
PHYSICAL REVIEW A VOLUME 42, NUMBER 5 1 SEPTEMBER 1990

Bound states of anharmonic potentials
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A procedure based on the exact solutions of multiple-step recursion relations with successive
coe5cients is shown to provide upper bounds to the bound-state energies of a class of anharmonic-
oscillator potentials. Any finite set of energy levels can thereby be estimated to any accuracy. The
associated wave functions are guaranteed to be normalizable.

Anharmonic oscillators are of great interest in quan-
tum physics. ' Their exact solutions for arbitrary cou-
plings are hard to find. This has culminated into the de-
velopment of many fascinating approximation tech-
niques, some perturbative and some nonperturbative.
Among the modern ones, we have, for example, the two-
step procedure, the operator method, various 1/X ex-
pansions for spherically symmetric potentials, the ra-
tional function approach and supersymmetric quantum-
mechanics-based methods. In addition, one has, of
course, the Hill determinant method.

The use of these methods often requires answering two
major questions that relate to the normalizability of the
wave functions and the convergence of the associated ex-
pansions. Such questions are usually hard to answer
unambiguously.

This work formulates a technique in which such awk-
ward difficulties simply may not arise. The normalizabili-
ty of the solutions will be built in and there will be no
small parameter expansions whose convergence can be in
any doubt. We shall demonstrate that for a class of
anharmonic-oscillator Hamiltonians, the given potential
function can be enlarged such that the modified Hamil-
tonian admits a subset of manifestly normalizable solu-
tions. Leach and others have discussed the techniques
for realizing such solutions. However, we now observe
that such a subset of exact solutions can be made progres-
sively larger by forcing the auxiliary couplings to de-
crease monotonically. In the process, therefore, the cor-
responding energy eigenvalues tend monotonically to the
energy eigenvalues sought. The attendant wave functions
remain always normalizable. It will be ensured that the
convergence to the true eigenvalues is from above.

We begin with the problem of the one-dimensional po-
tential

In Eq. (2) we have used the scales for the quartic oscilla-
tor. Let

px4 x'
1(=exp — —y u(x) .
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The parameter y will be specified shortly. From Eq. (2)
we now have

u" —2(Px +yx)u'

Choose

+ [e—y+ (y —3P)x + (2Py —1)x ]u =0 . (3)

2Py=1 . (4)

Writing u =g„a„x"we convert Eq. (3) into the three-
step relation

(n +3)(n +4)a„+4+[e—y(2n +5)]a„+2

+[y —P(2n +3)]a„=O . (5)

Equation (5) allows u to be a polynomial of degree k pro-
vided

akAO, ak+2=ak+4=0, (6)

y =P(2k +3),

so that

with k =2m or k =2m + 1, m =0, 1,2, . . . . Equation
(6) immediately gives

V=bx, b )0.
To solve this problem, we examine the potential

3= 1

4(2k +3)

U&=bx +cx, c)0.
The associated Schrodinger equation is

f"+(e—x —P x )/=0 . (2)

The condition 0&+2=0 then provides the corresponding
energy eigenvalues for the potential U&. For this purpose
the coefficient ak+z is best expressed as a
(m +1)X(m +1) determinant using Eq. (5). Then one
easily finds that for k =2m (or 2m +1) there are m +1
exact solutions of even (or odd) parity, respectively. Such
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solutions always correspond to the lowest energy states of
the given parity. For the remaining solutions U is not a
polynomial. These will not interest us here.

As k increases, so does m +1—the number of exact
solutions. Remarkably, at the same time the tuned sextic
coupling P diminishes monotonically as per Eq. (8) and
U, ~ V monotonically. Thus the energy eigenvalues also
tend progressively to those of the quartic Hamiltonian
from above. The energy spectrum of the quartic poten-
tial can thus be ascertained to any desired accuracy. This
typical scenario, namely, the increase in k accompanied
by a weakening of the auxiliary coupling will be encoun-
tered repeatedly in the cases to follow and is indeed the
basis of the success of the method.

From a quantitative point of view one notices from Eq.
(8) that for k=—100, the auxiliary coupling P2-0.01.
Thus the zeros of approximately a 50X50 determinant
can already be expected to provide a good estimate for
the low-lying levels of the quartic potential.

In order to get a feeling for the quantitative bounds ob-
tainable let us list some illustrative examples. Consider
the case of the ground-state energy co. For k=0 we have
uo=const and so=( —', )' that is about 7.5% above the
standard value. For k=2, so is within 5% of the expect-
ed result and for k=4 we reach the 3%%uo accuracy level.
Similar results obtain for the one-node level. Preliminary
results indicate that the first bounds for several low-lying
levels give roughly similar results. At first glance this
seems somewhat surprising, for, one expects the higher
levels to be perturbed much more than the lower ones
due to the residual sextic coupling. However, the point is
that the higher the level, the smaller the residual sextic
term for which the first bound is obtained. We may point
out also that the zeros of an n Xn determinant give
bounds for n levels simultaneously.

Notice that as k grows larger (typically greater than
100) the tuned P values form a quasicontinuum. Thus
the problem of a quartic potential perturbed weakly by a
sextic term is effectively solved adequately for any small P
(typically P-0. 1). In any case the two nearest tuned P
values together provide strict upper and lower bounds
simultaneously for the energy levels.

Next consider the quartic anharmonic-oscillator poten-
tial

V(x)=ax +bx, a )0 .

Instead, we first solve the potential U2=ax +bx +cx .
Proceeding exactly as before we now have, instead of Eqs.
(3) and (5), the equations

u" —2(/3x +yx)u'

+[F—y+(y2 —1 —3P)x +(2Py —
A, )x ]u =0 (9)

and

y =I+P(2k+3) (12)

with energies again given by the condition ak+ 2
=0.

In Table I we present the first bounds for the ground
and first excited states. These are based on the k=0 and
1 results, respectively, that lead to the equations

(13)

and

c, =3y, y' —y= —', k . (14)

Table I covers the range A, =0.1 to 100. One sees that
just the first step of our procedure that uses only the
U0-1 and U, -x solutions for Uz leads to reasonable re-
sults. We stress that these results can be improved as
much as one pleases by going to larger and larger values
of k.

An interesting case is that of weak anharmonicity
(A, -0.1) for which the k=O and 1 results are almost ex-
act and so a useful small parameter expansion in A, for co
and c& can be readily written down from Eqs. (13) and
(14), respectively. Such an expansion coincides with the
first order of conventional perturbation theory but in
contrast it is not beset with any convergence problems.

For the case of strong anharmonicity the k=4 and 5

bounds already determine co and c, , correct to about 1%.
A detailed numerical compilation of results for this and
several other potentials is underway and will be presented
elsewhere.

We note that although the existence of the polynomial
solutions for the problem of the potential U2 was formal-

ly known earlier, their predictive power was not recog-
nized before.

Next, we consider the full sextic anharmonic-oscillator
potential. To solve this problem we introduce the poten-
tial

U3 =ax +bx "+cx +dx +ex '

Here, all couplings are positive. Set

(15)

TABLE I. First bounds for the ground- and first excited-state
energies of the potential V=x +Ax for the range X=0.1 to
100 based on the solutions v=1 and x, respectively. cp and c,
are the results of this calculation and the standard values c& are
taken from Biswas et al. (Ref. 7). The entries in the last column
have been suitably rounded off.

E,p

2I)y = i. .

Proceeding as before, polynomial solutions of degree k
are obtained if

( n +3 )(n +4)a„+4+[E y(2n + 5—) ]a„+2

+[y —1 —P(2n +3)]a„=O . (10)

Here, we have used oscillator units so that
V=x +A,x +P x and the parameter y is chosen such
that

0.1

0.2
0.3
1.0

10.0
100.0

1.068
1.125
1.176
1.431
2.602
5.376

1.003
1.006
1.01
1.03
1.062
1.075

3.323
3.574
3.788
4.80
9.114

19.057

1.005
1.01
1.015
1.03
1.06
1.07
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%=exp
—ax Px yx

6 4 2
u(x), a =—e.

u(x)= —x +P x

Following the procedure leading up to Eq. (8) we now
have polynomial solution of degree k, provided

3= 1' ~ =
4(2k+3)

For k =2m or 2m + 1, one obtains (m + 1) polynomial
solutions. The corresponding energies may be positive as

Selecting the free parameters P and y suitably, we arrive
at a four-term recursion relation with successive
coefficients. This makes u(x) a polynomial of degree k
provided ak%0 and ak+2=ak+4=ai, +6=0, which forces
the auxiliary couplings d and e to have tuned values that
decrease as k increases. With the couplings a, b, and c
entirely free, the pure x and ax +cx potentials are au-
tomatically solved satisfactorily.

To get polynomial solutions for a general potential in
the present class of potentials the term with the highest
power of x should always be of the form x "+,
n =0, 1,2, . . . . In addition to the dominant asymptotic
factor all even subdominant ones should be extracted.
The additional parameters so introduced help minimize
the size of the recursion relation. A p-step relation re-
quires a coeScient aj, not to vanish but the next p —1

coeScients to vanish for a polynomial solution of degree
k to materialize. Of the p —1 conditions imposed one
quantizes the energy and the rest the auxiliary coupling
constants. Hence, for example, to solve potentials up to
x we must introduce terms up to x'". The problem of
such anharmonic oscillators thus reduces effectively to
that of solving merely a set of algebraic equations.

Although it is not the purpose of this paper to discuss
multiple-well anharmonic potentials in detail, we would
like to indicate one interesting fact. If some of the junior
couplings are reversed then the full potential can have a
double or a multiple-well structure. In such cases too, a
partial set of exact solution may be obtained. Consider,
for example, the double-well potential

well as negative. Several interesting features of the spec-
trum, especially of the negative branch, can be deduced
from these solutions. We shall not go into the details
here.

To conclude, some observations are in order. We have
seen that for a set of tuned or quantized values of certain
coupling constants a subset of solutions splits off from the
rest and becomes easily realizable. This is a subset of or-
thogonal polynomials with appropriate weights. Such
subsets (for k )) l ), as we have seen, are well suited to de-
scribe the states of the original Hamiltonian. Hence, a
detailed study of the properties of such polynomials is a
matter of considerable importance.

The fact that an orderly pattern of polynomial solu-
tions emerges for the fine-tuned values of some coupling
constants motivates one to speculate that the associated
auxiliary Hamiltonians (with potentials U„Uz, . . . ) de-
velop some deeper symmetry connections that are absent
for other arbitrary values of such coupling constants. '

For large finite k (k being the degree of the polynomial
solution) these coupling constants are vanishingly small
and form quasicontinuous sets, as we have seen repeated-
ly. It then means that in any small neighborhood" of a
given anharmonic-oscillator Hamiltonian there exists a
sequence of Hamiltonians which approximate more and
more closely the given Hamiltonian and whose subsets of
solutions, can be, on account of underlying symmetries,
deduced merely by algebraic means. In essence then,
even though a given anharmonic Hamiltonian may not be
amenable to a direct treatment, a marginally different
problem can always be found which is quasi exactly solv-
able. An excellent knowledge of the original problem
thereby obtains without the need to deal with it directly.
Inherent in our approach is the reasonable assumption
that the energy is not a discontinuous function of the
auxiliary coupling constants. For the class of potentials
we have studied there is no reason to expect otherwise.
The gradual convergence of the predicted energies to
known numerical values indicates that this assumption is
indeed sound.

Finally, we note that our procedure applies to similar
problems in two and three dimensions. Some such three-
dimensional problems of considerable interest in atomic
and high-energy physics are currently under review.
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