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We study the effects of velocity-changing collisions {VCC's) on nearly degenerate forward four-
wave mixing {FWM) in the presence of a strong pump. The calculations include the effects of both
VCC s and phase-interrupting collisions. Explicit calculations and results for FWM in two-level
systems for the case of strong collisions are presented in the Doppler limit. Effects of saturation on
VCC-induced narrowing and those of VCC's on strong-field-induced resonances are discussed in de-
tail.

I. INTRODUCTION

In recent years the investigation of effects of velocity-
changing collisions (VCC s) on four-wave mixing (FWM)
signal line shapes has received considerable attention.
Lam, Steel, and McFarlane' as early as 1982 reported the
VCC-induced narrowing of the longitudinal relaxation
linewidth which they experimentally observed using
near-resonant FWM. Since then there have been a num-
ber of experiments carried out with nearly resonant fields.
Lam, Steel, and McFarlane generalized their previous
studies to include the degeneracies of the ground state.
Rothberg and Bloembergen ' also made similar studies
using the technique of FWM to study the effects of
VCC's on collision induced Zeeman coherences between
the degeneracies of the ground state of Na atom. These
authors have also reported VCC-induced collisional nar-
rowing' of the residual Doppler broadening (owing to a
slight angle between the pump and probe beams) in the
limit of large pump-atom detuning. Lam, Steel, and
McFarlane' have discussed the effect of VCC's but did
not include the residual Doppler broadening in their
theoretical calculations. Gorlicki, Berman, and Khitro-
va have presented a theoretical analysis including effects
of VCC's and residual Doppler broadening.

Effects of a saturating pump field in degenerate or
nearly degenerate four-wave mixing by homogeneously
and Doppler broadened atomic vapors has been of great
interest in recent years. However, the existing studies of
saturation effects in FWM do not include VCC's. Most
experiments and theoretical approaches that include
VCC s are restricted to perturbation theory in the limit of
nonsaturating fields. Study of the effects of VCC's when
the incident fields are strong is seen to give rise to in-
teresting effects. In their cw degenerate FWM (DFWM)
experiments on the D2 line of atomic sodium Steel and
McFarlane demonstrated that VCC's lead to enhance-
ment of FWM signals in the presence of a saturating
pump.

It is the purpose of this work to investigate the effects
of VCC's on nearly degenerate FWM in a system of two-

II. NONPKRTURBATIVE CALCULATIONS
FOR AN ARBITRARILY STRONG PUMP

Consider a vapor consisting of the two-level atoms in-
teracting with a pump field EI at frequency col and a
probe E at frequency co given by

E,(r, t)=a, exp[i(k, .r —to, /t)]+c. c. , j=I,p . (2.1)

The probe beam makes a small angle 0 with the pump.
The atomic energy separation between the upper (~1))
and lower (~2) ) levels is ficoo. The two-level system is
closed, i.e., the lower level ( ~2) ) is the ground state and
the upper level (~1) ) is the excited level that can decay
radiatively only via spontaneous emission to the lower
level at a rate y.

These atoms are immersed in a buffer gas of foreign
perturbers. The active atoms (i.e., that interact

level atoms when one of the incident fields is arbitrarily
strong. A strong collision model is assumed to account
for VCC's. The calculations are based on a simple and
often applicable collision model in which collisions are
both velocity changing and phase interrupting in their
effect on level coherences. Level populations also change
because of VCC's. The level width, collision rates, detun-
ings, and the Rabi frequencies are restricted only by the
impact approximation.

In Sec. II a scheme is presented for nonperturbative
calculations of FWM signals for an arbitrarily strong in-
cident pump field. A formal solution for the susceptibili-
ty for forward FWM geometry is obtained, valid to all or-
ders in the incident pump amplitude and for arbitrary
VCC's and dephasing collisional parameters. In Sec. III
the FWM susceptibility g' ' is obtained in the near-
resonant case (Doppler limit). This is an interesting limit
and is important for many experimental situations. Nu-
merical results for FWM signal line shapes are presented
in Sec. IV. The effects of VCC's and pump intensity on
the FWM signals are discussed. The results in the ab-
sence of VCC's are also given for comparison.
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significantly with the external fields) of the vapor undergo
collisions with the perturber atoms (i.e., atoms that do
not significantly interact with the external fields). The
density of active atoms is assumed to be sufficiently low
such that we consider only active-atom-perturber col-
lisions. The atomic transition frequency coo is shifted by
ku as a result of atomic motion. Collisions with perturber
atoms can cause a shift in the velocity u besides interrupt-
ing the phase of the dipole moment. To account for these
collisions we make use of the impact approximation. In
this approximation, the duration of a typical collision ~,
is assumed to be much less than the various time scales in
the problem, i.e., ~, '&&atom-field detunings, Rabi fre-
quencies, and collisional decay rates. Changes in velocity
v occur through jumps from the value of v to another.
The jump time is assumed to be instantaneous with re-
gard to all other relevant time scales in the problem.
Moreover, if we make the Markovian approximation, '

then the value v following a jump depends at most on the
value u' before the jump. We further assume the statisti-
cal independence of velocity-changing and phase-
interrupting collisions.

In this framework the net effect of collisions is de-
scribed by the inclusion of an additional term
[Bp; /at]„11in the equations for density matrix ele-
ments" given by

Bp,j(v, t) = —
y1&h( v )p&~( v& t) —I;~(u)p&J (v t&)

coll

+ dv'8' v'~v p, u', t, 2 2

I;J(u)= f W, (v~u')dv' . (2.3)

Thus I; (u) can be viewed as the decay that occurs due to
collisions that remove active atoms from the velocity sub-
class u and W,,(u'~u ) as the contribution of other veloc-
ity subclasses to the subclass v. We can now write all the
relevant density matrix equations. We will work in a
frame rotating at the frequency of the pump field ml.

The equations for density-matrix elements for two-level
atoms interacting with the external electromagnetic fields
and undergoing collisions with perturber atoms are

where y „(u), I; (v), and the kernel W; (u'~u ) are well-
defined quantum-mechanical functions. ' The decay rate
y~„(u) occurs in pressure broadening theories involving
phase-interrupting collisions, and it vanishes for i =j.
The velocity changes of atoms during collision are ac-
counted for by the collision kernel W~(v'~u) which
couples different velocity classes. The decay rate I;, is
related to collision kernel via the relation

dpiz(z, u, t) = —[I o(u)+ I,z(u)+1'(b, , + k, u )]p, z(z& u, t )
dt

2
——[ai+a~e""' "][p„(z,u, t) —pzz(z, v, t)]+f W, z(u' v)p, z(z, v', t)dv', (2.3a)

d „(zu, t)

dt
= —[y+I »(v)]p11(z, u, t)+ —[( &a+ ae'"' '

)pz, (z, u, t) —c.c.]+f W»(u' u)p»(z, v', t)du',
2

(2.3b)

dpzz(z, u, t) l

dt
=yp»(z, u, t) I 22(u)pzz(z, v—, t) ——[(ai+a~e'"' ")pz, (z, u, t) —c.c.]+f du'Wzz(u' u)p»(z, u', t),

2

(2.3c)

Pz1(z& v, t ) = [P12( z, v, t )]* (2.3d)

where we have made the transformation
I'( k(z —a)(t )

P12(z, u, t ) =P12 (2.3e)

Here I 0(u) [ =y/2+ y„„(v)] is the usual decay rate asso-
ciated with off-diagonal matrix elements, b, t ( =coo —

cot )

is the detuning of pump frequency from atomic reso-
nance, 6 ( = to —

co& ) is the probe-pump detuning,
a. =k —k, , and a, ( =2d. e, /A'); j=l,p, is the Rabi fre-
quency associated with the field E .

The exact solution of Eqs. (2.3) for an arbitrary kernel
is tedious and requires extensive numerical computation.
Exact solution are however possible for various limiting
forms of the kernel. Of particle interest and most often
applicable is the so-called strong-collision model. Here

rapid thermalization of velocity distribution of active
atom occurs after collisions. A single collision, on the
average, therrnalizes the velocity distribution. The col-
lision kernel is given by

W„(u' u ) = I „M(u), (2.4)

where M(v) is the Maxwellian velocity distribution given
by

M(v)=(v, „&m) 'exp( —u /u, „) . (2.5)

Substituting (2.4) in Eq. (2.3), for the strong collision
model, the equations for density matrix elements can be
recast in a different form:
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d (z v, t) = —A(u, t)g(z, u, t)+B(u)M(v) f g(z, v', t)du'+C(z, u, t)g(z, u, t) . (2.6)

where

piz(Z, u, t)

Pzl(Z, V, t)

[pi)(z, t) —Pzz(z, u, t) ]

[p»(z, v, t)+pzz(z, u, t}]

r,+r„+i(a, +k, u) ia) /2

(2.7a)

A(v, t)=
ia,*

I 0+ I 1z i (—i}(,&+ ktu) i at'—/2 0

sal
(2.7b)

and

={
13 23 31 32 p

and the nonvanishing elements of B (u) and C (z, u, t) are given by

8„=822= I 12, 833 844 a, 8 =8 =b,
(2.7c)

a =
—,'[I »(u)+ I'zz(v)], b =

—,'[I „(u)—I zz(u)] . (2.8)

We will obtain signals to all orders in the pump field but to first order in the probe field. For this purpose we express f
as

q
—q(O)+q(1)+. . . (2.9)

where the zeroth-order solution g( ' corresponds to all orders in the pump-field amplitude a&. The first-order solution
g'" is valid to all orders in pump amplitude a& but only to leading order in the probe amplitude a . This assumption is
valid as usually, the probe is nonsaturating. From (2.9) and (2.6) we find the conservation equation to zeroth order in
the probe field

—
[PP, '(z, u, t ) +Pzz'( v, t ) ]= b[PP, '( v, t—) —Pzz'( u, t ) ]+bM ( v ) f du '

[PP, '( v ', t )
—Pzz'( v ', t ) ](0)

—a [PP, '( v, t)+Pzz'(u, t)]+aM(u) f dv'[PP1'( v', t)+Pzz'( v', t )],
which implies that

f du[pp, '(v, t)+p(zz'(u, t)]=const= 1 .

Thus the equation for zeroth-order quantities are obtained as

d I"'(v, t) = —A (u)g' '(u, t)+B' '(v)M(u) du'g' '(u', t)+D' '(v),
dt

(2.10)

(2.11)

where nonvanishing elements of 8' ' and D' ' are

8 (0) —8 (0) —r 8 (0) —8 (0) —a11 22 12& 33 44

D(o) —D(o) —b
(2.12)

+B(v)M(v) f 1»")(z,u', t )du'

+iC(z, t)g' '(u, t) .

The first-order quantities g" ' are obtained from the solu-
tion of the equation

d ~»("(z, v, t) = —A(v, t)g'"(z, v, t)
dt

We are interested in the steady-state response of the sys-
tem. In particular we want to determine the first-order
response at frequency 2coI —co which provides the non-
linear polarization giving rise to four-wave mixing. The
Fourier decomposition of the first order quantities P'"
can be done as fo1lows:

(2.14)

From Eqs. (2.14), (2.7), and (2.13), the equations for slow-

ly varying quantities g+ is obtained as

aq, (u, t) = —A+(u)P+(v, t)
c}t

+BM(u) fQ+(u', t }dv'+C+P( '(v, t), (2.15)
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where A+(u} is obtained from A(v, t) by replacing A~&

and A&2 by I 0+I &2+i(h, +k, v) and I o+r, z
i—(b, +k~u }, respectively, and where the nonvanishing

elements of C+ are

2( C+ )23
= ( C+ )31

—

ictus

and

(2.17), (2.18), (2.19), and (2.16), the four-wave mixing sus-
ceptibility g(co, , co, ,

—co ) can be calculated. Calculations
of FWM susceptibility in the Doppler limit and for small
pump-probe separation angle is performed in Sec. III.

The FWM signal is proportional to S defined by

&=I f du(g+(u)), I'. (2.20}

b, =6(+6, k, =k( —]c,

6 =b, ,
—5, k =k, +a .

(2. 16) III. CALCULATION OF FWM SIGNALS
IN DOPPLER LIMIT

i(k, z —a) t)
P=Xd2, fdu(g+(v)), e ' ' +c.c. , (2.17)

where N is the atomic density of the vapor. Equation
(2.17) yields the steady-state four-wave mixing suscepti-
bility of the vapor valid for arbitrary pump intensities
and to the leading order in probe field.

From Eq. (2.15) we find that a formal solution for ve-
locity averaged steady-state first-order quantities f+ is

' —
1f du g+(u)= I f dv'M(u'—) A+'(u')B

X dvA+' vC+ ''v (2.18)

with

P' '(v)=A '(u)8' '(u)M(v)

X I— dv"W v" g-' v" g[')

X f dv'A '(u')D' '+ A '(v)D' ', (2.19)

where I is a unit matrix of dimension 4. Thus from

For simplicity we will ignore the velocity dependence of
collisional parameters y h, I, , etc. This is justified as
these generally are slowly varying functions of v. To
determine the steady-state characteristics, Eqs. (2.15) and
(2.11) can be solved algebraically by setting the left-hand
side equal to zero. From (2.14), (2.9), (2.7), and (2.3), we
find that the steady-state response at frequency 2~( —m

is given by (P+ ) &, the first element of the column matrix

P+. With this the induced macroscopic nonlinear polar-
ization at frequency co, (=2'& —co ) and a wave vector
k, ( =2k& —k ) is

In Sec. II we have seen that it is possible to obtain ex-
act analytical expression for the FWM signal valid for ar-
bitrary pump intensities, collisional parameters and de-
tunings. A solution for polarization [Eq. (2.17)] however,
in its exact form is virtually intractable. A considerable
simplification is made in the grazing angle approximation
in which the angle between pump and probe beams is
very small. We further restrict the following analysis to
the Doppler limit. In this limit the velocity integration
becomes analytically tractable. The Doppler limit is in-
teresting as well as important for many experimental situ-
ations.

In the Doppler limit, the Doppler width is large com-
pared to the collisional parameters, detunings, and Rabi
frequency of the saturating pump a(. The first condition
is satisfied for low perturber pressures, but the last condi-
tion sets an upper limit on the intensity of the saturating
pump a(&&kv, h. In the Doppler limit, the Maxwell-
Boltzmann factor exp( —u /u, h ) can be assumed constant
over the range of integration. The velocity integration of
integrands in Eq. (2.17) may then be carried out by clos-
ing the integration contour at v =+(x) in the appropriate
part of the complex plane (upper- or lower-half plane)
and using the residue theorem. The integration consists
of locating the poles of the integrands in the expression
for susceptibility g' '.

In the grazing angle approximation, the terms like
(vu —5) can be approximated as 5(v/c —1)= —5 as typi-
cally v —10 cmsec ' and hence v/c «1. Also since
1,2&&kv, „, the terms with I,2 dependence can be ig-
nored in the expression for P [Eq. (2.17)]. With these ap-
proximations, the expression for P is notably simplified.
The formal expression for g' ' is then reduced to

y' '{tv(,tv(, —co )= — Ada(y 1—— a b(%(v)—)

X (X(u)%(u)C(k, u+b,„r +I, )C( —k v —b, r +I, ))

+(X(u)A(u)C(k, u+b, „I +I, )C(k, u+E, , r +I, ))

+ 1 — a — X(u)b(y+b)
a +i5 a — (S(v)C(k, v+a„r,+r„))b(y+b)

a+i'

X[(X(u)A(v)C( —k v —E,r +I, )) +(X( )vA( )uC(k, u+b, r,+r„))] . , (3.1)

where
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%(v)= y+a ——(y+b)+ a&(I +I', )~C(k&v+6, , I +I, )~
b

and

(3.2)X(v)=[y+a+i5 b—(y+b)C(5, a)+a&(I 0+I,2+i5)C(k, v+5,„I0+I,2)C( —k v —A, I 0+I,2))

In the above, the angular bracket ( ) denotes average over a Maxwellian distribution M(v) and C(x,y) denotes a com-
plex Lorentzian

C(x,y) = 1

g +lX
(3.3)

We now have to locate the poles of the integrals in the above expression for y' '. The denominator of y' ' contains the
intensity-dependent factor

( I 0+ I 12+i 5)(a +i 5 )[r,+r „i(a—, 5+—v )][r,+ r»+i(a, +5+v )]+a', (3.4)

For a&=0 it has two poles; one located in the complex upper and the other in the lower-half plane. For a&%0, the
above term can be factorized as

(v+6&+&g i@—ri)(v+6& &g—+i&q),

with
' 1/2

(3.5)

which shows that one pole is in the upper-half plane and the other in the lower plane. The factorization of other
intensity-dependent factor in the denominator is straightforward. For example, consider the denominator

a(r0+ I „)
[I +I, +i(h&+v)][I +I, i(b&—+v)]+ a1 =(v+ 6&+i &p)(v+6& i &p)—,' (a b)(a+—b+y)

where
' ]/2

&p=(I 0+I,2) 1+a1' (I 0+1,~)(a +b+y)(a b)— (3.6)

With these, the evaluation of integrals in Eq. (3.1) using calculus of residues is straightforward. The form of y ' thus
obtained is

l +'Ir (~0+~12) 2(~0+~12)+i5
g' '(co, , 01, , —co )= — Nda, — 2) ' (a)Xl '(a)

&P (r,+I „+i5)'"
r

X (a+i5)+ (I 0+I,2+i5) a ——(y+b)+i5 2)I (0)+ 2)I (a)
a (I 0+ "12}

(3.7)

where

~ —b(y+b }/. 10+I'»
y(a)=y+a, ' kv,„y+a b(y+b)/a —v'p

2),(a) =(I 0+I 12+i5}(a—b+i5}(a+b +y+i5)+ &( a+ia5),

X)2(a)=(I 0+1,2+i5)' 2)I~ (a)+&P(a+b+y+i5)' (a b+i5)'~—
[a (a +i 5 ) b(y + b )](I +I,2+—i5)'

2)3(a)=(y+i5)2)I '(a)+ a, (a+b+y+i5)' (a b+i5)'—

(3.&)
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If all the VCC's effects are ignored, then the above ex-
pression after setting a =b =0 reduces to

2I +E6

(r,+i5)'"
(3.9)

where

Z, (a) =(I o+i5)(y+i5)+a(,

Zz(a)=(I 0+i5)' [(I 0+i5)(y+i5)+a&]'
—0.08

]
~l

ll
i 1

j&g
/ I

)I
~C

»
'n

/

'i t

I

/) ~p

I

/ ]l
xg

-0.04 0 0.04 0.08

(3.10)

Expansion of Eq. (3.7) in power of a& and retaining
only the leading terms in a& leads to the perturbation
theory result' for forward four-wave mixing.

IV. FOUR-WAVE MIXING SIGNALS: NUMERICAL
CALCULATIONS

In this section, we present the FWM signals calculated
numerically using (3.7). The signals are displayed as a
function of the probe-pump detuning 5 for a range of col-
lisional parameters y h, I; and pump amplitude a&

within the Doppler limit. Results in the absence of
VCC's are also presented for comparison. We also dis-
cuss the case when the collision kernels for upper and

L

/

/

sC/
Ii

/
/

/

/
/

/
/

/ 0

I C

/
/

/
/

/
/

/

/

—0.08 -p p4 0.04 0.08

FIG. 1. Four-wave mixing (FWM) signals S as a function of
probe-pump detuning 5, for various values of the pump ampli-
tude e~, and for the moderate collisional depkasing parameter

y» (=2y), in the absence of VCC's, i.e., I »=I »=I »=0.
Curves a, b, c, and d correspond to the values of a~ =0.1y, y,
3y, and 5y, respectively. The magnitude of signal shown for
curve a is 10' times the actual value. All the parameters are
scaled in terms of the Doppler width yD (=100y). The magni-
tude of the signal on the y axis for all the other curves in the
figure are normalized with respect to the maximum of the
highest peak in that particular figure.

FIG. 2. FWM signals S as a function of the probe-pump de-

tuning 5, for various values of pump amplitude a& and for
moderate values of y~h ( =2y), when VCC's parameter is small;
I » ( =0.1y). Curves a, b, e, and d correspond to a~ =0.1y, y,
3y, and Sy, respectively. The magnitude of the signal for curve
a shown in the figure is 10' times the actual value. Because in

general, for optical transitions, I »& I » we have made the
choice of I &&

=3I » and I »= I ». The normalization on the y
axis and the rest are the same as in Fig. 1.

lower states are identical, i.e., the case when I »=I 22.

The modifications in FWM signals due to VCC's in the
presence of a high pump field are discussed in detail.

In Figs. 1, 2, and 3 FWM signals are shown as a func-
tion of probe-pump detuning 5 for various values of the
pump amplitude a&, for moderate values of the collisional
dephasing parameters y h(=2y), and for small VCC's
parameter rz~( && y ). Curves a of these figures show the
results as obtained by a perturbation theory when

a& &&y. In the absence of VCC's, the system is closed, '
i.e., the only population decay that occurs is via spon-
taneous emission from the upper to the lower state. As

/
/

/

/
/

/
/

/
/

/ /
//

/ r
/'

/
/ /

/ // /
/

l I

—0.08 -o o4 0 oo4 0.08

FIG. 3. FWM signals S as a function of 5 for various values
of a~ and for moderate y» ( =2y) when I » ( =0.1y) is small.
Curves a, b, e, and d correspond to the values of a~ =0.1y, y,
3y, and 5y, respectively. The magnitude of signal shown for
curve a is 10' times the actual value. This figure corresponds to
the case when collision kernels are identical, i.e., I » = I » = I ».
The normalization on the y axis and the rest are the same as in
Fig. 1.
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observed from curve a of Fig. 1, a single resonance cen-
tered around col =co exists, the width of which is
governed by the natural line width y. In the presence of
VCC's extreme narrowing of this resonance occurs (see
curve a of Fig. 2) when r»&l z2 (as is true for most opti-
cal transitions). For I 22 «y, the width of the resonance
at co& =~ is governed by the VCC's induced ground-state
decay rate I 22.

' VCC's provide a mechanism for open-
ing the system' by causing decay of the upper- and
lower-level populations. When the collision kernels for
upper and lower levels are dissimilar (as is the case for
most optical transitions), a very narrow resonance at
co&=co appears. One can see from the perturbation
theory result for nonsaturating fields that this is so be-
cause the behavior near 5=0 is determined by several
resonances with differing widths. If these widths differ
very much from one another then the behavior would be
dominated by the resonance with the least width. The
resonances' characterized by ground-state decay rates
occur because of a difference in the excited- and ground-
state collision kernels. For identical kernels, i.e., when
I »=I z2, the system remains closed in the sense that the
width of the peak at col=co is governed by y as in the
case of a closed system in the absence of VCC's. This can
be seen from curve a of Fig. 3. With increase in pump
amplitude aI, the structure at coI =co broadens. As aI
increases further, curve d in Figs. 1, 2, and 3 shows that
the singlet structure goes over to a triplet. Two partially
resolved peaks (ac Stark resonances) begin to appear on
either side of the power broadened central peak. This
can be seen from the denominators such as 2),(a) and
Zi(a) occurring in Eqs. (3.7) and (3.9), respectively. As
discussed above, for the nonsaturating pump aI the
denominator 2)i(a) predicts a narrow resonance at 5=0
with a width I 2z (=a b). With a—n increase in the
pump amplitude a& this resonance shows power broaden-
ing. For the saturating pump and in the limit
a b+i5 =—a + i5, from 2),(a) and (2.8) we find the posi-
tion and width of the ac Stark resonances as

2(y+r») —(r,+r»)
2

—aI2
1/2

(4.1)

When ai is much larger, ai »(y+I » —I o
—r, z) /4,

these resonances will be fully resolved at +aI with a
width (y+ I »+ I o+ I,2)/2. Thus we find that the
VCC-induced narrowing of the peak at col =co begins to
disappear with increasing pump intensity and the width
of the ac Stark resonances are modified by VCC's. From
Figs. 1-3 we observe that the FWM signals saturates as
ai I o+I i2( 2 5y)

It is clear that the saturation of FWM signals with an
increase in the pump amplitude aI is affected by the pres-
ence of VCC's. The behavior of FWM signals is shown in
Fig. 4 for the same value of y h(=2y) as in the previous
figures, but for a larger VCC rate I 22=5y. It should be
noted that for large VCC's, the system is effectively like a
closed system, i.e., the narrowing of the structure at
~1 =co~ vanishes and the width is governed by the natural
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FIG. 4. FWM signals S as a function of the probe-pump de-

tuning 5 for various values of pump amplitude al, for the
moderate collisional dephasing parameter y» (=2y) and a
higher VCC parameter I i, (=5y). Curves a, b, c, d, e, and f
correspond to pump amplitudes al =0.1y, y, 3y, 5y, 8y, and

10y, respectively. The magnitude of the signals shown in the
figure for curves a and b are 10' and 20 times the actual values,
respectively. This figure corresponds to the case when
I »=3I ». FWM signals exhibit similar behavior in the other
case when I » = I »= I », and hence the results are not present-
ed. The normalization on the y axis and the rest are the same as
in Fig. 1.

linewidth y.
In Fig. 5, the effects of VCC's on FWM signals is

shown for moderate value of pump amplitude ai ( =5y),
and moderate y h (=2y). Curve b shows that for large
a&, in the absence of VCC's, the signal structure is a trip-
let with a broad peak at 5=0 and two ac Stark reso-
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FIG. 5. The effect of increasing VCC parameters I » on
FWM signals S for a moderate value of collisional dephasing
parameter y» ( = 2y) and a higher value of the pump amplitude
al ( =5y ). Curve b is the result in the absence of VCC's
(I »

——r» ——r» ——0). Curves a, c, d, and e correspond to the
values of VCC parameters I"»=0.1y, 0.3y, 5y, and 7y, respec-
tively. The magnitude of signal shown in the figure for curve c
is 2 times the actual values. This figure is for the case when
I li =3I ». The normalization on the y axis and the rest are the
same as in Fig. 1. Note that with increase in I », the side peaks
are broadened. The narrowing of curve e is due to further
suppression of unresolved side peaks at higher values of I ».
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nances at +o.l. In the absence of VCC's, the width of the
side peaks is given according to (4.1) with I » = I,2=0.
With the appearance of VCC's (curve a), a spike develops
in the central peak and the side peaks broaden. The
broadening of the ac Stark resonances results from the in-
creased decay in the system due to VCC's. This can be
understood by looking at the denominators in Eq. (3.7)
that give rise to the ac Stark resonances, in which the de-
cay rates y and I 0 are modified in the presence of VCC's
to y+ I » and I o+I &z, respectively. A remarkable
feature that emerges is, the considerable enhancement of
FWM signals due to VCC's in the presence of high field.
At lower rates of VCC's, the FWM signal for the case
I'»4122 initially decreases compared to the case when
VCC's are absent. With a further increase in the VCC
parameter within the Doppler limit, the magnitude of the
signal increases. This is because at lower perturber pres-
sures VCC's remove the atoms from the frequency holes
created by exciting fields (leading to increased decay
rates), but with negligible replenishment of holes. How-
ever with increasing pressure, atoms in nonresonant ve-
locity subclasses can be shifted into resonance if they ex-
perience appropriate velocity-changing collisions. Hence
collisional redistribution occurs over a wider range of ve-
locity groups and more and more atoms participate in in-
teraction with the fields, thus giving rise to enhancement
of signals. The signals saturate as I o+ I,2 approaches aI
and then decrease.

Figure 6 shows the effect of VCC's and pump field on
FWM signals when y h (=Sy) is large and small I 22

( =y/10). For small at, the structure at 5=0 is extreme-
ly narrow with a width of I zz. As the pump amplitude
at increases, this structure is seen as a spike on a broad
pedestal that occurs due to power broadening. When
a& =5y, the spike vanishes and a single broad peak at
cot =co~ results, as the side peaks are not resolved for this
high rate of y h. At large values of a& (=Sy) a dip ap-
pears in the line center of the power-broadened peak at

t=co~, the depth of which increases with further in-
crease in aI. This dip vanishes in the absence of VCC's.
The appearance of this is associated with the difference in
collision kernels for upper and lower states. When
I, ~

= I 22, the dip vanishes.
In conclusion, we have studied the effects of VCC's on
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FIG. 6. FWM signals S as a function of 5 for various values
of pump amplitude a& for large collisional dephasing parameter

yph ( 8y ) and small VCC's parameter I » ( =0. 1y ). Curve a,
b, c, d, and e correspond to the values of aI =0.1y, 3y, 5y, 8y,
and 10y, respectively. The magnitude of signal shown in the
figure, for curve a is 10 times the actual value. These results
are for the case when I &1=3I », I 12=I ». Note that the satu-
ration of transition in the presence of VCC's lead to a dip at the
line center provided that I ~&WI"»WO. The normalization on
the y axis and the rest are the same as in Fig. 1.
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FWM in the presence of a saturating pump. The redistri-
butions of atomic velocities due to velocity-changing col-
lisions by foreign perturbers in the presence of a strong
field gives rise to interesting effects such as enhancement
of signals and a dip in the line center. The present theory
is restricted to strong-collision model for VCC's. Further
generalization of the theory is possible. One can, for ex-
ample introduce Keilson-Storer collision kernel' which
will enable one to study the effects of VCC's in the more
realistic intermediate regimes.
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