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A method is presented for studying hard-disk systems by Monte Carlo computer-simulation tech-
niques within the XpT ensemble. The method is based on the Voronoi tesselation, which is dynami-

cally maintained during the simulation. By an analysis of the Voronoi statistics, a quantity is

identified that is extremely sensitive to structural changes in the system. This quantity, which is de-

rived from the edge-length distribution function of the Voronoi polygons, displays a dramatic
change at the solid-liquid transition. This is found to be more useful for locating the transition than
either the defect density or the pressure-area isotherm.

I. INTRODUCTION

The two-dimensional hard-disk fluid has been a serni-
nal model in the development of the theories of liquids
and liquid structure. Since it is well established' that
this model undergoes an order-disorder transition, it can
be considered as a minimal nonlattice model exhibiting a
cooperative phenomenon. For convenience we refer to
this order-disorder transition as a solid-liquid transition.
Despite the simplicity of the hard-disk model, the statisti-
cal mechanics of the model has not as yet been solved ex-
actly, though a large number of numerical and approxi-
mate analytical calculations have been carried out.
Indeed, the Monte Carlo simulation technique was
pioneered within statistical mechanics by a calculation
of the equation of state of the two-dimensional hard-disk
model. The present status of theoretical knowledge
about the model does not appear to have been reviewed
recently (Ref. 5 contains a review of nonhard systems).
Since this knowledge is a prerequisite for the develop-
ment of the present paper, we first present a brief over-
view of the current status of theoretical work for two-
dimensional hard-core fluids.

The two-dimensional hard-disk fluid is one of the sim-
plest nonlattice systems to study by computer-simulation
techniques. Metropolis et al. first used the Monte Carlo
(MC) simulation technique to study a two-dimensional

system of 224 hard disks with periodic boundary condi-
tions. Their results were in agreement with free-volume
theory at high densities and with a four-term virial ex-
pansion at lower densities. Molecular-dynamics (MD)
methods were used by Alder and Wainwright' on a sys-
tem of 870 hard disks and by Hoover and Alder, on
smaller systems, to study the liquid-solid transition and
the e6'ect of system size. The isotherrns for the larger sys-
tems showed signs of a van der Waals —like loop at the
phase transition. A shift in transition pressure was attri-
buted to the communal entropy of the systems. Monte
Carlo simulation techniques in the isothermal-isobaric

(NpT) ensemble were developed by Wood ' and applied
initially to a system of 12 hard disks. Larger systems
gave results in agreement with those of molecular dynam-
ics' and constant-NVT Monte Carlo studies.

Analytical integral equation techniques (see, for exam-
ple, Ref. 8 for a review) are, so far, unable to describe the
liquid-solid transition. They can be used with success,
though, in the liquid and solid phases away from the
transition. Chae, Ree, and Ree applied several integral
equations to radial distribution functions obtained from
Monte Carlo simulations and concluded that a modified
Born-Green-Yvon equation yielded better results than
the Percus-Yevick equation used in conjunction with the
virial theorem. Comparable with the Percus- Yevick
equation was the scaled particle theory (SPT) equation of
Helfand, Frisch, and Lebowitz. Cotter and Stillinger'
extended the SPT equation to give better agreement at
higher densities. The expression they obtained though is
complicated and the integrals have to be solved numeri-
cally. Henderson" compared the expansion of the SPT
equation with the first six virial coefficients and modified
the SPT equation (SPTH) to give even closer agreement
with the virial expansion. He made a further
modification' and then compared this with MC data
from a small system of 32 particles as well as with some
of the simulation data of other workers. ' ' ' The MC
data were then used as a base for a perturbation theory of
the two-dimensional Lennard- Jones fluid. Andrews'
developed an analytic equation of state for the liquid
phase based on the first three virial coefficients. This
gave better agreement with molecular-dynamics data
than did the 7-series virial expansion, ' though it was not
as good as the SPT equation. However, a numerical solu-
tion based on the first four coefficients gave an improve-
ment over SPT. The method was also applied to the
hard-disk crystal phase with reasonable success, diA'ering
from molecular-dynamics results' by less than 10% right
up to 0.9 of the close-packed density, and to systems with
attractive wells and Lennard-Jones potentials. The main
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improvement by the work of Andrews is that the equa-
tions of state give a singularity at the correct close-
packed limit to the packing fraction
(go=@'/2&3-0. 9069). The SPT equations all give a

limiting packing fraction of unity. Kratky' improved
upon the sixth and seventh virial coefficients and estimat-
ed the subsequent three coefficients (Bs, 89, and 8,0), us-

ing extrapolation techniques applied to Fade approxi-
mants, an extension of Andrew's method based on five
virial coefficients, and a modified version of Henderson's
SPTH equation. More recently, Erpenbeck and Luban
have performed combined MC-MD simulations on hard-
disk systems in the Quid phase and found excellent agree-
ment with results obtained by applying a Levin approxi-
mant to the first six terms of the virial series.

Recent two-dimensional studies have also concentrated
on anisotropioc hard particles. These include simulations
of hard ellipse~ 2& discorectangles, needles, and
dumbbells. Theoretical equations of state have also
been developed in parallel with the simulation studies.
Several workers extended the SPT equation of state to
planar convex particles ' and dumbbells and the
Percus-Yevick equation has been solved numerically for
ellipses and dumbbells.

In this paper we present the results from constant NpT
Monte Carlo simulations of two-dimensional hard-disk
systems which use a new technique, based on the Voronoi
tesselation of the system, to keep track of nearest neigh-
bors. The computing time used is shown in Sec. II to be
proportional to the number of particles in the system,
even for small system sizes. Usual simulation methods,
which make use of lists of neighbors, can run in linear
time, if the lists are not updated too often, but for low
densities or small system sizes (N-100) the time is usu-
ally quadratic.

We will first describe the technique and then show how
an analysis of the Voronoi tesselation may be used to iso-
late the liquid-solid tranasition in single species hard-disk
systems. This analysis is based on the edge-length distri-
bution function of the Voronoi polygons. We find that a
particular decomposition of this distribution function
provides a strong signal of the liquid-solid transition
which is superior to the signal seen in the pressure-area
(p-A) isotherm or properties like the defect density.

II. SIMULATIONS

A. Constant XpT Monte Carlo simulations

The starting configurations for the simulations were
obtained using the method employed previously by
Fraser et al. ' which will be described in Sec. II 8 1.

Particle moves were performed using the standard
Metropolis procedure. A particle was first chosen at
random. A random displacement of the particle (5x, 5y )

was then considered where

5x =(2g, —1)5r,„,
5y =(2g —1)5r,„,

with random numbers g„and g, 0~ g, g ~ 1, and max-

imum displacement 5r,„. The value of 5r,„was adjust-
ed during the simulations so that an average of 50% of
the attempted moves was accepted. Its value was not,
however, allowed to exceed 0. 10. Moves which would
result in an overlap of the particles were rejected.

As part of the constant NpT simulations it is necessary
to uniformly scale the system. A random change in the
simulation box size 6L is considered where 5L is given by

5L =(2g —l)5L (2)

with random number g, 0 ~ g ~ 1, and maximum change
in box length 5L,„. 5L,„ is independently adjusted to
give an acceptance ratio of 50% for the area moves. The
probability of accepting a random change from state i, at
area A (i)=L;, to state j, at area A (j)=L& =(L;+5L ),
is given by min(1, P,, ) where

P; =exp( 5H;J/—kT),

5H, =pb, A NkTin—[A (j )/A (i)] .
(3)

Here p is the two-dimensional or lateral pressure. Moves
which would result in overlap were rejected. A scaling of
the system was attempted once every complete Monte
Carlo cycle (one attempted move per particle).

B. Voronoi tesselation

We have developed a method of keeping track of
nearest and next-nearest neighbors, using the Voronoi
tesselation of a system, which is applicable to high-
density systems and gives CPU time proportional to ¹

For a set of N seed points, P; (i = 1, . . . , N), in the Eu-
clidean plane, R, the plane can be partitioned into N re-
gions VJv(P; ), such that VN(P; ) is the locus of all points
closer to P; than to any other point P, . That is,

VN(P, ) = A I P ER ~d (P, P; ) & d (P,P )J, (4)
J@l

where d is the Euclidean distance. The planar skeleton
Vz formed by the boundaries of V~(P; ) (i =1, . . . , N) is
a planar straight-line graph and is called, among other
things, the Voronoi diagram or tesselation (for example,
Voronoi polygons, Wigner-Seitz cells, Dirichlet regions
or tesselations, the cell model, the S mosaic, Thiessen po-
lygons, plant polygons, Wirkungsbereich, etc. ) The edge
between adjacent regions V~(P, ) and V~(P, ) is the per-
pendicular bisector between points P, and P .

We consider the Voronoi tesselation of the system of
particles to be studied, with the centers of mass of the
particles as the seed points of the tesselation. Periodic
boundary conditions are applied to the system and the
tesselation. This, in effect, puts the system on a toroidal
surface. Euler's relation for a torus is F —E+ V=0,
where F=N is the number of faces, E is the number of
edges, and V is the number of vertices. The number of
edges in the system is E =3N and the number of vertices
is V=2N. Also, the average number of edges around
each seed point is identically 6. For a system with open
boundaries this applies only in the limit of large N. We
establish a lookup table for the Voronoi edges. For each
edge we store the adjacent points, or particles, its ver-
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density systems were obtained by compressing from a
lower-density system. These systems were then equili-
brated further.

2. Updating the Voronoi tesselation dynamically

~ 3

edge 83
face left 4

right 1

vertex start 10
end 7

edge start left 29
nght 31

end left 45
right 18

FIG. 1. A configuration of four particles and part of the
Voronoi tesselation. The lookup-table entry for the central edge
(23) is also shown.

%hen a particle is moved during the Monte Carlo
simulation, as described in Sec. IIA, the Voronoi edge
list is not completely recalculated. If the particle moves
are small (which is achieved by limiting the value of Sr,„
in the simulations) then the change in the Voronoi struc-
ture will only affect nearest and next-nearest neighbors.
It is then possible to maintain the structure dynamically.
There are three possible transformations of the Voronoi
tesselation structure within a group of four particles.
These are described below and illustrated in Fig. 2.

(a) The structure of that part of the Voronoi tesselation
does not change, even though the coordinates of the ver-
tices around the moved particle do change.

(b) The structure changes and a next-nearest neighbor
becomes a nearest neighbor.

(c) The structure changes and a nearest neighbor be-
comes a next-nearest neighbor.

tices, and the four adjoining edges, as shown in Fig. 1.
From this table a list of neighbors for any particle can be
determined as required. Two particles are neighbors if
they have an edge in common. It is also possible to define
next-nearest neighbors. Two particles are defined to be
next-nearest neighbors if they are not neighbors but are
connected by an edge, By connected we mean that one
vertex of the edge is adjacent to one of the particles and
the other vertex is adjacent to the other particle. For the
example given in Fig. 1, particle 1 has neighbors 2, 3, and
4, and particles 2 and 3 are next-nearest neighbors. The
Delaunay triangulation, or dual of the Voronoi tessela-
tion is the straight-line graph formed by connecting each
pair of nearest neighbors.

l. Initial configurations

The initial configurations for the simulations were set
up as described in Ref. 31 but with the addition of the
Voronoi tesselation. Extreme low-density systems were
first set up by placing N points, at random, within the
simulation cell, which was taken to be square. The Voro-
noi tesselation of this system, as described above, was
then constructed according to the "divide-and-conquer"
method described in Ref. 30 and outlined in the Appen-
dix. Hard-core disks were allocated to the points. Each
disk was given diameter O. =d;„, the minimum interpar-
ticle distance. The low-density systems were gradually
compressed by performing Monte Carlo simulations, as
described above, with a large applied pressure. This
differed slightly from the previous method ' in which the
system was contracted by an amount given solely by the
minimum interparticle distance. Here the systems could
expand or contract, but the large applied pressure would
favor contraction. The systems were compressed until
the required density was obtained. The loweset-density
systems studied here were obtained in this way. Higher-

(c)

FIG. 2. Changes in the Voronoi tesselation structure brought
about by moving a particle. The dashed and solid line indicate
the initial and final structures, respectively. The three figures
correspond to the situations described in the text.
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In each case, the numbers of edges and vertices in the
tesselation are conserved. The only calculation that is re-

quired to update the tesselation is a recalculation of the
coordinates of the vertices around the moved particle
and, in cases (2) and (3), an updating of the edge lookup
table. For a two-dimensional system with periodic
boundary conditions each particle must have an average
of six neighbors. Since the work involved in updating the
tesselation depends only upon the number of neighbors a
particle has, the total work involved in maintaining the
tesselation must be linear in N. The computing time used
is shown in Fig. 3 for systems of hard-core disks with
periodic boundary conditions. Results are shown as a
function of N. It can be seen that the computing time
used for the Voronoi method is proportional to N. Simu-
lations which use standard neighbor list methods re-
quire computing time which tends to increase linearly
with N, but this does not include the overhead of updat-
ing the list, which is quadratic in ¹

During the constant NpT simulations the system area
is changed as previously described. The area change is
effected by expanding or contracting the whole system.
The separation of any two points within the system is
scaled by y where y = A (j)/A (i). The updating of the
Voronoi tesselation thus only requires a scaling of the
vertex coordinates: the structure is invariant.

3. Analysis of the Voronoi tesselation

There are many distribution functions that can be ob-
tained from the Voronoi tesselation. The most obvious is
the number of particles with n neighbors, p (n). The frac-
tional number of defects in the system can be defined as

g p(n)
n&6

gp(n)

Another distribution which has received some atten-
tion is m„, the average number of neighbors of particles

which are neighbors to a particle with n neighbors (see
Refs. 34—38 and references therein). It has been fairly
well established, empirically, that this function satisfies
the equation

m„=6—a +(6a +c)/n, (6)

where a and c are numerical parameters. Within the ac-
curacy of the data, c is equal to the variance of the distri-
bution p (n). It is also suggested that a c- a where

a=(s„—s )/(s„+s )

is the differential longitudinal or metrical dispersion
(s„x ) and (s y ) are the standard deviations of x and y,
the lengths of the edges in the tesselation and its dual, re-
spectively. Data generated from the studies described
here have been used to confirm the fortn of Eq. (6) for
Voronoi tesselations generated from hard-disk systems.
It is also found that a is not directly proportional to a, as
defined in Eq. (7), for these systems. These results are
planned to be reported in a subsequent paper.

Little work has been done in studying the shape of the
distribution of edge lengths of the Voronoi tesselation,
p(d). In studying the Voronoi tesselations of hard-disk
systems, we have found that the total distribution func-
tion p ( d /o ) can be fitted by the sum of two Gaussian
functions, as described below. The fits obtained are good
at all densities and the fitting parameters are found to
reflect structural properties of the disk systems. A very
good fit is also obtained in the low-density limit. Figure 4
shows the distribution of edge lengths for random sys-
tems of points, including data from Ref. 40. The natural
tesselations looked at by Aboav ' are not Voronoi tessela-
tions in the sense that they cannot be generated from a
set of seed points by Eq. (4). The true Voronoi tessela-
tions, refered to in Aboav's paper, all produced edge-
length distribution functions which appear similar to
those shown in Fig. 4, though the relatively small number
of edges sampled is apparent in the data.

I I I I

/

8

/

8

P
I I I

800 1000
I

200 400 600
Number of discs

FIG. 3. The computing time used as a function of the nurn-

ber of particles in the system. The times for four runs, each of
100 cycles, are shown for each value of X. The data are for the
method presented here with g~0. The dashed line is a linear
least-squares fit to the data.
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FIG. 4. The data (0) give the distribution of Voronoi edge
lengths, p{d"), for random distributions of points, averaged
over a total of 45000 edges. The data (~ ) are taken from Ref.
40. The solid lines give the least-squares fit of the function

g {d")of Eq. (8), and its two component Gaussians, fitted to the
data (~).
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4. Fitting p(d/o. )

The distribution functions p(d/o ) obtained from the
Monte Carlo simulations were fitted by a function of the
form

where d'=d/o. The parameters Q„Q~, W, =(~,ln2),
and 8'2=(co2ln2) represent the means and widths of the
two Gaussians in units of 0.. I, and I2 give the areas un-

der each of the two Gaussians. Values for the parameters
were obtained by a least-squares fit to the Monte Carlo
data. The term "main Gaussian" will refer to the Gauss-
ian which is mainly responsible for the peak in the distri-
bution function p (d') and its fit parameters will be denot-
ed by the subscript 1. The other Gaussian, the "secon-
dary Gaussian, "will be denoted by the subscript 2.

We emphasize that the functional form of g (d') has no
physical basis. The fit used is found to be a useful tool
which we will show provides an excellent way of looking
at the structure of the systems.

III. RESULTS

discarded and 4000 were used for system properties.
Statistics were accumulated every ten cycles for both sys-
tem sizes. Since there were few differences between the
results obtained from the 102 disk systems as compared
with the 408 disk systems we present only the 408 disk re-
sults, except where the differences are significant.
Snapshots of the Voronoi tesselations for some of these
systems are shown in Figs. 5(a) —5(h). At the lowest den-
sities the structure is definitely that of a disordered Quid.
As the pressure, and hence density, is increased the de-
gree of order in the systems increases. There are indica-
tions of a transition to a more ordered phase between
packing fractions in the liquid phase of around q]]q 0 69
and in the solid phase of g„~=0.73. This corresponds to
the transition region found by Alder and Wainwright' for
which g~; =0.691 and g„~=0.716. Within this region
there are disordered domains of ordered disks. The size
of the domains increases with density until the systems
exhibit structure indicative of a crystal. It should be not-
ed that the structure is not that of a commensurate crys-
tal since the systems contain defects. Preliminary studies
on systems of 102 disks produced some high-density
structures which had a defect in the crystal structure and
others which gave a defectless crystal structure com-
mensurate with the simulation box. The effect of the
presence of defects on the results will be discussed later.

Simulations were performed on systems of 102 and 408
hard-disks at pressures corresponding to reduced pres-
sures, p=p/pkT, of between 4.2 and 25.0 (packing frac-
tions ranging from 0.49 to 0.82). For the 102 disk sys-
tems a total of 20000 cycles was considered at each pres-
sure. The first 10000 of these were used for equilibration
purposes and were discarded. The remaining 10000 were
used for calculating equilibrium, thermodynamical prop-
erties of the systems. For the 408 disk systems 10000 cy-
cles were considered at each pressure, of which 6000 were

A. Distribution of neighbors

The distributions of neighbors, p ( n ), are shown in Fig.
6 for several of the systems. It can be seen that the most
probable number of neighbors is 6 for all densities shown.
The width of the distribution decreases with increasing
density. The fractional number of defects N~, f, given by
Eq. (5), is shown in Fig. 7. Although N~, f decreases from
the disordered phase to the ordered phase, it does not go
identically to zero. This is due to the presence of defects

(a) (b) (c)

FIG. 5. Snapshots of configurations of 408 hard disks at pressures p/kT of (a) 2.61o, (b) 6.62o. , (c) 9.50o. , (d) 10.3o. , (e)
10.9o. ', (f) 11.8o ', (g) 14.1o. ', (h) 20.3o. . The packing fractions g of the configurations shown are (a) 0.492, (b) 0.647, (c) 0.703,
(d) 0.725, (e) 0.727, (f) 0.734, (g) 0.756, (h) 0.797. The systems are scaled to the same box size and only the Voronoi tesselations of the
systems are shown.
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FIG. 6. The distributions of neighbors p(n) for systems at
pressures pressures p/kT of ( ) 2.61o. , ( —-) 8.05o, {——-—
10.0o. ', ( ———) 11.8o ', { ) 26.2o.

S.o o.s t.a o:o o.s 1.2 0.0 0.6 1.2 0.0 0.6 1.2
d'=&i/0'

FIG. 8. The distributions of Voronoi edge lengths, p(d'), for
systems with the given reduced pressures. The solid lines give
the least-squares fits g(d') of Eq. (8) and their Gaussian com-
ponents.

within the crystal-like structure. If the systems were to
form commensurate crystals then each disk would have
six neighbors giving Xd,f=0. The exact position of the
transition region is not clear from the data in Fig. 7.

B. Voronoi edge-length distribution
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FIG. 7. The fractional number of defects in the system Xd,f

as a function of pressure for the 408 disk systems studied. The
inset gives the same data as a function of packing fraction. The
dashed lines indicate the transition region.

The distribution functions p(d') are shown in Fig. 8

for several of the systems studied. The points give the
Monte Carlo data and the solid lines give g(d') and also
each of the two Gaussian components of g(d'). The
closeness of the fits at all densities within the fluid and

f (d') issolid phases suggests that the functional form o g (
' is

reasonable. Only for the systems around the transition
region, for which 10~y 12, is there any deviation of
the fit from the data. This will be discussed further
below.

At low densities the distributions are broad and there
is a significant contribution from edges tending to zero
length. This is best illustrated by the distribution shown

in Fig. 4, which is for the extreme low-density, random
case. Note that the equivalent disk diameter o„~0 as
g~0, so the edge lengths are scaled with respect to the
average edge length (d ). Here the secondary Gaussian,
which is centered around d"=d/(d ) &0, has a greater
maximum value than that of the main Gaussian. For the
lowest-density systems studied here, the secondary
Gaussian is still centered around d' ~ 0 but its intensity is
greatly reduced. As the density is increased the mean
moves to longer edge lengths and its intensity remains
roughly constant. The main Gaussian is seen to shift to
slightly shorter lengths with increasing density. Its inten-
sity increases and its width decreases.

The transition region appears to have little effect upon
the distribution, though the fits obtained are not as good
as for the fluid and solid phases. The maximum point of
the distribution is always underestimated even though es-
timates for the adjacent points are reasonable. Within
the transition region the mean of the secondary Gaussian
fluctuates from its low-density maximum value of about
0.4 to a value of about 0.6, which is only slightly below
that of the main Gaussian. This higher value is accom-
panied by a greater intensity. Accordingly, the intensity
of the main Gaussian is reduced, though its position ap-
pears unaffected.

At high densities, that is, for systems which exhibit
crystal-like structure, the means of the two Gaussians are
almost coincidental. For densities just above the transi-
tion region the mean of the secondary Gaussian is at
sli htl shorter edge lengths than that of the main Gauss-sig y
ian. For the extreme high-density systems their positions
are reversed. Tke main Gaussian is, by definition, much
more intense than the secondary Gauss~an. It is also
much sharper, the secondary curve being very broad.

The question of whether the functional form for the
high-density distributions should be the sum of two
Gaussians, and not just a single Gaussian, can be
answered by comparing the distributions for the lowest-
density solid systems and the highest-density solid sys-
terns. As was mentioned above, the relative positions o
the two Gaussians change as the density is increased.
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This would seem to be not just an artifact of the fitting
procedure. If the shapes of the tails of the distributions
are compared then the distributions are seen to be
asymmetrical. This asymmetry is reflected in the fits ob-
tained, though the fits for the longer edge-length tails are
better than those for the shorter edge-length tails.

A similar asymmetry can also be seen for the smaller,
102 disk, systems. Figure 9 shows the distributions for
two systems each with the same reduced pressure of 19.0.
The two systems differ in that one has condensed to a sys-
tem with a defect structure and the other has condensed
to a commensurate crystal. Whereas the distribution
p(d') for the defect structure is symmetrical and the two
Gaussian means are coincidental, the distribution for the
commensurate crystal is not. This is most apparent if a
comparison is again made of the tails of the distributions.
The short edge-length tails are very similar but the long
edge-length tail of the commensurate crystal data drops
off much more sharply than that of the defect structure
data. Its intensity is also considerably greater. This
difference in symmetry is consistent through all of the
102 disk systems studied, though only one pair of distri-
butions is shown here.

Consideration of crystalline structures would lead one
to expect fewer short edges and fewer long edges. This
would give a sharper, more intense distribution. The
1ong edge-length tail of the observed distributions sup-
ports this but the short edge-length tail does not. The to-
tal effect would be consistent, though, if there were strain
in the system. The presence of a uniaxial strain would
tend to increase the disk separations in one particular
direction and decrease the normal components of other
separations. This would have the effect of reducing the
lengths of edges lying perpendicular to that direction and
marginally increasing the lengths of the other edges in
the system. The effect on the long edge-length tail of the
distribution would be small. The short edge-length tail
would, however, increase significantly, thus canceling the
effect of the more regular crystalline structure. The dis-
tributions observed are, therefore, consistent with a

0.6—
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0.2—

0.1—

0.0

QOQQgp o

4 8 12 16 20 24 28
reduced pressure p/pkT

FIG. 10. The fit parameters 8'& (O) and W, (0) as a func-
tion of reduced pressure for 408 disk systems.

strained crystalline structure.
Figure 10 shows the fitting parameters W, and W2 as

functions of reduced pressure for the 408 disk systems.
The widths of both Gaussians are seen to decrease with
increasing pressure. That of the secondary Gaussian does
increase again at the highest densities. In each case there
is a suggestion of a discontinuity across the phase transi-
tion region. This is accompanied, however, by increased
uncertainty in the fits, indicated by larger error bars.

Figure 11 shows the fitting parameters I, and I2, again
for the 408 disk systems. The sum I =I, +I& is shown in
the inset. Apart from for the low-density systems, it can
be seen that I is constant. This is reassuring since it
represents f g(d')dd' and g(d') is being fitted to nor-

malized data. The deviation at low density is because a
significant part of the secondary Gaussian corresponds to
nonphysical (negative) values of d'. It is clearer here
than in Fig. 10 that there is some sort of discontinuity
across the phase transition region. In both the liquid and
solid phases the proportions of edges which contribute to
the main Gaussian increase with increasing density.

The fits to the means of the two Gaussians are shown
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FIG. 9. The distribution functions p(d') for two 102 disk sys-
tems with reduced pressures of 19.0. The upper distribution is
for a system with defects. The lower distribution is for a system
with no defects.
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FIG. 11. The fit parameters II (O ) and I, (~ ) as a function
of reduced pressure for 408 disk systems. The inset gives the
sum Il +I, .
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in Fig. 12 for the 408 disk systems. The inset gives the
data for the 102 disk systems. With the exception of
some of the 102 disk data, which will be discussed below,
both means tend to approximately the same asymptote at
high density. As observed above, the value of Qz is still
increasing slightly, whereas that of Q, is decreasing. The
solid line gives the edge length that would be obtained is
the cells of the Voronoi tesselations of the systems were
regular hexagons. The mean of the main Gaussian is
within statistical error of this curve at high densities.
The 102 disk data is very similar to that of the 408 disk
systems. The data for Q, has the same asymptote. The
data for Q2, however, is split between two, seemingly
parallel, asymptotes. If the systems are grouped accord-
ing to whether or not their crystal-like structure contains
defects, then it is found that, without exception, at high
densities, the data for the systems with defects has its
asymptote close to that for Q, and the data for the com-
mensurate crystal systems has the parallel, lower asymp-
tote. This is consistent with the observed symmetry of
the distributions.

The effect is not simply a system size effect since a sin-
gle defect structure in the 102 disk systems would affect
proportionately more Voronoi edges than in the 408 disk
systems. If the lower asymptote were the true asymptote
for infinite system sizes and the upper one a deviation due
to the relatively high proportion of defects in the systems
then it should be expected that the data for the 408 disk
systems would tend to the lower asymptote, which is not
the case. Since the commensurate crystal structures ob-
tained cannot be truly commensurate with the square
simulation cell used, it is likely that the shift in the
asymptote is indeed caused by a strain of the structure, as
discussed earlier. If there was little or no strain in the
102 disk systems then the 408 disk systems, which have
exactly four times the number of disks, would be expect-
ed to condense to commensurate structures similar to
those of the 102 disk systems. Instead they condense to a
structure representative of a triangular lattice containing

22 rows each of 19 disks, but with half a row (10 disks)
missing.

There is a very sharp jump in the value of Qz across
the transition region. The observed fluctuations within
this region are reflected by large error bars in the values
of Qz. It should be noted that the error bars for the data
within the liquid phase are small by comparison, though
not as small as in the solid phase. In contrast, the error
bars for Q, are contained within the points drawn, at all
densities.

In the fluid phase the secondary Gaussian corresponds
to a population of short edges. In the solid phase the
structure is highly ordered and there are few short edges.
The short edges that are to be found in these systems can
be associated with regions of lower order, or defects. The
secondary Gaussian does not, therefore, correspond only
to the presence of short edges but it does allow a better fit
to the asymmetric tails of the total distribution. The
effects seen with the 102 disk systems support this.

C. Thermodynamic properties

The p-A isotherm for the 408 disk systems is shown in
Fig. 13. The dashed line gives the corresponding SPT iso-
therm

p 1
(9)PkT (I —tI)~

where rj=(n/4)po is. the packing fraction of the system.
The short-dashed line is a guide for the eye only. It con-
sists of the SPT data in the fluid phase and the crystal-
phase isotherm of Andrews' in the solid phase. The join-
ing line is a linear, least-squares fit, to the data across the
transition region. Data from other studies are shown for
comparison including the van der Waals —like loop from
Alder and Wainwright. The transition region is ap-
parent, though its solid phase limit cannot be isolated as
easily as it could with the Voronoi edge-length distribu-
tion described above. Even though the data for the first
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FIG. 12. The fit parameters Q, {o ) and Qz ( ~ ) as a function
of reduced pressure for 408 disk systems. The error bars for Q&
are within the open circles. The solid line gives the edge length
that would be obtained if each Voronoi cell was a perfect hexa-
gon. The inset gives Q, for the 102 disk systems.

FIG. 13. Pressure as a function of area per disk for the 408
disk systems. ( ~ ). The short-dashed line is described in the
text. The dashed line is the SPT data from Eq. (9). The solid
line gives the van der Waals —like loop from Ref. 1. The
remaining data are taken from Ref. 2 ( 0 ) and Ref. 20 (~).
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2000 cycles considered were coincident with those for the
second 2000 cycles, there is scatter in the data just within
the solid phase. This indicates that the systems were not
fully at equilibrium, and highlights the difficulty in ob-
taining equilibrium thermodynamic properties around
phase transitions. Even though the highest-density sys-
tems do not exhibit perfect crystalline order, the results
for these systems compare well with the isotherm of An-
drews. The agreement of the data with scaled particle
theory in the liquid phase is good.

that the data structure describing the tesselation allows
easy access to the information required, namely, nearest
and next-nearest neighbors. Despite this, the algorithm
used is fast and can be shown to run in N lnN time. This
compares with N time for a neighbor search algorithm.

The Voronoi tesselation Vz for a given set P of N seed
points was set up following the divide-and-conquer
method described by Preperata and Shamos. Consider
two linearly separated subsets of P, P;"' (i =1, . . . , N& )

and P (i = 1, . . . , N& ), such that

IV. SUMMARY AND CONCLUSIONS

We have presented in this paper a technique, based on
the Voronoi tesselation, for detecting structural transi-
tions in two-dimensional condensed systems. The tech-
nique was tested on a two-dimensional hard-disk system.
The edge-length distribution of the Voronoi tesselation,
determined as a function of external pressure, was used to
calculate the quantity Qz of Eq. (8). Qz rejects the de-

gree of structural order within the system and provides a
strong signal for the liquid-solid transition of the hard-
disk system. This signal is superior to that from the
pressure-area isotherm or from the defect densities.

Dynamical updating of the Voronoi tesselation during
the Monte Carlo simulation allows for properties of the
tesselation to be available for use during the entire simu-
lation run without having to recalculate the tesselation.
For example, the tesselation provides easy access to
nearest and next-nearest neighbor pairs. Also, since the
Voronoi edge lengths correspond to the interfacial
lengths between nearest neighbors, these lengths can be
used in the calculation of contact interactions between
components of complex systems.

We have applied these techniques to binary mixtures of
disks in which the concentration is allowed to vary with
density and pressure according to preset degeneracies.
These results are planned to be presented in a subsequent
paper.
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P =P'"UP'"
I i

N, +N
(A 1)

Without loss of generality, assume that P,"' and P,' ' are
separated by a vertical line. Let Vz and Vz denote the

1 2

Voronoi tesselations generated by the subsets P " and
P,' ', respectively. If the tesselations Vz and V~ are

1 2

known then they can be "merged" to give Vz by con-
structing the dividing chain o. . To construct 0. the con-
vex hull of each subset is required. The first and last seg-
ments of cr are the perpendicular bisectors of the support-
ing segments of the convex hulls of the two subsets, as
shown in Fig. 14. Once the first segment is determined
from the convex hulls, segments are added to cr as it in-
tersects with successive edges of the two tesselations. See
Fig. 15. This continues until the last segment is added. o.
thus proceeds by an irregular, zigzag path between the
two tesselations, joining them as it goes. It should be not-
ed that the convex hull of P; can be obtained easily from
the convex hulls of P,'" and P, ' and the supporting seg-
ments.

Since V2 and V3 are trivial, the method can be applied
as follows.

Step 1. Divide P, into two subsets, P;"' and P ' of ap-
proximately equal sizes, N, and N2.

Step 2. Construct Vz and Vz recursively.
1 2

Step 3. Merge Vz and Vz to obtain Vz.
1 2

APPENDIX: CONSTRUCTING THE VORONOI
TESSELATION FROM A SET OF SEED POINTS

Since the Voronoi tesselation for a system is only cal-
culated once and then maintained dynamically
throughout the Monte Carlo simulations, the time re-
quired to compute the tesselation was not a factor in de-
ciding which algorithm to use. The main requirement is

FIG. 14. The dashed lines are the supporting segments of the
two convex hulls, which are given by the solid lines. The first
and last segments of o, indicated by the arrows, are the perpen-
dicular bisectors of these supporting segments.
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FIG. 15. Two tesselations V& and V& are merged by con-
1 2

structing the dividing chain 0., shown here by the heavy arrows.
Only subsections of V& and V& are illustrated.

1 2

Here we wish to apply periodic boundary conditions so
that the system lies on a toroidal surface. This is a two-
stage process. Assume that we have constructed the open
boundary Voronoi tesselation. Shift the x coordinates of
the system, while applying periodic boundary conditions,
so that the open, vertical edges of the tesselation lie down
the center of the simulation box. The left half of the box

will contain the right edge of the tesselation and the right
half of the box will contain the left edge. The two edges
can be joined, as above, by assuming that the two halves
correspond to different subsets P "and P '. The system
now corresponds to the surface of a cylinder. We join the
two remaining open edges in a similar manner. For con-
venience, the system is rotated before being shifted so
that the open edges are again vertical. Since the edges
are continuous we have to choose a point of entry for o..
We consider the extreme right-hand point of the right
edge (left half of the box) and the extreme left-hand point
of the left edge (right half of the box). The first segment
of a is taken to be the perpendicular bisector of the shor-
test line joining these two points. 0. is constructed as
above, the last segment coinciding with the first. The two
ends of o are joined and the last segment is discarded.

As well as constructing the Voronoi tesselation itself,
we have to construct E, the edge list, or lookup table of
edges, described in Sec. II B. Since most of the informa-
tion stored in E is required during the construction of 0.

it is most convenient to update E as each segment is add-
ed to o. Once the ends of the final o have been joined
then E is also complete.
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