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In this paper a periodically driven, bistable system with additive noise is considered in the over-

damped limit. Here we have adopted the probability density of residence times as the tool for
dynamical studies on the system. We contrast this to the body of previous work, in the area now

known as "stochastic resonance, " wherein the power spectral density was the preferred physical
quantity. It is shown, both by analytic theory and by analog simulations, that the density of
residence times has a detailed structure reflective of the inherent symmetries of the system. Closed-
form expressions are developed for the distribution function as well as for several averaged quanti-
ties of interest. It is emphasized that all our analytic results predict observable physical quantities,
which are then demonstrated with measurements on the analog simulator.

I. INTRODUCTION

There is a great deal of interest in modulated multi-
stable systems, which are representative of a variety of
physical systems, ranging from modulated Josephson-
junction systems, ' the diffusion of particles in periodic
potentials under the influence of harmonic noise, ' su-
perionic conductors, and excited chicken hearts to the
dithered ring laser and other laser systems. In many of
these systems noise of high dimension is either an in-
herent problem that must be dealt with or the primary
focus of attention. An example of a system wherein the
noise is crucial to the dynamical behavior is illustrated by
the observation of stochastic resonance in a ring laser, '

an experiment that has refocused attention on modulated
noisy systems. In a field that began with early attempts
to understand the periodic recurrences of the Earth's ice
ages" ' and continued with an electronic-circuit realiza-
tion, ' this recent experiment has stimulated a new body
of theory '' ' as well as analog simulations. ' ' In the
large majority of the works cited, and in particular since
the experimental demonstration of the existence of a
maximum in the signal-to-noise ratio, the focus of atten-
tion was on the power spectral density of the noisy modu-
lated system. As an archetype of such systems with iner-
tia, the power spectrum of the modulated Duffing oscilla-
tor with noise has been of historical and continu-
ing' ' ' ' interest. In the context of noise-induced chaos
and eigenvalue statistics, periodically driven stochastic

systems have been studied very recently.
Here, in contrast, we present the results of a theory

and an analog simulation wherein the probability density
of residence times is the object of interest. In certain
applications —for example, when a single escape from a
local potential minimum or from an unstable state is the
event of interest —this quantity reveals the dynamics
more transparently than the power spectrum. A
residence-time probability theory has already been
presented for a modulated system of discrete random
walkers on the interval, and the results of early analog
simulations were obtained for the decay of unstable
states. In the case of stochastic resonance, high-
precision measurements of this quantity were first
presented in Ref. 19(b). The analog simulation is a
straightforward adaptation of techniques already re-
viewed. ' The background and development of interest
in modulated, noisy systems has been previously elaborat-
ed in more detail ' and will not be further discussed
here.

This paper is organized as follows. In Sec. II, we
present the theoretical development and the closed-form
results for the residence distribution and for certain aver-
ages of interest. Then in Sec. III we examine certain
asymptotic limits of the theory that yield results in closed
form. In Sec. IV we present the results of the analog
simulation and compare them to the theory. We present
some further results of the simulation that have not yet
been considered by the theory, and we finally display the
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now familiar "resonance" curve but here based on proper-
ties of the residence tim-e probabilities, rather than on the
more usual power spectra. Finally, in Sec. V we summa-
rize our results and present some further discussion.

II. THEORY

x =x —x + A sin(coot +/)+&D ((t),
(pt)}=o,
( ((t)g(t')}=25(t t')—,

In this section a theoretical approach to the residence-
time distribution is developed in the limiting case of small
modulation frequencies. The theory is based on the adia-
batic approach for the escape rate out of a potential well
developed recently in Ref. 16(a). Our starting point is the
Langevin equation:

where D is the noise strength. ' The system variable x
is dimensionless as in the simulation, and we take the
modulation strength A to be positive without loss of gen-
erality. For small frequencies, that is, for
coo « exp( —1/4D), the probability distribution for x
reads' "'

ex
P,d(x, t) =
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where Zo=exp(1/8D)(2D)'i &tt and D„(x) denote para-
bolic cylinder functions. The time-dependent escape
rates out of the right well (r ) and out of the left well
(r+) are estimated for small noise strength D by the
Kramer's formula,

r+(co,t+P)= —
(~ V,",(x„,t)~ V,",(x , t))'"-

Inserting Eqs. (Sa) and (5b) into Eq. (3), we find for the
time-dependent escape rates to second order in A, follow-
ing Ref. 16(a),

r (toot+/—)= ro[1+ —-A sin(coot +/)
—

—",, A sin (coot+/)]

X exp[+( A /D)sin(coot + P)
b V,d(t)—
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valid for

—(3A /4D)sin (coot+/)], (6a)

where the adiabatic potential V,d(x, t) is given by

V,d(x, t)

=x /4 —x /2 —Ax sin(coot+/)

—,
' »D »1/[4lln(coo/v'2)l],

where ro is the Kramer's rate for the unperturbed system
(A =0), i.e. ,
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In Eq. (3) the x,— are the time-dependent locations of the
right (+) and left (

—) minima of the adiabatic potential
V,d(x), and x„denotes the position of the maximum (un-
stable state) between them. The time-dependent barrier
heights are denoted b, V,+—d(t) The last . term in Eq. (4) is
not x dependent and thus does not enter into the calcula-
tions for x,—and x„. To second order in the modulation
strength A, we find

x„=—A sin(coot+/)+0 ( A '),
x,—=+1+(A /2)sin(coot +P)

Denoting the probability of the system being in the
right [left] well by P+(t) [P (t)], we propose the rate
equations

P —(t) = —r+ (coot+/+-)P —(t)

by assuming local exponential decay with the time-
dependent rates r and neglec-ting recrossing events (i.e.,
we assume that each trajectory crossing x =x„ is ab-
sorbed). The decay processes of P+ and P are con-
sidered as two distinct, noninteracting experiments. The
phases P and P+ are typically different in our experi-
ments. With P +(t =0)= 1, the solu—tions of Eq. (7) read

+ —', A sin (coot +P)+0 ( A ),
which results in the barrier height

b, V,d
=

—,'+ A sin(coot + $)
+ —,

' A sin (coot+/)+0( A ) .

(5a)

(5b)

CdpfP' (t) =exp — f —r (6+/ )dO—
o o

(8)

The probability densities for the escape times are thus
given by
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p '(-I-) = P—'-( I)

cd()1

=r+(cu„t+p=)exp — f '
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where X is a normalization constant. Since we assume
that the jump occurs instantaneously, P (p) is identical
with the probability distribution of the phase after the
jump, i.e. ,

(9)

=-N exp +—sin(P) +0,A
A A

D D ' (10)

This result is for the escape-time distribution for fixed
phases P —. In our analog simulations, however, the
phases are not constants, but vary from measurement to
measurement.

In the simulation, an escape-time measurement starts
immediately after a transition from one well to the other
and ends when that trajectory leaves the well, as shown in
Fig. 1. In the following, we call this interval a "counting
interval. " The next measurement starts when the trajec-
tory (which is meanwhile not interrupted) arrives again in
the same well. We thus obtain separate escape-time mea-
surements for both wells. Performing the escape-time
statistics, we shift all counting intervals within one trajec-
tory to the initial time t =0, i.e., we always start with a
measurement at t =0 but with a randomly diff'erent po-
tential configuration described by the phase P. Hence the
phase of the modulation, O=cuot +P, is correlated with
the jump of the trajectory from one well to the other, -'

and the phase P, being determined by /=9(t =0), is also
correlated with the jurnp event. The phase distribution
W —+(p) immediately after the jump from the left to the
right (+) and from right to left (

—
) can be obtained

within the adiabatic approach by assuming that the jump
occurs instantaneously. The jump probabilities from the
left to the right (+) and from the right to the left (

—
) are

given as a function of the phase P for small A by

P,d(x„(p) )

P„(x;+((t ) )

($)= — exp +—sin(P)
1

2~Io( A /D) D

where ID(x) is the zeroth modified Bessel function. In
Fig. 2 the phase distribution functions, Eq. (11), are
shown for A =0.2 for decreasing values of the noise
strength D. For small D, the probability 8'+ becomes
very peaked at P=rr/2, whereas W has a peak at
(() =3rr/2. Taking these values as deterministic values for
the phase, we obtain from Eqs. (6a) and (9) that the
escape-time distributions p+(r) and p (r) are identical, as
one would expect from the symmetry of the potential.

For finite D the results for the escape-time distribu-
tions for fixed phase P must be averaged over the phase
distribution functions Eq. (11), i.e.,

(p+—(r) )~= f W (P)r (nor—+P)

X exp r+0+ d0 d
GPp 0

(12)

In general, the integrals in Eq. (12) must be performed
numerically. Since W+(P+rr) = W (tt ) and
r+(P+rr)=r (P), the escape-time distributions for both
wells are identical, i.e., (p (t))&=(p (t))&. In Fig. 3
the averaged escape-time distribution is plotted for
A =0.2 and for D ranging from 0.02 to 0.05. The time
scale in Fig. 3 is the original, unscaled time scale in mil-
liseconds, and the modulation frequency was v=50 Hz in
the original scaling which results in the dimensionless,
scaled frequency coo=2m.v~;=0.0314. (See Sec. IV.) The
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FIG. 1. A stochastic trajectory jumping a few times between
left and right wells. The counting intervals are depicted by the
double arrows.

FIG. 2. The phase distributions W (P) (solid lines) and

(P) (dotted lines) are shown for A =0.2 V and various
values of the noise strength D at the frequency v=50 Hz
(coo =0.0314).
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FIG. 3. The escape-time distributions from Eq. (12) are shown for A =0.2 V and for (a) D =0.02; (b) D =0.03; and (c) D =0.05 by
the solid lines. The dashed lines represent the averaged decay calculated from Eq. (30).

experimentally observed peaks, located at odd multiples
of the half period of the modulation frequency as demon-
strated in Refs. 18(a) and 19(b), are reproduced by this
theory. For increasing D, the peaks gradually vanish,
and a monotonic decay of p(t) is observed, whereas for
decreasing D the peaks become very high. This behavior
agrees qualitatively with the measured results of the ana-

log simulation described in Sec. IV. The quantitative
agreement is not very good, since most of the measure-
ments were made for values of both A and D that exceed
the limits imposed by the adiabatic theory for the modu-
lation frequency used. This defect could, in principle, be
remedied by reducing the modulation frequency to a
much lower value; however, the experiment then becomes
impracticably long in duration.

The most striking feature of these results is the se-

quence of peaks at odd integer multiples of the half-
period of the modulation frequency. It is tempting to
connect these peaks with possible subharmonic reso-
nances of the nonlinear, bistable oscillator. It turns out,

however, that the power spectrum of our system does not
show any discernible subharmonics even after very long
averaging, as discussed in Ref. 19(b). In order to further
investigate this, we performed the phase averaging of the
escape-time density in Eq. (12) with a uniform phase dis-
tribution, W+—(P)=1/2n, with the r.esult that the se-
quence of peaks was destroyed. The origin of the peaks
is, therefore, rooted in the nonuniform phase distribution
W +—(P) given by Eq. (11). In the context of correlation
functions and spectral densities, a nonuniform phase dis-
tribution leads also to specific predicted behavior. '

III. ASYMPTOTIC LIMITS
AND THE AVERAGED DECAY

A. The limit A /D ~ Do

Most of the analog simulations have been performed
for small modulation strength and very small noise
strength, or for 3 ~0 and 3 /D ~ ~. In this section we
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A
r -=roexp ——sin(coot +P)

D
(13)

derive approximate expressions for the escape-time distri-
butions and the peak ratios of the escape-time distribu-
tions in this limit. Since the escape rate distributions in

both wells are identical, we restrict ourselves in the fol-

lowing to the right well. The time dependent rate r is,
for these limits, approximated by

that

I'p
P+(r) =exp —2rrn Io( 3 /D)

COp

I'
p cUOf

f exp ——sin(8+ P) d 8
cop p D

(15)

The probability P of the trajectory still remaining in the
right well is then given by

P (t) =exp — J exp ——sin(8+$)d8
o o D

(14)

with coot =mod(coot, 2~). Since the function
exp( —A /D sin8) is strongly peaked at 8= 3 m. for
A /D ~ ~, it is approximately given by the Gaussian

exp ——sin8 =exp ———' —(8+/ —3m. /2)A, A

D D 'D

If coot is in the interval [ 2nn, 2(n +1)vr], the integration
in Eq. (14) can be carried out from 8=0 to 8=2mn, so

I

Inserting Eq. (16) into Eq. (15) yields

(16)

1/2 1/2
A

2D
P+(t) =exp (17)

' 1/2
~o mD A A

exp — 2n —erf (P ——3m ) +erf (not +P ,' rr)——
cop 2A D 2D

where Io(A/D) has been replaced by its asymptotic form exp(A/D)(2vrA/D) '~, valid for 3/D~~, and where
erf(x) is the error function. The phase-dependent escape-time distribution is thus given by

' 1/2 1/2
Ap+( t) =exp ——sin(coot +P ) exp

~o ~D
cop 2A

A
exp —~ 2n —erf

D
A

2D

1/2

(P ——', m )

+erf ( coot +p ', m )—— (18)

For 3/D~ ~ and 3 ~0, the phase distribution 8 +(P) is sharply peaked at P=m/2, so that phase averaging of
(p+(t) ) yields approximately

A(p+(t) ) =exp ——cos(coot ) exp

1/2
ro ~D
coo 2A

A
exp — 2n + 1+erf

D

1/2

(coot n)—.

This equation shows peaks approximately at t =(m
+ ,')TD th—at is,—at odd multiples of the half-period of
the driving frequency cop=2m/Tp —and thus explicitly
describes the most striking of the observations made by
analog simulation. In Fig. 4 this analytical result (dotted
line) is compared to the numerically evaluated escape-
time distribution from Eq. (12) (solid line).

The ratio of the heights of any two consecutive peaks is
given by

0. 10

0. 08-

0. 06-

+~ O. o~-
V

1/2
"o 2vrD=exp
Cgp

exp
D

(20)
0. 02-

valid for A ~0 and A /D ~ ~ .

I I W I S 1 8 ~ ~ ~ I 0 I I 1

50 100 150 200
t (ms)

B. The limit A ~0 and small A /D

In this limit the escape-time distribution and the peak
ratios can be estimated in a similar way to that used

FIG. 4. The numerically evaluated escape-time distribution
(solid line) is compared to the analytical result from Eq. (19)
(dotted one) and to the averaged decay from Eq. (30) (dashed
line) for A =0. 1 V, D =0.05, and v= 50 Hz (co&=0.0314).
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above for A/D~ ~. Expanding the expression for the
time-dependent rate, Eq. (6a) for small A and A /D~O,
we obtain

Now the escape-time distribution p+(r) can be obtained
from Eqs. (22) and {9) and must be averaged over the
phase distribution W {P},which, for A /D~0, reads

A
r (coot +P) —= ro 1 ——sin(coot+/)+ —,

' A sin(coot +P)

1 AW+(P)= 1+A/D sing+A /(2D )sin / ——
2m 4 D2

(23)

3
sin ( coot +P )

+ — sin (co t+P)1 A
o (21)

After some algebra, we obtain

"o A
( p ( t) ) =— 1+— [1—cos(coot) ] roexp( —

rot )
cop D

(24)

2n n & coot & (2n + 2)n,
with the result that

P+(r) =exp
n m.rp A2+

2DQ)o

—rot

ro A
[cos(coot +—P) —cosP]

cop D

roA 2

[ ,' coot —
—,
' sin[2—(coot +P ) ]

2D coo

The probability P+(t) of the trajectory being still in the
right well [having started in the right well with
P+(0)=1) is obtained by inserting Eq. (21) into Eq. (8)
and neglecting terms of order A /D compared to terms
of order ( A /D) and A /D for

to leading order in A/D. Note that in this approxima-
tion the exponential decay is modulated periodically in
time by the time-dependent prefactor.

C. The averaged decay of the escape-time distribution

Let us now discuss the averaged decay of the escape-
time distribution —that is, a nonoscillatory smooth curve
through the peaked distribution. In Fig. 5, (p+(t)) is

shown for D =0.02 and A =0.2 plotted on a logarithmic
scale. The envelope of the successive maxima is clearly a
straight line, indicating an exponential decay of the max-
imum amplitudes. ' ' ' The averaged decay can then be
expected to also be exponential. We now derive an ap-
proximate expression for the decay based on the adiabatic
description given above. Assuming uniformly distributed
phases, the phase-averaged escape rates for the sym-
metric potential,

+ —,'sin(2$ })

io') ~)l')(I ~| ]IIII) {{
10

4"~ 10
V

10

(22)

(r ) =ro(1+x A ),
where

(26a)

(r ) =(r+ )—:(r ) = f r (coot+/—)dP, (25)
2K p

can be evaluated approximately in both limiting cases
A/D~O and A/D-~ ~. The former limit is obtained
by inserting Eq. (6a) into Eq. (25), expanding the ex-
ponential terms up to order A /D and performing the in-

tegration, which gives

10
1

4D"
3

4D
(26b)

10

10

10

Solving the rate equation, Eq. (7), with this averaged es-

cape rate, we find for the averaged escape-time distribu-
tion

p (t):—p+ {t)=roll+a A )exp[ —ro{1+aA )t] . (27)

100 200

t (ms)

300 400

FIG. 5. The numerically evaluated escape-time distribution
for 3 =0.2 V, D =0.013, and v=50 Hz (coo=0.03141) is

shown on a logarithmic scale. The peak-to-peak decrement
from these numerical results is 0.902 which can be compared to
the prediction of Eq. (20) of 0.906.

(r ) =roIO{ A /D),

which has the asymptotic form for A /D ~ ~,
(28)

In the other limit, A/D~ ~, we neglect terms of or-
der A /D, A, and also terms of order A in the prefactor
of Eq. (6a) and insert the results into Eq. (25). For the
uniformly averaged rate, we thus obtain
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not observe the predicted divergence of the first-order
peak with D tending to zero for technical reasons. As D
becomes small, the switching rate becomes also very
small, and a statistically significant sample of escape
times (the times between zero crossings) becomes impos-
sible to obtain in a reasonable (even though long) data ac-
quisition time for a single time series. Second, the analog
data show the maxima of the higher-order peaks shifted
progressively toward smaller values of D, whereas the an-
alytic results do not show this feature. The shift seems
reasonable on physical grounds. The higher-order peaks
correspond to higher odd multiples of the fundamental
half-period To/2. Switching at these lower frequencies
becomes more probable as D becomes smaller.

V. SUMMARY

In this paper we have studied the probability density of
escape times as a physical quantity, alternative to the
power spectrum, useful for characterizing noise-driven,
bistable systems which are periodically modulated. An

analytical theory was developed within the framework of
the adiabatic approximation, analog simulations of the
dynamics were carried out, and the results compared.
All features predicted by the theory were qualitatively
reproduced by the simulations except for the predicted
divergence of the first-order peak in the limit of small
noise intensity. A notable feature is the sequence of
peaks in the probability density located at odd multiples
of the modulation half-period which individually show
the resonance phenomenon, i.e., they pass through maxi-
ma at optimum values of the noise intensity.
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