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Macroscopic squeezing in three-level laser
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It is shown that a three-level laser can become the first example of an optically active system to

generate a squeezed-field state.

I. INTRODUCTION

The three-level atom laser has become quite interesting
in connection with subtle optical effects, such as phase
and dynamic instabilities (dynamic chaos) and so on."?
However, together with long-term classical properties, it
has specific quantum properties that are manifested in
amplitude noise and linewidth.

In the present paper the problem of quantum fluctua-
tions in a three-level atom laser (TLL) is discussed. It is
shown that TLL with relevant pumping can be used for
generating squeezed-field states. In order to create one,
we would need an optically active system that directly
produces a squeezed state without using a multitude of
converting devices. Before discussing the quantum
features of three-level generation, we would like to give a
brief summary of conventional two-level generation.

II. TWO-LEVEL LASER

The fluctuations in lasers can be quite simply explained
in terms of the dipole moment P and population inversion
S that are fluctuating. To this end, we write quantum
equations for these quantities (for their derivation see Ap-
pendix A):

P _, .3 1+S .
ot S 2 Inp+iAP Inp , (1)
as

E=é°+iAlnp+iAS Inp, A=—(3/3z)P —H.c. (2)
The coupling constant is omitted for the sake of simplici-
ty. & stands for terms that do not contain derivatives
d/dz, 8/9z*. Equations (1) and (2) are derived from the
usual set of equations, which is decoupled by the follow-
ing condition:

1+S,
N 2 a
R_pf].:[ra? re = I—Sa (3)
a=1 Pa* 3

R is the whole density matrix and p, is the field density

matrix. The quantities R, P =P(z,z*), S =S(z,z*) are
functions of arguments z,z*, being the relevant
coherent-state amplitudes (the Glauber P representation
is used). They describe the fluctuating dipole moment
and inversion. It should be noted that the decoupling
condition (3) differs from the one for undressed atoms
that was used in early work.>* In fact, the matrix r, de-
scribes an atom dressed by the field (its matrix elements
are functions of field operators).

The procedure we use to consider the function is based
on the perturbation theory that is briefly described in Ap-
pendix A. Here we dwell upon physical mechanisms
determining the amplitude fluctuations. On one hand,
the fluctuations arise by spontaneous emission. The
probability of spontaneous transitions depends on the
time an atom spends in an excited state. On the other
hand, fluctuations are defined by the derivatives
9/0z,0/9z*, in Egs. (2) and (3). Let us consider contribu-
tions from different derivative terms in Egs. (2) and (3)
and their physical meaning.

A. Contribution from purely spontaneous emission

This factor is defined by the second term in the right-
hand side (rhs) of Eq. (1). The population of the upper
level (depending on pumping only in weak-field limit)
(1+.S)/2 defines the spontaneous emission probability in
this case. The contribution to the photon number vari-
ance from this factor is given by

2\ 1+A
((An)*) =q(E—1)+7q i 4)
Here A is the threshold inversion, A, the inversion
without field, and £=A,/A the lasing parameter. This
result was obtained in early work on laser fluctuations. **
Formula (4) describes fluctuations near the generation
threshold fairly well. The “zero” contribution (£—1)7,

which is determined by “zero” fluctuations in the
Glauber P representation, is taken into account.

B. Contribution from stimulated emission

Here the action of the stream of stimulated photons
from a single atom should be taken into account:
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d|z|?
dt dt

We obtain exactly this quantity if we substitute into Eq.
(1) the inversions calculated with the second term in the
rhs of Eq. (2). This second factor provides a negative
correction to the factor discussed above, due to the fact
that some of the radiated photons are not spontaneous.
The contribution from this factor to the variance is

=zz*+zz*~—izP +c.c. (5)

((An)2)2=—?7§—;—1 . 6)

This term in the variance was obtained in a number of
papers (see Refs. 5). The contribution of both factors
sometimes is referred to as noncorrelation of the atoms.
In the following we shall show that this is not so. More-
over, the atoms are statistically dependent even near
threshold.

C. Contribution from mixed states

It is known that in a strong field the atom is in a state
that is a mixture of excited and nonexcited states. The
mixture decreases with the atom dipole moment P. The
presence of the states’ interference results in increasing
the atom lifetime in the upper level. The quantum dipole
appeared to be more coherent than the classical one.
This atom dipole coherence gives rise to extracorrelation
of atomic quantities (we mean the quantities for the single
atom). This correlation leads to a reduction of dipole
moment noise caused by the first factor; i.e., it decreases
field fluctuations. From a formal point of view, the third
factor is taken into account by the last terms in Egs. (1)
and (2). All terms of this type have the same form,

—iP —H.c.

| AF =i
I 1 9z

F, (7

where F is the chosen atomic quantities. ‘“‘Extracoher-
ence” of the quantum atom dipole leads to the following
contribution to the variance:

mt1p,—3), m=Tt (8)

An)),;=—7% .
A contribution of this type was first obtained by Ka-
zantsev and Surdutovich (for the case m=1) as early as
1969 and then was verified by other methods in Refs.
5-8. The relative value of contribution (8) in comparison
with the first and second factors is not small for
intermediate-range fields. It can be explained as follows.
Near threshold there is no state mixing. In the above-
threshold range the effect of mixing disappears because of
averaging by Rabi oscillations. Therefore, the average
value of the overlap goes to zero in this limit. Correla-
tions between atomic quantities are again absent, and the
variance is determined by the first-two factors only. Let
us return to atom-atom correlation treatment. The con-
tribution (8) to the wvariance is sometimes called
“cooperative” addition. There is a need to elucidate.
The fact is, the atoms are not statistically independent in
any case, which is caused by the simple reason that all
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atoms bear fluctuations on the same field. Formally, it
follows from the fact that the averages in the atom-atom
correlation function are nonfactorized. For instance,

(P,Sp)#(P,)(Sp) .

Neglect of the field fluctuations results in a transforma-
tion of the inequality to an equality. This statistical
dependence of atoms is caused by field fluctuations. Thus
the atoms are cooperative even near threshold. The con-
tribution (8) is not related to atom-atom correlation, since
it remains even in case of a single atom interacting with
the field mode. As for the correlation between atoms
dressed by the field, they do not correlate in the given
adiabatic limit.” Formal consideration of atom-atom N
correlations with finite N does not provide the correct re-
sult for fluctuations.'® Thus the decoupling condition (3)
can be called a “self-consistent-field” condition.

The above consideration shows that amplitude noise in
TLL can be reduced by the following two mechanisms.
The first is connected with the mutual influence of the
first and second factors discussed previously. The point
is that these factors appear to be mutually contradictory.
If we try to decrease spontaneous emission by means of
decreasing the upper-level population, we would decrease
inversion. The latter gives rise to a decrease of the usual
contribution from the second factor. One can break the
deadlock by means of a third level; namely, a population
decrease can be achieved by a simultaneous emission of
an atom from both excited and nonexcited acting levels
to a third level. This eliminates an unfavorable decrease
of the inversion on the acting transition. Another noise-
reducing mechanism is extracorrelation of inversion and
dipole moment. This correlation is caused by third-level
population fluctuations caused by state mixing in a strong
field (third factor).

Formally, it is manifested in the introduction of a term
such as in Eq. (7) in the equation for the population of the
nonacting level.

III. FORMULATION OF PROBLEM
FOR THREE-LEVEL LASER

Active atoms are considered to have three levels with
states [0),/1),]2). Radiative transitions take place be-
tween states [0) (ground) and |1) (excited). The interac-
tion is chosen to be of the form aoyb+H.c., where a is
the coupling constant and b is the annihilation operator.
o,;=|iXjl. The field is described in the Glauber-
Sudarshan representation. The total density matrix obeys
the Liouville equation

DA A FIL [R(D=0, ©)
A Y=k —a—z+cc v (10)
; ztec |,
2
A ¥== 3 vyllop¥,o4]+lo,0,¥D . (D
ij=0

Here « is the cavity damping constant, y;; are the gen-
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eralized rates of radiationless transitions between atom
states; W is an arbitrary operator. Relaxation of the form
of Eq. (11) does not consider phase destruction processes.
The Liouville equation (9) introduces a series of equations
for reduced atom-field density matrices. All calculations
can be performed by the same methods as for the two-
level lasers.>”° The set of equations for the polarization
and populations is written in Appendix C. The results to
follow on the field statistics are obtained using the ap-
proach described in Appendix B.

IV. FIELD STATISTICS

As was indicated in Sec. II, the amplitude fluctuations
are the sum of three terms.

A. Dipole momentum fluctuations

These fluctuations are proportional to the upper
operating level population (1+S)/2 (probability of spon-
taneous emission). The contribution from this factor to
the photon-number variance is positive and equals
1+A K

((An)?) =9 |———— |, (12)
S EPTUPY

where the population of the third level K is introduced:

K=[(y =7 Aof TYi2tvael/v*, (13)

1
Ap= '5[(7’01_'}/10)(?’21+72o)+?’217’02—7’207’12] >

(14)
D=y t710) Y21t Y20) Y0V i0 T Y2t 7a)
+rrotro), (15)
Y*'=vntvent2(yyptyvy), (16)
~_ K7vi _ |z]? YiYy
A= s =(1+x)"!, x=—", fi=— ,
Na? 4 7 K 4a?
__ 4D
Y=

‘7/_*7 Yi=Yotratretve -

The first term in (12) coincides with the analogous term
for a two-level laser. The second term adds negatively,
giving a reduction of the spontaneous emission in the
presence of a third level [according to the formula

B. Contribution from stimulated emission

The contribution in the case of three-level atoms has
the same appearance as for the two-level system (see Sec.
1I0),

<<An)2>2=—ﬁ5;—1. (17)

C. Reducing amplitude noise caused by mixing
of the atom states in strong fields

We give the result of a negative contribution from this
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factor,

m+1(AO—‘Z Y1

((An))y ===
(18)

YI=2r0— Yt Yio—Yo) TY 2" Yo -

The second term in Eq. (18) determines the contribution
from correlations between the dipole moment and the
population of third level (as a result of mixing of atomic
states).

The above formulas show that it is impossible to
confine consideration of TLL by renormalizing only the
constants. While doing so, we miss a significant contribu-
tion to the variance. Finally, the amplitude noise (taking
into account ‘“‘zero” fluctuations in the Glauber P repre-
sentation) can be written as

((An)?) =n(e— 1)+ {(An)? )+ ((An)*), +{(An)?); .
(19)

This formula was fist obtained in Ref. 11.

V. DISCUSSION OF RESULTS

Formulas (12), (17), and (18) allow us to calculate the
variance for different pumping schemes. In the examples
given pumping was chosen to obtain the best amplitude
squeezing, which is determined as [1—{((An)?) /{(An )]
(100%). We are striving for a reduction of spontaneous
emission, not at the expense of a drastic reduction in in-
version, but at the expense of an increase in population of
the third level in steady state. When the field is switched
off, the population of the third level is small, but in the
steady state it is considerable. The smallness of K|
creates a semblance of two-level behavior in the atom.
Meanwhile the fluctuation properties of such a system
differs to a great extent from two-level one. In reality,
the maximum squeezing that can be reached in the two-
level laser in the absence of phase distruction processes
does not surpass 5%, whereas in a three-level laser it can
be significantly increased by means of increasing the dis-
tance from equilibrium of the pumping. In most none-
quilibrium cases with only y,, and y,,70, the following
expression for relative variance yields:

((An)*) _ & m+1

(n) E—1  2mé
. Yool1=JS) 13 V2" Yo
2y t2ya) | §—1 2¥ytye

(20)

We see that the maximum squeezing is reached in the
limit of strong fields £>>1 and amounts to 25% with
Y02=2¥,,- Thus, we obtain the ‘“macroscopic quantum
state of the field” in an active system. Moreover, the
squeezing increases with the field. In Fig. 1 are given for
comparison the degree of squeezing in both a two-level
and a three-level laser, as functions of the lasing parame-
ter. In case of a two-level laser in the strong-field limit
we have Poisson statistics, whereas in the TLL squeezed
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FIG. 1. The principal difference between field statistics of a
two-level laser and TLL.

state 25% squeezing appears in the above-mentioned lim-
it. This result allows us to hope for experimental realiza-
tion of a macroscopic squeezed light generator.
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APPENDIX A: DERIVATION OF CLOSED SET
OF EQUATIONS

Let us consider a derivation of the closed set of quan-
tum equations for the population inversion S and the di-
pole moment P in the Glauber P representation. We
proceed from the conventional single-mode laser prob-
lem. The whole “N atoms plus field”” system density ma-
trix R (¢) obeys the generalized Liouville equation

DAy A Ly R0, (A1)
where
AV=—x([BY,B'1+[B,¥B']), (A2)
N
Ag= 2 Ag s (A3)
a=1
N
L= Lo, (A4)
a=1
A v, ¥, 125 I 40 33} v ¥
@ Wy W v1¥s 1Y)+ ¥y
(A5)
L,¥Y=[o!B+H.c. V] . (A6)

The operators A, A, describe linear relaxations of the
field and the single atom, respectively. b (b7) is the cavi-
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ty mode annihilation (creation) operator. o (') is the
lowering (rasing) atomic operator. « is the cavity damp-
ing constant. ¥;,y,,y, are the atomic relaxation con-
stants describing pumping and the decay. The coupling
constant in the interaction operator L, is omitted for
simplicity.

The problem to be handled is a many-particle problem.
Thus, to obtain a closed set of equations it is necessary to
use some decoupling procedure. It is known® that the
usage of “pure’” atom-atom n-particle correlations does
not allow one to confine with any finite number n. To
avoid this difficulty, we consider correlations between
dressed atoms. To do this, the following correlation
forms are to be introduced:

SP1a . vR(t,z2)=p,(t,2), (A7)
Spas, . NR(L,2D=p,(t,2)r (4,2) (A8)
Spya,.. NR(,2)=p,(t,2)r,(1,2) (A9)

and so on. zis the argument of the Glauber P representa-
tion. Here, p, is the field density matrix. r, and r, are
one- and two-field density matrices describing dressed
atoms. It can be seen’ that the correlation form
8ry, =r;; —rr, is very small and can be neglected in the
adiabatic limit k <<y ,7 4,7, in the calculations of quan-
tum fluctuations. r, represents the atomic density ma-
trix, whose elements depend on the field variables ¢,z. In
terms of random processes, they are random quantities
that fluctuate with fluctuating field. An explicit expres-
sion for r, in terms of the fluctuating dipole moment
P,=P,(t,z) and population inversion S, =S, (¢,z) is

1485,
2 a
y, = o (A10)
pe 1S
a 2

To obtain equations for pssry, traces in Eq. (A1) should
be taken with respect to N,N —1,...,2 atom variables,
respectively.
Using the decoupling condition 7, =0, one can ob-
tain from Eq. (A1) the one-particle equation
10r, 1 _ 9
T—a—:—f-TAara+[ha,ra]=0“ara$1npf—H.c. R
(A11)

where 6 ,=o0,—Sp,(0,r,), and h, is the “classical” part
of the interaction Hamiltonian, which does not contain
quantum derivatives d/9z,3/9z*:

hazz*cra-kzaz . (A12)
Equation (All) is the basic closed master equation
(ME).’ It differs from this in simple Scully-Lamb theory?
due to differences between & and o. Equation (All)
takes into account all orders of pure atom-atom correla-
tion. On the other hand, in terms of the dressed atoms,
Eq. (A1l) is a one-particle equation. Indeed, it does not

contain any quantities but those belonging to the same
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atom a. The left-hand side of Eq. (A11) defines the non-
linear (with respect to field) classical (without quantum
fluctuations) evolution of the total density matrix, while
its rhs has a pure quantum origin. It contains only terms
with derivatives 3/9z,3/0z*.

To derive the equation for the reduced field density
matrix, the trace over atomic variables in Eq. (A1) should
be calculated. Rewriting Eq. (A11) for matrix elements
and taking into account Eq. (A10), we derive Egs. (1) and
(2), where & stands for classical (nonquantum) terms.
The explicit form of the equations is the following:

s |3 i P, | +He (A13)
ot 0z - “] o\ Pro

apP o] 0 148

E-f—ylP—zzS——z 32" ——2——PA Inp, , (A14)

%§+7/HS +(2izP*+c.c. )—7/HA0=1’A(1+S)lnpf ,

Y=V d
=2 + , Ap=——, A=——P —H.c.
V=2 ity Ao Y1ty oz ¢

il

(A15)

APPENDIX B: CALCULATION OF FLUCTUATIONS

We briefly describe the method to derive the quantum
Fokker-Planck equation (FPE) for the field density ma-
trix p, from the set of Egs. (A13) and (A15), here using
the usual perturbation theory with respect to quantum
fluctuations. In the process of lasing, the photon number
distribution is very narrow (near Gaussian). Therefore,
quantum fluctuations represented by terms with deriva-
tives in Egs. (A13)-(A15) are small. It takes two steps of
perturbation theory in order to the obtain quantum FPE
for the field density matrix p .

The first step is to neglect quantum terms in Egs. (A14)
and (A195) (i.e., rhs terms) and to solve an algebraic set of
equations. The zero-order solutions S'9(z), PO(z),
P9%(z) result.
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The second step is performed by inserting the zero-
order solutions into the rhs of Eqgs. (A14) and (A15) and
solving the equations again. The first-order solutions
S'(z), P'V(z), P'V*(z) are obtained. These functions
now contain first-order derivatives 3/0z,3/0z*. Insert-
ing P'"(z), P'V*(z) into Eq. (A13), one obtains the FPE
in question. Its diffusion coefficients allow us to calculate
various correlation functions necessary® for discussions of
the quantum properties of the field.

APPENDIX C: THREE-LEVEL CASE

Equation (A11) is valid for the three-level atom density
matrix as well as if we substitute o=|[1){0| into it
(]1>€0] is the projection transition operator for acting
levels). Projection of Eq. (All) on proper matrix ele-
ments results in the following set of equations:

JP w_ .| 0 1+485—-K
g‘*“’}/lP’“le——l 3.* —“5*-“—/\ lnpf ,
(C1n
as * D ¥ — P
E‘*‘VIS_%K +(2izP*+c.c.)—y,= —iA(1+S)np ,
(C2)
oK * .
'a_t+7/ K+ o= r)S —(yn—rp)=—iAK, (C3)
where
d
A=——P—h.c.,
oz ¢

Yi=¥utYet2(ro+vio)
V2= Yo t2Viw— Yo,

P and S are the polarization and population inversion for
acting transition, and K is the population of the third lev-
el (P=ry,S=r,—r.,K=ry). The other designations

are given in the text. Equations (C1)—(C3) can be treated
as described in Appendix A.
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