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The 7/3-rhombus billiard is an example of the simplest pseudointegrable system having an in-
variant integral surface of genus g =2. We examine the fluctuation properties of eigenvalue se-
quences belonging to the “pure rhombus” modes (the eigenfunctions take nonzero values on the
shorter diagonal). The nearest-neighbor spacing statistics follow the Berry-Robnik distribution
with a chaotic fraction ¥ (corresponding to the Liouville measure of the chaotic subspace) equal to
0.8. The spectral rigidity closely agrees with such a partitioning of phase space. The nodal patterns
and the path correlation function exhibit irregularity for most of the corresponding eigenfunctions.
Though the amplitude distributions for these closely approximate a Gaussian distribution, the spa-
tial correlations do not agree well with the well-known Bessel oscillations. A few eigenfunctions,
however, show regularity. These are localized in those regions of configuration space where the
bouncing-ball modes form rectangular bands. The Born-Oppenheimer approximation offers a suit-
able explanation in terms of a confining potential, and the agreement between the exact and adiabat-
ic eigenvalues improve at higher energies. On the basis of these observations, it turns out that the
quantities v and ¥ are, in fact, the fractions of regular and irregular states in the eigenvalue sequence
under consideration. Thus irregular eigenfunctions do occur for systems with zero Kolmogorov en-
tropy, and the eigenvalue sequence corresponding to these yield Gaussian orthogonal ensemble
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statistics.

I. INTRODUCTION

The study of quantum eigenstates of classically nonin-
tegrable Hamiltonian systems has elicited considerable
interest in recent years.! Though their spectral proper-
ties have been understood reasonably well for some time,
a general formalism has only now begun to emerge with
the astounding success of the periodic orbit theory in ex-
plaining several properties of the eigenfunctions. Various
routes have, however, led to the present status. Berry
quantized the Sinai billiard® by converting the dynamical
problem into one of band structure, which, in turn, was
solved by the Korringa-Kohn-Rostoker procedure.
Gutzwiller, on the other hand, developed the periodic
theory® and realized its application successfully by quan-
tizing the chaotic anisotropic Kepler problem.* This pro-
found work illustrates the connection between classical
periodic orbits and the eigenvalues of the quantum sys-
tem. Yet again, McDonald®> and McDonald and Kauf-
man,® using a numerical scheme developed by Riddell,”®
investigated various quantum signatures of the Bunimo-
vich stadium billiard. It has indeed served as a useful
model since for verifying several conjectures on mixing
systems.

In the case of integrable systems, direct quantization
schemes such as WKB or EBK give good approxima-
tions, at least in the large-k (small de Broglie wavelength)
limit. Such methods are, however, ineffective when ap-
plied to classically nonintegrable systems and one has to
take recourse to global quantization schemes such as the
periodic orbit theory of Gutzwiller.’ Problems in im-
plementation arising from the difficulty in enumerating
all the periodic orbits have limited its usage. Such orbits

42

proliferate exponentially with increasing time periods in
chaotic systems. Wintgen® has dealt successfully with the
problem of a hydrogen atom in a uniform magnetic field
and shown that if the summation is taken as an asymptot-
ic series, contributions from longer orbits may be neglect-
ed. More recently, Aurich and Steiner'® have studied the
Hadamard-Gutzwiller model, which is a two-dimensional
Hamiltonian system describing the geodesic flow on a
surface of constant negative curvature. They have been
able to classify and evaluate the lengths of the periodic
orbits and apply them successfully to both the sym-
metric'! and asymmetric models.'?

Much of the current research until late has centered
around the fluctuation properties of eigenvalue se-
quences. For generic integrable systems where the ener-
gy contours in action space are curved, Berry and Ta-
bor!® give strong arguments in support of a Poisson dis-
tributed spectrum. The numerical explorations of Bohi-
gas, Giannoni, and Schmit,'* on the other hand, led to
the conjecture that the spectral fluctuations of time rever-
sal invariant chaotic systems follow Gaussian orthogonal
ensemble (GOE) statistics. Both the results have found
credence in the semiclassical derivation of the spectral ri-
gidity by Berry.!> The transition from regular to chaotic
motion has also been studied in detail'® '® and the
Berry-Robnik!® distribution has proven to be a likely can-
didate for the level statistics.?*?!

Though eigenfunctions contain much information,
their nature and properties have remained largely un-
known. For quasiperiodic dynamics, one can locally
write the wave function as a sum over a finite number of
plane waves in the short-wavelength limit. The summa-
tion is over the number of distinct ways in which a point
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q can be accessed. However, if one extends the idea to
chaotic motion, the wave function has to be expressed as
a sum over an infinite number of plane waves, each hav-
ing a random amplitude, phase, and direction. This leads
to a Gaussian amplitude distribution and a spatial corre-
lation function with Bessel function dependence. For the
Bunimovich stadium billiard, which is a mixing system
with an exponential divergence of trajectories, most
(=90%) of the eigenstates corroborate these assertions.
However, there exist eigenfunctions both at low?? and
high?® energies which behave otherwise. Most of these
are localized on families of regular trajectories with short
periods, while others have a large amplitude on a single
unstable periodic orbit. Using the Born-Oppenheimer
approximation, Bai et al.?* have been able to show that a
dynamical confining potential can indeed be constructed
to explain the localization effect in the former case. The
latter phenomenon, popularly known as ‘“‘scarring,” was
first observed by Heller.”®> A considerable body of
knowledge has evolved since out of the works
of Bogomolny?® and Berry,?” and it is now well estab-
lished that as in case of eigenvalues, periodic orbits
influence individual eigenfunctions as well. Thus quan-
tum manifestations of classical dynamics show up as
“scars” on wave functions. Other reasons for the keen
interest in the properties of eigenfunctions stem from a
desire to extend the well-developed semiclassical methods
of quasiperiodic dynamics to chaotic systems.

The characterization of regular and irregular states
has, of course, been a major research topic since it has
severe implications for chemists, spectroscopists, plasma
physicists, and many others—for different reasons
though. Regular dynamics in classically nonintegrable
systems gives rise to the concept of local actions and
leads to trajectories that are confined to tori. The mecha-
nism, however, is not obvious. Quantum mechanically,
the corresponding states can now be labeled by locally
good quantum numbers. The eigenfunctions in most
cases (certainly those at higher energies) are localized and
have regular nodal pattern in the region of confinement.
Thus, over the years, regular and localized states have
come to mean the same thing.

While integrable and chaotic systems represent two ex-
treme behaviors, pseudointegrable systems fall in a
category in between. Polygonal billiards with at least one
angle in the form mw/n (m=1) fall under this category.
In a sense, these are the nearest step away from integra-
bility since their invariant integral surface has a genus
greater than one (for a torus, g =1) despite the existence
of two integrals of motion. This happens because the in-
tegrals are in involution everywhere except at the ver-
tices. As a result, one of the assumptions of the
Liouville-Arnold theorem stands violated. Zemlyakov
and Katok?® were the first to study these systems, while
Richens and Berry?® were the first to quantize an example
of this class. Their?’ results on the nearest-neighbor level
spacing distribution show a linear level repulsion. Re-
cently, Cheon and Cohen®® have studied the spectral
statistics of a series of pseudointegrable systems which
approximate the Sinai billiard increasingly well (essential-
ly going to surfaces of higher genus). The agreement

with the predictions of GOE improves as the approxima-
tion gets better. However, since they have confined
themselves to the low-energy regime, the authors indicate
that these results reflect a purely quantum phenomenon,
thereby implying that a transition in the spectral statis-
tics could occur at higher energies. Seba,’' however, ar-
gues that since the relevant scale is represented by the
edges of the corners, which in fact are point objects, the
semiclassical regime should set in only at E— c. Thus
GOE statistics should prevail at all energies. The point is
substantiated by his study of a singular billiard system®!
where the level statistics is seen to coincide with the pre-
dictions of GOE.

To the best of the authors’ knowledge, there has been
no explicit study on the wave functions of pseudointegr-
able systems. Richens and Berry? conjectured that those
eigenfunctions of the 7 /3-rhombus billiard which do not
vanish on the shorter diagonal have contributions from
an infinite number of evanescent waves. No concrete evi-
dence exists however. It is important, therefore, to un-
derstand the manifestations of pseudointegrability on
both the spectrum and the eigenfunctions and to try to
relate the two.

In the following sections, we shall discuss the 7/3-
rhombus billiard (Fig. 1), which is known®**? to be a
pseudointegrable system having a classically invariant
surface of genus g =2. A full quantum description of
such a system does not exist analytically as yet. It is easy
to see, however, that half the eigensolutions are identical
to those of an equilateral triangle, which is an integrable
though nonseparable system. In fact, a semiclassical
analysis using the Keller-Rubinow®® ansatz yields only
these solutions. The other half (equivalent to an equila-
teral triangle with one Neumann and two Dirichlet edges)
would no doubt help us to understand the implications of
nonintegrability in the quantum system. A few low-lying
states of these have been obtained by Gaudin.**
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FIG. 1. The m/3-rhombus billiard. The particle reflects
specularly from the walls.
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The plan of the paper is as follows. Section II contains
a study of the spectral fluctuations of the “pure”
rhombus modes. In Sec. III we apply various diagnostic
techniques to determine the nature of these eigenfunc-
tions. Numerical evidence of the existence of localized
states is also provided and a comparative study with the
equilateral triangle eigenfunctions is made to facilitate in-
terpretation. The localization phenomenon is suitably ex-
plained in terms of the Born-Oppenheimer approxima-
tion in Sec. IV. In Sec. V we apply these results to inter-
pret the observations on the spectral statistics discussed
in Sec. II. Finally, we summarize our results in Sec. VI.
For all quantitative results in this paper #°/2m =1 and
the sidelength L of the rhombus is 27 /3.

II. EIGENVALUES AND SPECTRAL STATISTICS

In this section we present our results on the nearest-
neighbor level distribution (NNLD) and the spectral rigi-
dity A;. In order to isolate the effects of the equilateral
triangle eigenstates on the spectral fluctuations, we have
considered only the “pure” rhombus modes.

The eigenvalues have been obtained by employing the
boundary dipole distribution technique discussed in the
Appendix. The first few levels of the equilateral triangle
are listed in Table I along with the exact ones obtained
analytically. These have a mean relative accuracy of
~107° The statistical tests discussed in this section deal
with the eigenvalues in the interval 25<k <70. The
mean relative accuracy of the equilateral triangle eigen-
values in this region is ~107*. We assume the same to
hold for the pure rhombus modes. For the sake of com-
parison, we present in Table II the values obtained by
Gaudin.**

A consequence of classical nonintegrability is that indi-
vidual levels are hard to determine semiclassically. The
exact nature of nonintegrability is also reflected in the
statistical properties of sequences of many levels. Thus
time-reversal invariant chaotic systems follow GOE
statistics,'*!* while those which do not possess this sym-
metry follow Gaussian unitary ensemble (GUE) statis-
tics.'>3% On the other hand, the large number of almost

TABLE I. Numerically obtained eigenvalues E, along with
the exact ones E, of the equilateral triangle. The mean relative
error is ~0.000001.

E, E,
12.000001 12
28.000 006 28
48.000 050 48
52.000089 52
76.000 121 76
84.000 195 84

108.000 030 108
112.000253 112
123.999 723 124
148.000410 148
156.000 337 156
192.000057 192
196.000 543 196
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TABLE II. A few low-lying states of the “pure” rhombus
modes. E; is the value obtained using the boundary integration
technique, while E, is that computed by Gaudin (Ref. 34). The
sidelength of the rhombus is 277 /V 3.

E, E,
1.890970 1.892
6.369 447 6.370

10.665 749 10.673
12.859 805 12.854
26.781918 26.80
34.256016 34.25

degenerate eigenvalues in generic integrable systems leads
to a Poisson level statistics.

The integrated density of states N(E) of a quantum
system consists of two terms. Superimposed on the aver-
age smooth part is the nonanalytic fluctuating part. Thus

N(E)=N_ (E)+Ny(E) . 2.1)

The first step in an analysis of spectral fluctuations is to
eliminate the average trend. This procedure, known as
“unfolding,” is particularly simple in the case of billiard
systems where one can use the Weyl formula®®

N(E)= AE /An+V'E (L,—Ly)/47+C+D , (2.2)

where A is the area, and L, and L; are the lengths of
Neumann and Dirichlet edges. The quantities C and D
are corrections due to vertices and curvature. For poly-
gonal billiards, the latter term is zero.

A sequence {¢,} with the mean spacing unity can thus
be generated using the mapping ¢; =N, (E,). The sim-
plest statistical measure of this new sequence is the
nearest-neighbor spacing distribution P(s). It is defined
such that P(s)ds is the probability of finding adjacent
pairs (j,j+1) with a spacing €;+1—€, lying between s
and s +ds.

Berry and Tabor!? give strong arguments to show that
in generic integrable systems, where the energy contours
in action space are curved, the levels are indeed uncorre-
lated and the spacing distribution P (s) is given by

P(s)=exp(—s), (2.3)
characteristic of a Poisson process. The nonzero value of
P(s) in the limit s —O0 is referred to as level clustering. It
is well known, however, that certain systems violate the
above-mentioned correspondence. The simplest example
is a square billiard. The difference in behavior is attribut-
ed to the fact that the classical orbits picked by imposing
the quantum conditions are all closed, indicating that the
system under consideration is “nongeneric.”!* Shudo®’
has, however, shown that the NNLD’s of integrable sys-
tems do exhibit a system-specific behavior.

On the other hand, time-reversal invariant chaotic sys-
tems are characterized by level repulsion. The spacing

distribution is seen to follow the Wigner distribution'> 4
P(s)=(ms /2)exp[ —(7/4)s°] , 2.4)

a result, known to be true for complex systems having
many degrees of freedom.
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For an N-dimensional generic system, however, the
phase space is mixed. Some orbits reside on an N-
dimensional torus while others explore the entire
(2N —1)-dimensional region chaotically. Berry and Rob-
nik'® suggest that the spectral fluctuations should result
from independently superposing a Poisson spectrum with
a relative weight v and a series of GOE spectra corre-
sponding to disconnected chaotic regions of phase space
with relative weights v; such that v+ 3, v,=1. In the
simplest case of a single chaotic region (for N = 3, Arnold
diffusion ensures the existence of a single chaotic sub-
space),

P(s)=v?exp( —vs Jerfc(V mvs /2)

+(2v7 47735 /2)exp(—vs —mvis?/4) . (2.5)

Higher-order correlations contain more information.
Among the useful ones is the spectral rigidity A; of
Dyson and Mehta.”® It measures the mean-square devia-
tion of the integrated density of states from a straight line
in an interval [x —L /2,x +L /2]. It is defined as

1

—_ _ 1 L/2 _ . 2
Ay(L) <r§,1gLfVL/2ds[N(x+£) A B£]>.

One can eliminate the constants 4 and B to obtain

(2.6

_ 1 L )
A3(L)——<Z f_L/ZdeN (x +e)

—LfL/Z de N(x +¢)
LY-Ln

1 L/2
—12) 5 JO deeNGxte)

2
>. 2

Using the semiclassical form for the fluctuating part of
the density of states d ., Berry!® has shown that for gen-
eric integrable systems,

Ay(L)=L /15 for L <<L (2.8)

max

while for L>>L_,., Ay(L) saturates nonuniversally,
where L. .=h{d) /Ty, Tmn. being the period of the
shortest classical orbit. The averaging in Eq. (2.6) is over
an energy interval much larger than L_,,, but still classi-
cally small.

For time-reversal invariant chaotic systems with isolat-
ed unstable periodic orbits, the spectral rigidity takes the
form'’

Ay(L)=In(L)/7m*—0.00695 for L <<L 2.9)

max

while it saturates nonuniversally for L >>L ..

Before we proceed with our results on level correla-
tions, we wish to emphasize that any statistical tests of
this nature are meaningful only if the mode number
satisfies the Weyl asymptotic formula. We have plotted
the staircase function N(E) in the interval 25 <k <70
[Figs. 2(a) and 2(b)] and compared them with the Weyl
result of Eq. (2.2). The quantity C in this case is .

The solutions of the Schrédinger equation can be
classified into four different parity modes (Fig. 1):
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Y(—x,y)=vy(x,—y), (00) parity mode
PY(—x,y)=—1¢(x,—y), (01) parity mode
—y(—x,y)=19(x,—y), (10) parity mode
—¢(—x,p)=—u¢(x,—y), (11) parity mode.

P(x,y)=

(2.10)

The wave functions corresponding to the (00) and (10)
parity modes do not vanish on the shorter diagonal. We
refer to these as the ““pure rhombus” modes. On the oth-
er hand, the (01) and (11) modes are identical to those of
the equilateral triangle.

Figures 3(a) and 4(a) show the nearest-neighbor level
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FIG. 2. Integrated density of states N(E) for the (a) (00) and
(b) (10) parity modes. The dotted curve denotes the corrected
Weyl result given by Eq. (2.2).
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spacing statistics of the pure rhombus modes. The con-
tinuous curve in both cases is the Berry-Robnik distribu-
tioln with v=0.8. Considering the fact that the system at
hand has a zero Kolmogorov entropy (Lyapunov ex-
ponents are zero), the result certainly is surprising. It
would be more appropriate to introduce the quantities
v, calculated by studying the classical motion and v,
obtained from the best fit to the spacing distribution.
Comparisons between the two have been made previously
by Zimmermann et al.? for various systems and prob-
able explanations for the deviation have also been given.

(a)

P (s)

FIG. 3. Spectral statistics of the (00) parity mode: (a) shows
the nearest-neighbor level-spacing distribution. The continuous
curve denotes the Berry-Robnik distribution with v=0.2. (b)
shows the spectral rigidity A;(L). Curve 4 (dotted) is the nu-
merical result while 1 and 2 are those for the integrable and
chaotic cases, respectively. Curve 3 follows Eq. (2.11) with
v=0.2.
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The worst case corresponds to v ;=0 and v, =0.4, and
in general the difference is large for small values of v.
The anomaly has been attributed to the slow convergence
to the semiclassical limit for nearly integrable systems.
The same does not hold for pseudointegrable systems
though. Besides, a drastic change in the level statistics at
higher energies seems unlikely. The result of Richens
and Berry? also supports this fact. This would seem to
suggest that an exponential divergence of trajectories is
not a necessary condition for a GOE-like spectrum.

The A, statistic of the (00) and (10) modes are shown in
Figs. 3(b) and 4(b). The straight line in both cases corre-
sponds to the integrable result, while curve 2 is given by
Eq. (2.9). The numerical results in both cases fall be-
tween the two limiting cases. Visual inspection, however,
indicates that it lies close to the GOE result.

The partitioning of the phase space leads to a result

(a)

FIG. 4. Same as in Fig. 3 for the (10) parity mode.
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analogous to the Berry-Robnik distribution for the A,
statistic.” Using the same notation,

Ay (L)=AYvL)+ 3 AFOEW,L) 2.11)
where v+ 3, ¥, =1, and the index Poi represents Poisson.

Curve 3 shows Eq. (2.11) with a single chaotic volume
v=0.8 as in the Berry-Robnik distribution. The agree-
ment with the numerical result is fair and improves for
large L.

Thus even when the classical flow is restricted to a
double torus, the statistical properties of the eigenvalues
resemble those of random matrices belonging to the
Gaussian orthogonal ensemble. We provide further sup-
port for these assertions in Sec. V.

III. EIGENFUNCTIONS AND THEIR PROPERTIES

The analysis of the spectral fluctuations clearly indi-
cates that there exists a close analogy in the quantum
description of our system with typical chaotic billiards.
Is it, however, restricted to the spectral properties alone
or does it show up in the eigenfunctions as well? Are typ-
ical eigenstates belonging to the (00) and (10) parity
modes irregular? We seek to investigate these questions
in the following subsections.

The eigenfunctions have been obtained using the
boundary dipole distribution technique (see the Appen-
dix). For the statistical tests discussed in Secs. III B and
ITIIC a total of 9641 points have been taken in the first
quadrant of the rhombus. In order to have a meaningful
comparison between the equilateral triangle and pure
rhombus modes, all eigenfunctions have been normalized
to unity.

A. Nodal patterns

Nodal curves give the standing-wave pattern on vibrat-
ing membranes and were studied extensively in theoreti-
cal acoustics. They have also found wide applicability in
quantum mechanics. Pechukas® attempted to generalize
the Miller-Good transformations in more than one di-
mension in an endeavor to obtain nodal coordinates
which form a separable system for individual eigenfunc-
tions, an idea which was studied extensively by DeLeon
and Heller*! later. It has also been widely used to distin-
guish regular and irregular waves.’

Heller? has, however, shown that an irregular-looking
nodal plot is not sufficient for quantum mechanics to
“mimic” classical chaos. The latter implies an infinite
number of directions, while a superposition of even six
cosine waves with random direction and phase but equal
wave-vector magnitude is sufficient to generate a complex
nodal pattern.

The equilateral triangle wave functions result from a
superposition of six plane waves with equal wave-vector
magnitude, but directions that are far from random.
They are related to each other by the laws of reflection.
In Fig. 5(a), we present the nodal pattern of a typical tri-
angle eigenfunction at an intermediate energy. The regu-
larity is rather evident. On the other hand, the nodal plot
of a neighboring (00)-mode eigenfunction [Fig. 5(b)]

>
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FIG. 5. Nodal plot for (a) the (01) parity mode eigenfunction
at k=45.0776 and (b) the (00) parity mode eigenfunction at
45.0298. The regular-looking patterns in the former case are in
sharp contrast to the irregular curves for the “pure” rhombus
eigenfunction.
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shows considerable irregularity and many more avoided
crossings. At higher energies these patterns become rath-
er complicated and it is difficult to make out the
difference unless magnified.

While most of the (00)-mode eigenfunctions behave in a
similar fashion, some of them do exhibit regularity.
These take appreciable nonzero value in the two bands
shown in Fig. 6 and are nearly zero in the rest of the
domain. Figure 7 shows a contour plot of a typical local-
ized eigenfunction at k =64.1408 belonging to the (00)
parity mode. Its nodal curve (Fig. 8) shows considerable
regularity in the region of localization and is distinctly
different from the complex patterns of the neighboring
(00) parity eigenfunctions.

Thus nodal patterns indeed serve as a criterion to dis-
tinguish a regular wave from an irregular one. It is, how-
ever, not possible to identify the number of randomly su-
perposed plane waves. We hope to make these observa-
tions more concrete in the following subsections.

B. Amplitude distribution P()

In chaotic billiard systems, the description of the wave
function is based on the concept of eikonal theory, ac-
cording to which the eigenfunction ¥ can be locally
represented by a superposition of an infinite number of
plane waves with equal wave-vector magnitude but ran-
dom phases and directions. By the central limit theorem
then, ¥(x) is a Gaussian random variable. It is well
known that a superposition of a few random variables
with identical distributions is sufficient to give a good ap-
proximation to a Gaussian distribution. Thus once more,
the very fact that the amplitude distribution for a partic-
ular wave function is Gaussian is not sufficient to infer
that the corresponding classical system is chaotic. The
test, however, can be used to distinguish regular and ir-
regular waves and it is possible to quantify the degree of
irregularity as we shall see. In the following, we present
our investigations in several energy ranges. As before, we

Y
[}

FIG. 6. The 7/3-rhombus billiard along with the two rec-
tangular bands in which the regular eigenfunctions belonging to
the (00) parity mode are localized.
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FIG. 7. Contour plot of the (00) parity mode eigenfunction at
k =64.1408. The wave function is predominantly localized in
the two bands shown in Fig. 6.

®

0.00

.81
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FIG. 8. The nodal plot corresponding to the localized eigen-
function (k =64.1408) shows considerable regularity in the re-
gion of confinement.
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shall compare neighboring equilateral triangle and pure
rhombus modes.

A total of 120 bins have been chosen in each case.
Since the wave function and amplitude distribution have
been normalized to unity, it is possible to define a
goodness-of-fit parameter G as the mean-square deviation
of P(¢) from the fitted Gaussian distribution. We have
listed a few values in Table III.

Though the equilateral triangle eigenfunctions are
comprised of six plane waves, they cannot be treated as
independent random variables as we have remarked ear-
lier. The amplitude distribution should, therefore, show
considerable deviation from the Gaussian distribution.
The values listed in Table III and Fig. 9(a) attest to this
fact.

Clearly, at low energies the test is not good enough
since we are far from the semiclassical limit. At higher
energies, most of the (00) parity-mode eigenfunctions
show a much better fit to a Gaussian distribution. A typ-
ical case is shown in Fig. 9(b) where P(3) approximates a
Gaussian distribution rather well.

For the localized eigenfunctions belonging to the (00)
parity mode, the test naturally yields a different result.
Figure 9(c) shows P(y) for the eigenfunction at
k =64.1408 considered earlier. The deviation is quite
large and the value of G (Table IV) is comparable to those
obtained for the equilateral eigenfunctions. This is in
conformity with the observations of Sec. III A. We list a
few values of the goodness-of-fit parameter G in Table IV
for localized states occurring at various energies. It is in-
teresting to note that the amplitude distributions for
these localized eigenfunctions are similar to those of the
bouncing ball modes in the stadium billiard.

Thus most eigenfunctions of the pure rhombus modes
result from a superposition of a few independent sets of
plane waves giving rise to a Gaussian amplitude distribu-
tion. The localized states, on the other hand, show con-
siderable deviation and, moreover, behave in a manner
identical to that of the equilateral triangle eigenfunctions.

C. Path correlation function (PCF)

Shapiro and Goelman,*? using the intuitive equivalence

of chaos with randomness, identified “fully developed
chaos” in a quantum eigenstate with the path correlation
function

N
F,[Y]=N"'S ¢(r)¥lr,,,), n<N 3.1)

=1

randomly fluctuating about zero for all n >0. Here N is
the total number of points in the interior of the domain
and the points r; are ordered in a cyclic manner
(r;=r; ;,) on a space-filling self-avoiding path.

In the present case, N=9641 and 0=<n =<1600. The
function F,[1] has been evaluated for two distinct paths,
both of which are special to the system. Path 1 consists
of straight segments that are parallel to the x axis, while
path 2 consists of segments that are parallel to the y axis.
It should be borne in mind that there exist families of
periodic orbits that are parallel to both the diagonals.
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TABLE III. Comparison of the goodness-of-fit parameter G
for the the equilateral triangle and “*pure”” rhombus modes. The
subscripts refer to the parities of the eigenfunctions. The fit to a
Gaussian distribution is much better in case of the (00) parity
mode.

k Goo Go
22,5113 0.187
22.5389 0.172
45.0298 0.045
45.0776 0.193
48.1224 0.060
48.1248 0.182
58.2186 0.090
58.2065 0.970
65.7698 0.033
65.5744 0.242

The test has nevertheless come under severe criticism
since it depends on an arbitrary path through the system.
We shall see that the behavior of most eigenfunctions be-
longing to the (00) parity mode is independent of the path
chosen. Those where it does depend turn out to be the
ones that are regular.

Figures 10(a) and 10(b) show the results of our investi-
gations of a low-energy eigenfunction belonging to the
(01) parity mode. The oscillations about zero for path 1
are weak and they possess a definite structure indicating a
strong correlation. Path 2, however, shows quite a
different behavior. On the other hand, for the neighbor-
ing (00) parity-mode eigenfunction, the oscillations are
much more rapid and random for both the paths [Figs.
11(a) and 11(b)]. A similar behavior persists at higher en-
ergies for all eigenfunctions having a Gaussian amplitude
distribution and irregular nodal patterns.

We present the results of our investigations of the lo-
calized eigenfunction belonging to the (00) parity mode at
k =64.1408 in Fig. 12. For path 1 [Fig. 12(a)] the PCF
possesses a definite structure and shows strong correla-
tion while for the second path [Fig. 12(b)], the oscillations
are much more rapid and random. The behavior is quali-
tatively similar to that of the equilateral triangle eigen-
functions.

Thus, while in case of most (00 parity mode eigenfunc-
tions the PCF shows an uncorrelated random behavior
for both the paths considered, the equilateral triangle and
the localized eigenfunctions belonging to the (00) parity
mode have patches of strong correlation for at least one
of the paths. The test is effective at low energies also.

TABLE IV. Goodness-of-fit parameter G, for a few local-
ized eigenstates of the 7/3-rhombus billiard. The values are
comparable to those of the equilateral triangle modes.

koo Goo
51.9651 0.4389
57.2331 0.1732
64.1408 0.3652
78.0142 0.4839
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D. Spatial correlation function

For an eigenfunction comprising of an infinite number
of plane waves, Berry* showed that the spatial correla-
tion function

Co)=[ w*(x=s/2p*

X(x+s/2)dx/f Sxdx (3.2)
A

shows Bessel function oscillations that are independent of

the direction of increment s. Thus C(s)=J,(ks), where

J, is the Bessel function of zero order, k and s being the
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magnitudes of k and s, respectively. The integration is
over all points x such that x+s/2 and x—s/2 lie in the
interior of the domain. Naturally, one would not expect
the pure rhombus eigenfunctions to behave in such a
manner since the number of possible directions is finite.

The numerically computed spatial correlation function
C(s) is displayed in Fig. 13 for the (00) parity mode
eigenfunction at k=65.7698. We have considered
several directions for the increment s at random, but only
two of these are shown in the figures. The fit to the
Bessel function J(ks) is good for small values of s, but
shows considerable deviation after the first node. The
same holds for all the other angles considered.

1.9 9.5
(a) (b)
0.8 9 4
0.6 0.3
3 5
a a
0.4 9.2
0.2 9.1
0.0 2.0
4.0 2.4 081//08 2.4 4.0 -4.0 -2.4 084/08 2.4 4.0
0.80
(¢)
0.64
0.48
>
a
0.32
0.16
[
0.00} J
-5.0 -3.0 -1 1.0 3.0 5.0

FIG. 9. Amplitude distribution P(y) for (a) the (01) mode eigenfunction at kK =65.5744, (b) the (00) mode eigenfunction at
k =65.7699, and (c) the localized eigenfunction belonging to the (00) parity mode at k =64.1408. The fit to a Gaussian distribution is
good in case (b), while the deviations are considerable for (a) and (c).
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The triangle eigenfunctions behave similarly for small
s, but the deviations get much more pronounced [than in
the (00) parity case] thereafter. A typical example is
shown in Fig. 14.

The lack of isotropy and the deviations from the Bessel
function oscillations is much more evident for the local-
ized eigenfunctions. Figure 15 illustrates the point. The
oscillations, in fact, have a sinusoidal behavior.

Such investigations have been carried out for several
other eigenvalues and the results turn out to be the same
qualitatively. Similar studies have been done for the sta-
dium billiard, which is a chaotic system.»® While the

(a)

0.0 3

0 400 800 1200 1600

0 400 800 1200 1600

FIG. 10. Path correlation function F,[v¥] for the (01) parity
mode eigenfunction at k =22.5389 along (a) path 1 and (b) along
path 2.
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agreement with the theoretical prediction was not per-
fect, the deviations were not as significant. In the present
case, one can infer that the irregular pure rhombus eigen-
functions result from a random superposition of only a
finite number of plane waves.

IV. LOCALIZED STATES FROM
THE BORN-OPPENHEIMER APPROXIMATION

The Born-Oppenheimer approximation (BOA) has met
with considerable success in explaining the presence of

(a)

0 400 800

1200 1600

(b)

0 400 800

1200 1600

FIG. 11. Same as in Fig. 10 for the (00) parity mode eigen-
function at kK =22.5113. The lack of correlation in both cases
indicates the irregular nature of the eigenfunction. The test can
be effectively used to distinguish regular and irregular states at
low energies.
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regular states in the mixing stadium billiard. The first at-
tempts in this direction were made by Shapiro, Taylor,
and Brumer.?? Using the adibatic approximation, they
were able to show that a few of the low-lying states are
indeed regular. Later workers?* were able to explain the
existence of localized states at higher energies with the
help of a confining potential which occurs quite naturally
in the BOA. The theory, however, can be applied only
when a band of periodic orbits exist, and hence fails to
explain the occurrence of eigenfunctions localized on a
single unstable periodic orbit (such as the “whispering
gallery” modes in the stadium) in terms of a confining
mechanism. As in all other polygonal billiards, periodic

(a)

0 400 800 1200 1600

0 400 800
n

1200 1600

FIG. 12. Same as in Fig. 10 for the localized eigenfunction at
k =64.1408. The strong correlation along path 1 confirms the
correspondence between regularity and localization.
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orbits in the 7/3 rhombus billiard occur in bands and
hence, the theory is best suited to investigate the presence
of localized states in such a system. The choice of the
coordinates is extremely important as pointed by Stefan-
ski and Taylor.** For each quasiperiodic motion appear-
ing in a system, a different separation is required which in
general would be quite nontrivial. One must either know
the trajectories or the wave functions explicitly. In the
latter case, the idea of Pechukas® which was developed
considerably by DeLeon and Heller*! leads us to the no-
dal coordinates in which the separation can be carried
out.

In this particular case, there exist bands of self-

0.0 0.02 0.04 0.06 0.08 0.1

(b)

0.0 0.02 0.04 0.06 0.08 0.1
S

FIG. 13. Globally averaged spatial correlation function C(s)
for the (00) mode eigenfunction at k =65.7698. The direction of
increment ¢ makes an angle of (a) 87° and (b) 171° with the x
axis. The continuous curve in both cases is the zeroth-order
Bessel function J,(ks).
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retracing periodic orbits (bouncing ball modes as in the
stadium) which cover only part of the domain. The
choice of coordinates therefore becomes quite simple as
indicated in Fig. 16. Following the notation of Bai
et al.,* the x coordinate is taken as the “slow averag-
able” variable and the transverse y as the “‘fast paramet-
ric” variable. The reason for such a choice is obvious
since the smaller amplitude of the y motion is equivalent
to a higher frequency. We shall also refer to these as the
vibrational and electronic processes, respectively.

The adiabatic Hamiltonian for the y motion
parametrized by x can be written as

-0.6.
0.0 0.02 0.04 0.06 0.08 0.1
S
1.2
(b)
0.8
—~0.4
n
(@]
0.0 N\
-0.4
-0.8
0.0 0.02 0.04 0.06 0.08 Q.

FIG. 14. Same as in Fig. 13 for the (01) parity mode eigen-
function at kK =65.5744. The deviations from the Bessel func-
tion oscillation are considerably larger and the lack of isotropy
is more obvious.

1.0

(b)

C(s)

(a)

C(s)

0 0.02 0.04 0.06 0.08 0.1
S

FIG. 15. Spatial correlation function for the localized eigen-
function considered earlier. The angles are the same as in Fig.
13. The oscillations are of a sinusoidal nature.

FIG. 16. Coordinates along which the adiabatic separation is

carried out. The existence of the bouncing ball modes makes
the choice quite obvious.
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H,(x)= ‘f+V(y;x), (4.1)
dy
where
©, y<y(x)
Viy;x)= 10, y;(x)<y <y,(x) (4.2)
©, y>y,(x)
0, O<x<L
Y1¥=W3(x—L), L<x<3L/2 “.3)
B V3x, 0<x<L/2
V2= WAL a0 La<x <32 4.4)

The corresponding Schrodinger equation now has the
form

H,(x)$,(y;x)=E"(x)$,(y;x), 4.5)

where ¢,(y;x) and E"(x) are the eigenfunctions and ei-
genvalues, respectively. Clearly, the solution has to be
expressed in two parts. For 0<x <L

&, (y;x)=A,sin[nmy /y,(x)] (4.6a)
and for L <x <3L /2

é,(y;x)= A,sin[nm(V3L /2—y)]/[V3L/2—y,(x)] .

(4.6b)
The eigenvalues are
n*r?/y3(x), 0<x<L
E"X)= o V3L 2=y, ()P, L<x <3L/2. *7¥
(4.7b)

As yet we have merely found the eigensolutions of a
particle in a one-dimensional box of length y,(x)—y,(x).
Writing the total adiabatic wave function as

Enn (X, 3)=6,(y;x)(x) (4.8)
the Hamiltonian for the x motion turns out to be
d2
H,,=:i7+E (x), (4.9)

and the corresponding Schrodinger equation is

H,t, (x)=E2 £(x), (4.10)

where E 4 is the total adiabatic energy of the state labeled
by n and m.

The interesting feature that this approximation brings
about is that the potential for the x motion is just the en-
ergy for the y motion. To proceed with our analysis on
localized states, we must consider the shape of the poten-
tial E"(x) given by Eq. (4.7). The potential is constant
over the region L /2<x <L and varies as n’/x? and
n?/(3L /2—x)? over 0<x <L /2 and L <x <3L /2, re-
spectively. The steepness of the walls in the triangular
region increase rapidly with n. Obviously, therefore, the
adiabatic wave functions for large electronic (n) and low

vibrational (m) states would remain confined to the rec-
tangular region.

Coming back to the exact problem, if one were to ex-
pand the eigenfunction in terms of the adiabatic states

P, p)=3 c;&,(x,y), 4.11)

the coefficient ¢; would be nearly 1 for those exact and
adiabatic states for which the overlap (£,,¢) is large.
This would be so, in particular, for all eigenfunctions ¥
which are localized to the rectangular domain since the
separation involves no approximation in this region. One
would therefore expect the exact problem to have a large
number of regular eigensolutions, each having an eigen-
value and an eigenfunction close to that of a single adia-
batic state. These would naturally persist even at higher
energies. Since an identical analysis holds for both the
bands shown in Fig. 6, the wave function would be a su-
perposition of the two.

In Table V, we compare the exact eigenvalues obtained
numerically with those of a particle confined to a rec-
tangular box with sides V'3L /2 and L /2 and labeled by
the integers n and m. For reasons mentioned above, we
have investigated only those cases where m < 4.

At very low energies, the exact and the rectangular ei-
genvalues match to within 4%. The eigenfunctions are
found to be localized, but not strictly over the two bands
(Fig. 1). As the shape of potential suggests, the adiabatic
wave function §,f1 for small n takes nonzero values well
into the triangular regions (Fig. 8). Thus regularity in
this case is probably due to a weak mixing of adiabatic
states.

At intermediate energies, the eigenvalues (exact and
rectangular) match to within 0.1% and the eigenfunc-
tions are sharply localized over the rectangular region.
At higher energies, the agreement gets better, as expect-
ed.

TABLE V. Comparison of the (00) parity mode eigenvalues
obtained numerically with those of a rectangular box over a
wide range of energy. The corresponding eigenfunctions were
found to be regular.

koo k

(exact) n m (rectangular)

8.9611 5 1 9.1651
26.1177 15 1 26.1534
26.8124 15 2 26.6646
51.9651 30 1 52.0481
52.2709 30 2 52.3067
52.7289 30 3 52.7552
64.1408 37 1 64.1561
64.3788 37 2 64.3661
64.6990 37 3 64.7148
78.0142 45 1 78.0000
78.1591 45 2 78.1729
78.4560 45 3 78.4601
83.9309 49 1 83.9235
84.0741 49 2 84.0823
84.4101 49 3 84.3464
84.7413 49 4 85.7146
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V. SPECTRAL STATISTICS — EXPLANATIONS

In the following, we seek to explain our results on the
spectral fluctuations discussed in Sec. II. As mentioned
earlier, the particular values of v and v do not fit in with
the classical description of the system. It would therefore
seem that there is little justification in using Egs. (2.5) and
(2.11) for describing the nearest-neighbor spacing distri-
bution and the spectral rigidity, respectively. However, a
crucial ingredient in the derivation of these results is the
assumption that the level densities p; (i =1,2) of the reg-
ular (Poisson) and the irregular (GOE distributed) part of
the spectrum are proportional to the Liouville measures
of the regular and chaotic regions, respectively. Implicit
here is also the assumption that eigenvalue sequences
obey GOE statistic only if the corresponding classical
system is choatic.

Our studies on the properties of the (00) parity mode
eigenfunctions reveal the simultaneous occurrence of
both regular and irregular states. In the former case, the
eigenfunctions are localized on the rectangular bands
shown in Fig. 6 and are nearly zero in the rest of the
domain. The Born-Oppenheimer approximation offers a
suitable explanation for their existence and allows them
to be labeled by quantum numbers m and n. Thus there
exists a sequence of levels corresponding to the irregular
eigenfunctions and a regular sequence characterized by
two quantum numbers. We perform a simple calculation
to show that the quantities v and ¥ are, in fact, propor-
tional to the fraction of regular and irregular states in the
system.

Let the number of regular states (localized on the two
bands or arising from a weak mixing of the adiabatic
states) corresponding to each electronic state (n) be equal
to a(n). Assuming the eigenvalues to be those of a rec-
tangular box, the number of regular states having an en-
ergy less than E is thus

NXE)=na(n)
=[k?/3—3a*k)]"alk)

~kalk)/V3 . (5.1)

Since the explicit form of a(k) is not known, let a , be
the mean in the interval 25 <k <70. The number of reg-
ular states in this interval would then be
NR®(k)=ka 4 /V'3. The total number of states in this in-
terval is easily found using the corrected Weyl formula

N(k)= Ak?/4m+(Ly—Lp)k /47+C , (5.2)

where A is the area of the domain, Ly and L, are the
lengths of the Neumann and Dirichlet edges, respective-
ly, and C is a correction due to the vertex. Thus the frac-
tion of regular states N®(k)/N(k) in the interval
25<k <70 is equal to 0.08a 4. On equating this to the
value of v obtained from the best fit to the spacing distri-
bution, a 4 turns out to be =2.5. Thus the mean number
of regular states corresponding to each electronic state is
2.5—a result that is quite reasonable, as we see from
Table V.
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VI. CONCLUDING REMARKS

We have numerically investigated various statistical
properties of the eigenvalue spectrum and eigenfunctions
of the quantum 7 /3-rhombus billiard with a view to-
wards understanding the manifestations of nonintegrabil-
ity in this simple pseudointegrable system. Our results
can be summarized as follows.

(i) The spectral statistics of the pure rhombus modes
results from an independent superposition of a sequence
of GOE distributed levels with relative weight ¥=0.8 and
a Poisson sequence with relative weight v=0.2. In order
to distinguish between the quantities obtained by study-
ing the classical motion and the best fit to the spacing dis-
tribution, we refer to these as v and ¥,,,. In the present
case v, =0 while v, =0.8. A drastic change in the
difference seems unlikely at higher energies. Hence
chaotic dynamics, characterized by an exponential diver-
gence of trajectories, is not a necessary condition for a
GOE-like spectrum.

(1)) Most eigenfunctions of the pure rhombus modes are
irregular, though the underlying classical dynamics is at
best confined to a double torus. The spatial correlation
function is anisotropic and shows considerable deviation
from the Bessel function oscillations, thereby indicating
that diffraction from vertices does not play an important
role.

(iii) Regular states do exist at all energies in the (00)
parity mode of the 7/3-rhombus billiard. Barring those
at low energy, the rest are predominantly localized on the
two bands shown in Fig. 6. Their statistical properties
are similar to those of the equilateral triangle eigenfunc-
tions.

(iv) The BOA explains the presence of these in terms of
a confining mechanism arising from a dynamical poten-
tial. The eigenvalues (exact and adiabatic) are in good
agreement, especially at higher energies. Regularity at
lower energies is probably due to a weak mixing of adia-
batic states.

(v) The presence of regular states affects the spectral
fluctuations. Based on the results of Secs. Il and V, it is
shown that the quantities v and ¥ in the Berry-Robnik
formula are in fact the fraction of regular and irregular
states in the corresponding quantum system. The results
should hold for all generic polygonal billiards since these
have zero Kolmogorov entropy.

(vi) Hence it is proposed that a sequence of eigenvalues
corresponding to irregular quantum states give rise to
GOE statistics.
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APPENDIX

The results of Secs. II and IIl are based on the
boundary-dipole-distribution technique developed’ and
demonstrated® by Riddell. Since it has already been dis-
cussed by McDonald in detail,’ we shall only briefly
touch upon it.
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A solution of the Helmholtz equation

(v2+k3>wn(r):o, (A1)

Y,(s (s€R), in a two-dimensional interior domain R
can be expressed in terms of a dipole distribution D(s) on
the boundary. One can write

¢(r)—¢aRD NV'G(r,s')]-ds',

where rER, s'€R, and G(r,s’) is the free-space Green’s
function for the Helmholtz equation. In two dimensions,

(A2)

G(r,s')=—iH‘O”(kn\r—s’l) (A3)

where H|! is the Hankel function of the first kind. Thus

(I::;I) A(s)ds”

Yik,|s'—r|)

(A4)

where n(s’) is the outward normal to the boundary at s’.
In a bounded region such as R, the complex Hankel func-
tion H{" can be replaced by the real Neumann function

N, (more specifically, iH|"" — —N,). Thus
ﬁaRD (s :1) A(s')K (5,83 k,, )ds'=0 ,
(AS)
where K (r,8";k,)=N(k,|s'—r|).

One obtains the boundary integral equation by taking
the limit as r approaches the boundary from within.
Since ¢ is zero on the boundary, the dipole distribution
satisfies
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k" (S’—s) A
D(s)— 563RD(s)|7-~ fi(

— s')K (s,s';k, )ds'=0 .

(A6)

An advantage of replacing H{" by N, is that for com-
putational purposes the number of unknowns is halved.
However, there is a disadvantage as well. While the
Helmholtz equation has no eigenvalue if the solution
satisfies an outgoing boundary condition (Sommerfeld ra-
diation condition) at infinity, it does have eigensolutions
if the choice of iN, rather than H(l” is made. As a result,
one obtains eigenvalues of the exterior problem as well.
To circumvent this difficulty the kernel function is taken
to be

K(s,s';k,)=N,(k,|s'—s|)+aJ,(k,|s'—s]|) (A7)

where a is a real coefficient of the Bessel function J,.
This does not disturb the physical results of the interior
problem, but the eigenvalues of the exterior (Neumann)
problem start depending on a.

The eigenvalues can now be computed by discretizing
Eq. (A6). We have worked with a maximum of 100
boundary points on the first quadrant only, since others
can be obtained by reflections about the two diagonals.
This also helps us to separate the four symmetry modes
mentioned in Sec. II. In general, it is sufficient to have
the number of boundary points N =k +20, where
k?=2mE /#*. The eigenfunctions can similarly be com-
puted from Eq. (AS5) by obtaining the dipole distribution
at a desired eigenvalue.

Finally, we mention the distinct advantages that this
method offers. First, it requires points only on the
boundary for the construction of eigenfunction. Second,
any region of the spectrum can be independently investi-
gated without compromising the accuracy. In fact, the
accuracy depends only on the choice of N and not on the
number of solutions possible.
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