
Prange, who showed that there is a close connection be-
tween the behavior of the quantum rotor and the Ander-
son localization in disordered solids. Using this connec-
tion it can be easily shown that the recurrent and reso-
nance patterns in the quantum rotor correspond to local-
ized and extended states in the Anderson model, respec-
tively. Concerning the chaotic behavior of the rotor, it is
expected that it must be connected with the singular con-
tinuous component of the Floquet operator and hence with
the appearance of exotic states in the corresponding An-
derson model. The singular continuous spectrum is,
however, a subject that is mathematically very subtle.
Trying to prove its existence for the quantum rotor one' s
success is contingent upon the possibility of the
Fishman-Grempel-Prange model. The point is that the
similarity between the quantum rotor and the Anderson

model (no matter how illustrative it may be) does not en-
dure a rigorous mathematical analysis and cannot be used
if such fragile objects like singular continuous spectrum
are concerned.

On the other hand, there are two arguments that make
the search for the singular continuous states in the quan-
tum rotor quite optimistic. The first is an abstract
mathematical result obtained by Casati and Guarneri,
which showed that for a "generic" potential there is some
continuous spectrum 1eft even in the nonresonant case.
They were, however, not able to prove that this spectrum
is in fact singular continuous, although they conjectured
that it is. The biggest disadvantage of their result is,
however, that it holds only for a generic potential and
one is in fact not able to check whether a given potential
belongs to this generic class.

The second argument for the benefit of the singular
continuous states comes from the numerical results. ' It
has been shown that the recurrent nonresonance patterns
that take place for small couplings are replaced by a non-
recurrent behavior as soon as the coupling becomes
strong. These results have been interpreted by some au-
thors as a manifestation of the singular continuous spec-
tral component of the Floquet operator. ' The argu-
ments are, however, not completely convincing. First of
all, it is not quite clear that the behavior is nonrecurrent.
It is possible that we have a recurrent pattern with a very
long period and hence with localized states. The comput-
er results do not offer the possibility of distinguishing
which spectral type is in fact present. The second
difficulty is connected with the fact that it is not clear
how the singular continuous states would manifest them-
selves in the course of the computer simulation. In the
ideal case one expects, of course, a nonrecurrent pattern.
But the real result represents an interplay between the
presence of exotic states on the one side and the unavoid-
able computer errors on the second side. Now taking
into account the extreme complexity of the singularly
continuous eigenfunctions (note that this spectrum lives
on something like a Cantor set ), it is possible that the
numerical errors win after few iterations and that the ex-
pected nonrecurrent pattern will be replaced by an oscil-
latory one.

In this situation it appears to be of interest to investi-
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II. MATHEMATICAL PRELIMINARIES

Before proceeding further we remind the reader of the
basic mathematical results concerning the instability of a
time-dependent quantum system. Let H(t) denote a
time-dependent quantum Hamiltonian defined on a Hil-
bert space %. We will suppose that H (t } has the form

H(t)=HO+ V(t), (2.1)

with Ho being a self-adjoint operator, bounded from
below, with a discrete spectrum. The potential V(t) is as-
sumed to be time periodic

V(t)=V(t+T), T &0, t ER, (2.2)

and such that the resulting Hamiltonian H(t) is reason-
ably defined. The dynamics of the corresponding quan-
tum system is described by an evolution operator U(t},
which solves the time-dependent Schrodinger equation

i d, U(t) =H(t) U(t),

U(0)=1 .
(2.3)

To investigate the stability or instability of the system, it
is sufficient to investigate the stroboscopic picture of the
time evolution at time t, , which is equal to the integer
multiple of the period T

gate a more simple model in which the mathematical as
well as the numerical analysis go hand in hand up to the
end. Our aim here is to demonstrate how one can "see"
the presence of the singular continuous states in a stan-
dard numerical simulation of the time evolution of the
system. For this purpose we chose a simplification of the
quantum rotor model introduced recently by Combes-
cure. In this model the local potential of the standard ro-
tor is replaced with a separable potential of rank 1. The
advantage of this procedure is that the spectral properties
of the corresponding Floquet operator can be thoroughly
analyzed and in particular, the presence of the singularly
continuous component can be rigorously proven. We de-
scribe the corresponding results in Sec. II. Section III
contains numerical results. We conclude the Introduc-
tion by quoting from a paper by Casati et al.
"Mathematical rigor (in quantum chaos) though desir-
able, is a rare occurrence: only few are the landmarks in
this terra incognita. "

p„(v)=P„(v)~', (2.7)

with I', being the probability amplitude

( )=( IU'I (2.8}

Decomposing the Floquet operator U into its eigenvec-
tors

Uco&=e' ~co&, (2.9)

we get

p„(v)=ge" (n ~co)(co~m & . (2.10)

P„(v)=f e""'dp„(co)=f e'"'f„(co)dco, (2.11)

with f„(co)F I'(0, m2. ). (The spectral measure dp,
„

is
continuous with respect to the Lebesgue measure. ) Using
now the Lebesgue lemma' we find

Hence the transition n ~m is possible only if at least one
quasienergy state ~co) connects these two states, i.e., if
( n co) ( co~ m )%0 for at least one co. Now the importance
of the spectral nature of U becomes apparent: If the
spectrum of U is pure point (PP), all the quasienergy
states ~co) are localized. Consequently, they can connect
only a few states of the original Hamiltonian Ho and a
strong recurrence is expected (this is the essence of the
well-known theorem of Hogg and Hubermann ). In the
case of continuous spectrum of U, the quasienergy states
~co) are not normalizable. They must therefore connect
an infinite number of the original states ~n ) leading in
such a way to nonrecurrent (unstable) evolution. Sum-
marizing this heuristic argument, we can say that the
pure pointness of the Floquet operator means stability,
while the occurrence of the continuous spectrum implies
instability of the system. Therefore the only promising
systems (from the points of view of the quantum chaos)
are those with a continuous quasienergy spectrum. We
will discuss these in more detail. Let us note that in clas-
sical systems the appearance of the continuous spectrum
is a guarantee of mixing.

From the abstract point of view we can divide the con-
tinuous spectrum into two parts: the absolutely continu-
ous (AC) and the singularly continuous (SC). Let us as-
sume that the spectrum of U is purely AC. We get then
for the probability amplitude

t =vT . (2.4)
lim P„(v)=0 (2.12)

This "stroboscopic" evolution is governed by the one-
cycle Floquet operator U

U = U(T),

g(vT) = U"g(0) .

(2.5)

(2.6)

[f(0) and g(vT) denote the wave function at times 0 and
vT, respectively, v=1, 2, . . .].'

The spectral nature of U is of central importance for
the time evolution of the system. In order to illustrate
this statement, let us compute the probability p„(v)to
excite the nth state of Ho after v cycles to the mth state,

for all n, m. Consequently, the probability of finding the
system after v oscillations at a state m tends to zero as
v~~. In other words, this means that the system is
continuously accelerated and excites to higher and higher
states. The mean energy is supposed to grow very quick-
ly with time. This type of behavior is usually associated
with some kind of resonance phenomena. For example,
for the kicked quantum rotator with resonance frequen-

cy, the energy growth is quadratic in time.
In the singularly continuous case the probability

p„(v)decreases very slowly toward zero as v~ ao. We
find, in this case,
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P„(v)=J e' 'dp„(to), (2.13)

with a measure dp„being singular with respect to the
Lebesgue measure. This implies that (see the RAGE
theorem")

M
lim g p„(v)=~,

M-~ 0
n™

together with

(2.14)

M
lim g p„(v)=0.

M On™ (2.15)

H(t)=H, +5(t)P, (2.16)

The system now spends an infinite amount of time in the
"lower" states and the "return probability" (2.14)
diverges. On the average, however, the system escapes
any fixed state which leads to a vanishing Cesaro mean
(2.15). The evolution along the states ~n ) is now "re-
currently pulsing" with larger and larger "amplitude. "
The energy growth is slow and mimics the diffusive ac-
celeration known from classical chaotic systems. This
type of quasienergy spectrum is assumed to be responsi-
ble for the "true" quantum chaotic evolution.

Let us now return to the model. It is described by a
time-dependent Hamiltonian

Theorem 1 (Combescure).
(i) Suppose that fEL (0, 2m. ) AL. Then the operator

U has pure point spectrum for almost every T.
(ii) If fEL (0,2') but fEL, then (a) the spectrum of

U is pure point if T/~ is a rational number and (b) the
spectrum of U is purely continuous if T/m is a Diophan-
tine number (i.e. , an irrational number that is poorly ap-
proximated by rational numbers).

Combescure based the proof of this theorem on her gen-
eralization of the results of Simon and Wolff that concern
the stability of the dense pure-point spectra of self-adjoint
operators under rank-1 perturbations. ' Part (i) of the
theorem holds for all T which are rational multiples of m.

and for almost every T which is an irrational multiple of
m (see Ref. 8 for more details).

For our purposes we need to investigate the continuous
spectrum in more details and prove that it is in fact pure-
ly singularly continuous.

Theorem 2. Assume that the conditions of part (ii} of
Theorem 1 are fulfilled with T/m. being a Diophantine
number. Then the spectrum of U is purely singularly
continuous.

Proof. We know from the Theorem 1 that the spec-
trum of U is continuous. It is therefore sufficient to
prove that its absolutely continuous part is empty. For
this reason we use the fact that P is a rank-1 operator,
which enables us to express exp( iPT) as—

1 80 = ——
2 86

(2.17)

where 80 is any self-adjoint operator with a pure-point
spectrum. A particular case is the kinetic-energy opera-
tor of the free rotor

exp( iPT) = 1+— , [exp( —i
~~f~~'T) —1]P .

1

If ll'
Inserting this formula into (2.21) we get

U = Uo+R,

(2.22)

(2.23}

defined on Hilbert space

&=L (0,2n. ), (2. 18)

P=~f )(f~, fC&
and h(t) is a periodic sequence of kicks

(2.19)

b, (t)= g 6(t vT) . —
vFZ

(2.20)

In this case the Floquet operator is given by a quantum
map

with periodic boundary conditions. P denotes a separable
potentia1 of rank 1

where Uo is the free evolution operator

(2.24)Uo =exp( i HOT), —
and R is an operator of rank 1. We use now the scatter-
ing theory. Let us assume that the spectrum of U is abso-
lutely continuous. In this case the wave operators

fL+=s lim U Uo
'

v~+ 00
(2.25)

exist (because of the rank-1 perturbation R, see, for in-
stance, Refs. 13 and 14 for the proof), and hence the ab-
solutely continuous spectrum of Uo contains the abso-
lutely continuous spectrum of U

a Ac( U}+a Ac( U0 } (2.26)
0 —iPT (2.21}

with

the spectral properties of which can be simply analyzed.
Notation. In what follows we will use the following no-

tation. We will say that fEL (0,2m) belongs to L if it
has summable Fourier coefficients, i.e., if

f (x)=g a„e'" III. NUMERICAL INVESTIGATIONS

Here we use a simple representation of the state
~f ) in

terms of the unperturbed basis
~
n ) of Ho

~f)= g a„~n&, (3.1)

On the other hand, we know that o&c(UO}=E (the
operator Uo can be trivially diagonalized) and therefore
o ~c( U) =8.

Let us now proceed to numerical simulations in order
to illustrate the above theorems.
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with

and

n= —N

N

n= —N

a„=ln
Studying the sums

(3.2)

(3.3)

(3.4)

spectrum can be seen also in the numerical results, calcu-
lated from (3.11). From Eq. (2.13) one has to state that
the autocorrelation is the Fourier transformation of a
singular continuous measure. However, due to the very
weak time decrease (2.14)—(2.15), the detailed time be-
havior of the autocorrelation function is rather
unpredictable.

Before proceeding to the numerical results let us say
few words about the time evolution of the mean energy.
For the rank 1 perturbation is the excitation of basis
states given after the first kick by

lijl(t)&= y c„(t)ln& .
n= —N

(3.5)

The unknown coefficients are governed by a recursion
formula based on the quantum map (2.21}

U =e ' [1+(e ' —l )P/S&] (3.6)

one can easily see that in the limit of an infinite number
of basis states (X~~ ), the state f belongs to I. (0, 2~)
for y )0.5. For 0.5 (y (1.0 the sum S2 goes in the con-
sidered limit to infinity. Hence

l f & tends to a vector
which does not belong to L and one should expect the
singularly continuous spectrum to start to manifest itself
in the time evolution of the system. Due to Theorem 1,
we will denote the cases with y & 1.0 and 0.5 (y (1.0 as
the cases (i) and (ii), respectively.

The solution for the Schrodinger equation for the con-
sidered model can be found by expanding the wave func-
tion in the unperturbed basis

c„(1)—= Aa„ao, n %0, (3.12)

& Z & =gn'/2lc„ I' (3.13)

is after the first kick proportional to g„lnl
" ~', which

means that the energy diverges for y (1.5 with the num-
ber of basis states tending to infinity. However, one need
not be concerned about the type of divergence. The point
is that we are not measuring the observable Ho. Roughly
speaking, in a real experiment the measurement is associ-
ated with an observable that is different from the opera-
tor Ho. We measure, in fact, the energy from some
chosen interval, which depends on the apparatus used in
the experiment. The measured energy is therefore given

and is therefore essentially determined by the distribution
of the state f over the basis. From here we have to state
a quite uncommon property of the model. The averaged
energy

according to

—iE Tc„(v+1)=e " c„(v}+Aa„g a c (v)
m= —N

with the eigenvalues of the free rotor

(3.7)

«&=&qlEIq&,

with the observable E given by
tl ~

F. = g "
ln &&nl,

n =n
1

(3.14)

(3.15)

and

E„=n/2

—iTS)3 =(e ' —1)/S, .

(3.g)

(3.9)

A(t) = lim 1 & g(s) U(t +s,o)lg(0) &ds
T~co 2T 7

(3.10)

can be easily expressed with the help of expression (2.7)
as A(t) =(po 0)' with

p„(v)= l &olU lo& l'. (3.11)

It can be expected from Eqs. (2.11)—(2.15) that the
different qualitative nature of the PP or SC quasienergy

Here c(v) denotes the coefficients just before the vth
kick. Now the quantum mapping (3.7) can be iterated
numerically for any given initial condition c(0). In the
current investigations we initially localized the particle in
the center of the unperturbed basis, i.e. , co(0)=1 and
c„(0)=0for all other n

The time autocorrelation function A(t) (Ref. 1)

and with n& and n2 dependent on the energy interval,
which has to be measured (see, for instance, Ref. 15). In
this sense one need not be anxious about the infinite ma-
trix elements of Ho which appear for N ~ ~.

In order to see some nonrecurrent behavior in the nu-
merical calculations one is forced to choose a large num-
ber N. This number must be large enough in order to
avoid a domination of the rescattered flux which comes
from the reflection on the borders in the basis at +N.
One expects, however, that for rational ratios T/~ the
wave function will be localized (the spectrum is pure
point) and hence rather independent on the size of N

In accordance with the standard investigations of the
kicked rotator (see, for example, Ref. 9), the crucial pa-
rameter for the dynamics has been chosen as

x =T/4~ . (3.16)

For y ) 1 this parameter should not play any role for the
qualitative features of the numerical solutions because ac-
cording to case (i) of the theorem the spectrum is always
pure point. But for 0.5&y &1 one expects localization
phenomena for rational values of x and delocalization for
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irrational (Diophantine) values. In the practical calcula-
tions the parameter x has been in the irrational case
chosen as the golden mean x =(&5—1)/2=0. 618.. . .
The example of a rational x has been realized by x =

—,', ,
which is close to the golden mean.

The Schrodinger equation has been solved up to 500
kicks with a total number of basis states up to
2%+ 1=5001. The calculations have been performed at
IBM-AT compatible personal computers (CPU
80286/386) in Joint Institute for Nuclear Research, Dub-
na and at the computer facilities of Gesellschaft fiir
Schwerionenforschung Darmstadt, Darmstadt within an
accuracy of 16 valid digits. This guarantees a conserva-
tion of the norm after the maximum kick number within
an uncertainty of 10 ' . As an additional check we con-
sidered the time reverse after a short time, using the
operator U ', and found the same degree of accuracy. It
is worth noting at this point that the easy time reversibili-

ty of the system is present in the rational as well as in the
irrational case, and persist even for large times. This is in
sharp contrast with the classical chaotic systems where
the time reversibility is lost after a rather short time due
to the exponentially decreasing autocorrelation function
(see, for instance, Ref. 16). In the quantum case, howev-
er, the autocorrelation function is recurrent (for x ration-
al) or extremely slowly decreasing (for x irrational),
which means an easy time reversibility even after long-
time evolution. ' (See Fig. 5.)

In Fig. 1 the averaged energy ( E ) for case (ii)
(y=0. 7) has been drawn versus the kick number for
x =0.6 (dashed curve) and x =0.618. . . (solid curve). In
excellent agreement with the theorems from Sec. II one
can establish the qualitative difference: for rational x
quantum interference ensures a periodic behavior of the
averaged energy, not exceeding an upper limit, but for

the irrational case the energy grows nonrecurrently in the
considered time interval. The increase in energy is not
monotonic. One can observe plateaulike structures,
which have been discussed also for the usually perturbed
rotator with strong coupling. ' The plateaus are con-
nected with the "pulsing" spreading of the initial state
during the evolution. From the global point of view one
can see a more or less linear increase which is a direct
manifestation of the "energy diffusion" due to the
"random-walk-like" spreading of the wave function,
which is typical for the singularly continuous case (see,
for instance, Ref. 17).

In Fig. 2, we present the results for y=3.0 [case (i)].
The averaged energy is a periodic function of time for
both values of x as a consequence of the pure pointness of
the quasienergy spectrum. Considering the comparative-
ly small magnitude of the energies, one can state a strong
localization of the quasienergy functions.

In Fig. 3 the magnitudes of the expansion coefficients

L
c

L
of the wave function are shown for y =0.7 and x

equal to the golden mean. The diagrams shows the
coefficients for sequence of time (the kick number is indi-
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FIG. 1. Averaged energy of the kicked rotator vs kick num-
ber for case (ii) of Theorem 1 (y =0.7). Solid curve is for an ir-
rational frequency ratio (x is the golden mean) with a singular
continuous quasienergy spectrum; dashed line is for a rational x
value close to the golden mean (x =0.6) with a pure-point
quasienergy spectrum. The rotator basis covers 5001 states
(N =2500).

FIG. 2. Same as in Fig. 1 but for case (i) of Theorem 1

{y=3.0) with a pure-point quasienergy spectrum independent
of the frequency ratio x. The irrational (rational) cases are plot-
ted on the upper (lower) part.
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FIG. 3. Time evolution of the wave packet in the rotator basis for the case (ii) with x equal to the golden mean (solid curve of Fig.
1). The growing kick number is indicated inside the figure. Please note that the scale of the diagrams changes with time and that
only a part of the basis states are incorporated.
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FIG. 4. Same as in Fig. 3 but for the rational case {x=0.6, dashed line of Fig. 1).
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cated inside the figures). Instead of a monotonic spread
of the wave function over the unperturbed states, one can
see a pulsing spread which is directly related to the ob-
served plateaulike structure of the averaged energy (Fig.
1). For comparison, we demonstrate in Fig. 4 the same
results for x =0.6. The observed localization is obvious-

ly a consequence of the pure-point quasienergy spectrum.
The analogous calculations for case (i) (not shown in the
figures) yield qualitatively the same results, but with even

stronger localization.
Figure 5 shows the autocorrelation function A(v) for

cases (ii) with y=0. 7. The slow and irregular decrease
that is characteristic for a singular continuous quasiener-

gy spectrum is demonstrated (x equal to the golden mean)
and compared with the strong recurrence which appears
for the pure-point case (x =0.6). Because of the delicate
mathematical nature of the autocorrelation function [see
Eqs. (2.13)—(2.15) and (3.11)], it is very difficult to com-
ment in detail on its calculated long-time behavior. Re-
gardless, one can see a series of "bumps" with decreasing

I
I I I

I

~

I
'

& I,)iII

height. The height of the bumps will finally decrease to
zero. This type of behavior should be expected from the
complementary results on the averaged energy and the
wave function. The return probability (2.14) and the cor-
responding Cesaro mean (2.15) are plotted on the Fig. 6.

IV. CONCLUDING REMARKS

We have demonstrated the occurrence of a singular
continuous spectrum of the Floquet operator for the
periodically kicked quantum rotor with a separable per-
turbation. In contrast to previous papers on a similar
subject, we were able to base our statements on rigorous
mathematical proofs. The exotic quasienergy eigenstates
accompanying the singular continuous spectrum have
been manifested in standard numerical calculations ap-
plying a special version of the separable interaction. For
T being an irrational multiple of rr (strictly speaking, a
Diophantine number), the numerical calculations exhibit
qualitatively all the expected features like the plateaulike
structures in the growing time-dependent mean energy of
the rotor, the nonrecurrent behavior of the wave func-
tion, and a decreasing —however, very weakly and
irregularly —autocorrelation function.
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FIG. 5. Autocorrelation function in dependence of the kick

number for case (ii) of Theorem 1. Lower part for the irrational
frequency ratio (x is the golden mean) with a singular continu-
ous quasienergy spectrum; upper part of the rational x value
close to the golden mean (x =0.6) with a pure-point quasiener-

gy spectrum. The other parameters are the same as in Fig. l.

FIG. 6. The "return probability" (2.14) is plotted on the
upper part of the figure and is compared with the Cesaro mean
(2.15) in its lower part. x is equal to the golden mean.
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