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Solitons are generated in stimulated Raman scattering using a x phase shift of a weak Stokes
input field; diffraction effects are retained in the calculation. For strong diffractive coupling, we
observe an on-axis increase in both the laser and the Stokes intensities and a corresponding nar-
row transverse profile for both fields; these results are elucidated and explained.

Solitons have been observed in stimulated Raman
scattering (SRS) when a = phase shift was introduced in
the incident Stokes light.! The phase shift in the Stokes
pulse leads to a temporary repletion of the pump beam
and a consequent loss in the Stokes energy. This phe-
nomenon was theoretically predicted for plane-wave prop-
agation of the electromagnetic fields.? The phase shift (of
order n) can also be induced spontaneously from quantum
noise, > leading to the same phenomenon. This is a special
example of the decay of an unstable state of which the
transient buildup of laser oscillation and superfluorescence
are other important examples in quantum optics.

The media in which the Raman process occurs are
diverse and applications can be found in the generation of
coherent light over a wide range of frequencies in the far-
infrared region;* in the cleanup of fluctuations in light,’
and in the compression of excimer laser pulses.® These
are only a few areas of interest. Moreover, SRS has simi-
larities with schemes used for developing x-ray lasers,
whose radiation would be initiated from quantum noise.’

In this Rapid Communication we will study the propa-
gation effects on soliton behavior with the aid of the semi-
classical model for SRS. We opt to generate the soliton
by inducing a x phase shift in the Stokes field (determinis-
tic model), and use full three-dimensional propagation
effects in order to study the role that diffractive coupling
plays in such systems.

Under general conditions, assuming the system remains
mostly in its ground state, we write the equations of
motion for the following complex, slowly varying fields:
the pump field E;, the Stokes field Eg, and the polariza-
tion Q. The length of the medium is scaled to a unitless
number and the coupling coefficients have been removed
by scaling both the space and time coordinates and the po-
larization. The equations are then written as?
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where v is the group velocity, z is the longitudinal coordi-
nate, V1 is the Laplacian that operates on the transverse
coordinates (x,y); the strength of this diffractive coupling
is measured by the Fresnel number F =2kd?/L, which is
assumed to be equal for both the Stokes and laser fields, d
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is a typical width of the laser field profile, k is the wave
number, and L is a characteristic length of the medium. y
is a phenomenological damping factor for the polarization
Q (we choose y=100 in this Rapid Communication,
which corresponds to a steady-state gain-length product of
50 in our numerical calculations below).

In order to study soliton behavior under the full propa-
gation effects, we solve the set of Eqs. (1)-(3) using the
method of characteristics, combined with the split opera-
tor method® in order to account for diffractive coupling.
The details of our numerical method will be given else-
where.® We assume that propagation takes place in the z
direction and we include the effects of both transverse
coordinates by using a two-dimensional fast Fourier trans-
form (FFT). The initial and boundary conditions were
given for all the fields; at the input boundary the laser field
was taken with a Gaussian profile
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the Stokes field is E5(0,¢) =FE; (0,£)/25 for times less than
0.01 and the negative of this value for greater times. The
polarization Q is initially assumed to be zero. When the
polarization advances by the time increment At, it follows
that the fields must have advanced a distance Az =vAt,
and the effective propagation distance is then A& =vAr+/2.
We have modified a second-order approximation split-step
operator method combined with a predictor-corrector
method to efficiently solve these equations. The velocity is
taken to be v=40 in our scaled units, but we have used
values from 0.1 to 200 and found no qualitative changes in
our results. The gain is reversed between the laser and
Stokes energy at t=0.01 when the input Stokes field has
its phase shifted by n. The laser intensity grows and re-
pletes itself in a short pulse characteristic of solitons in
nonlinear media.

The full three-dimensional propagation effects are ac-
counted for by using a two-dimensional FFT and it was
tested for convergence, giving excellent agreement with
known results. As expected, we found that in this case,
where no fluctuations play any role, radial symmetry is
preserved. We used a 32x 32 grid for the FFT transform,
which was large enough to give accurate results without
spurious interference from the periodic boundary condi-
tions. We tested a 32 point and 64 point grid with one-
dimensional FFT with no observable changes in the re-
sults. Furthermore, there is no qualitative difference be-
tween the one- and two-dimensional simulations.®
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In Fig. 1 we show the on-axis laser intensity for a
Fresnel number F=15. When the medium is short, no de-
pletion is observed. For small distances the soliton is
sharp, but it eventually broadens and dissipates due to
diffraction, as seen at z=1.2. The soliton peak is actually
larger than the input laser intensity at z=0.6. From Eq.
(4), |EL|2ax=2500 at the input (z=0), and we find the
on-axis field at z=0.6 |E|2.,=2800. In Fig. 2 we plot
the corresponding Stokes intensity. For short distances,
there is a characteristic dip in the Stokes intensity when
the laser intensity is repleted. However, at larger propa-
gation distances, and especially at z=1.2, the Stokes in-
tensity increases as the laser intensity is increased. The
effect is not expected to be small, and for F=15 the
Stokes intensity increases by more than a factor of 2 at
z=1.2 (|Es|3.x=5600). This is a surprising result in
view of the fact that for infinite Fresnel number, the sum
of the Stokes and laser intensity are constant and we have
introduced diffraction into the equations of motion which
would normally further diminish the on-axis intensity.

These figures can be understood as gain focusing of the
Stokes and laser intensities. Our gain-focusing phe-
nomenon is quite distinct from that discussed in earlier pa-
pers.'®!! Those papers treated linearized equations where
there is a balance between gain and diffraction. Our ver-
sion of gain focusing occurs off-axis in a regime that can
only be described through a full nonlinear analysis. In
Figs. 3 and 4, we show the laser and Stokes fields as a
function of time with only one transverse coordinate
displayed at z=1.2. For short propagation times, the
laser is depleted and conical emission of the field is ob-
served. The reappearance of the laser field due to the =
phase shift is strong and nearly complete on the axis; the
transverse profile of the laser field is about a factor of four
narrower than the input field. Satellite intensities are also
predicted from the simulation.

In Fig. 4, the Stokes intensity initially grows, saturates
and then spreads as it propagates. No conical emission is
observed for this field. As the laser soliton reappears, the
Stokes intensity collapses to the axis and itself becomes
much narrower. Once the laser has again depleted, the
Stokes intensity again spreads.

Diffraction in this system plays an, at first, unexpected
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FIG. 1. On-axis laser intensity vs time and longitudinal (z)
distance in the medium. The scaling of the coordinates and in-
tensity makes them unitless.
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FIG. 2. On-axis Stokes intensity vs time and longitudinal (z)
distance.

role, but the consequences can be understood with simple
physical arguments. As the laser pump propagates inside
the medium, the higher intensities of the input Gaussian
shape are strongly absorbed, thus attaining the general
shape of an annulus, and with only free space propagation
a Poisson spot should appear on the axis. The annulus
shape of the laser intensity lies in a region where the
Stokes intensity is initially small. The laser propagates in
a cone toward the center and outer portion of the beam.

Since the Stokes field is spreading by diffraction to the
outer region, the laser propagates in its presence and is
amplified with a gain that is comparable to the gain which
the on-axis laser field experiences. The part of the laser
field diffracting into the hole is amplified by the phase
change in the Stokes field and this converging component
is responsible for the much narrowed laser pulse. Con-
currently the energy is being removed from the wings of
the Stokes and focused onto the axis; the Stokes energy is
in turn also redirected by the strong focusing field of the
laser. Therefore, the presence of the side wings in the
laser intensity will promote energy flow to the center of
the beam. As this takes place, the Stokes gain, which is
intensity dependent, pushes the center intensity up, thus
making transverse coupling even more important. The
effect, as outlined above, is then essentially initiated by a
Poisson-spot circumstance. '2

The integrated intensity over the transverse coordi-
nates, shows a result that is expected from the plane-wave
theory. Namely, as the integrated laser intensity is replet-
ed, the integrated Stokes intensity decreases. The energy
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FIG. 3. The transverse profile of the laser field at z=1 vs
time. F=15.
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FIG. 4. The transverse profile of the Stokes intensity vs time.

is, of course, conserved, but a surprising redistribution
occurs along the transverse direction due to diffraction.
The close agreement between experiment and the plane-
wave theory on the generation of spontaneous solitons® is
due to the fact that the noise is important during the ini-
tiation process and only the integrated intensities were
studied. It will be interesting to study the correlations in
the transverse intensity profile which cannot be predicted
by plane-wave theory.

We believe that our new predictions could be observed
in carefully designed experiments. First, the conical emis-

sion in the laser, the narrowing and satellite peaks should
be considered signatures of the on-axis effect. Second, in-
tensity must be time resolved and our results apply to the
near field. Finally, experiments that integrate over slices
of the profile are not likely to observe the effect and there-
fore, either an array of detectors or a detector which
resolves the on-axis intensity will be required.

In conclusion, we find that diffractive coupling also
causes the solitons to dissipate, once they are created.
Diffraction is responsible for an energy redistribution
which causes an unexpected sharp gain in the on-axis
Stokes intensity at the same time that the laser intensity is
increased. The transverse profile of the soliton and the
Stokes emission is narrowed by gain and diffraction cou-
pling. We find that the process is initiated by conditions
that strongly favor the onset of diffractive coupling, name-
ly intensity discontinuity in the beam due to strong ab-
sorption in its center.
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