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We give a general theory of the interaction of a large number of two-level atoms in an optical cav-
ity driven by a broadband squeezed input of finite amplitude. No adiabatic elimination of atoms or
field is made, and atomic and cavity loss and dispersion are fully incorporated in the theory. We
calculate the optical and squeezing spectra that may be observed in transmission and reflection from
the cavity; the latter exhibits a novel interference structure superimposed as a result of the squeezed
input. Results presented indicate that it is possible to somewhat reduce the vacuum Rabi peaks in
transmission, in the strong-coupling regime, with a moderately squeezed input. In the limit of a
“bad cavity,” the characteristic triplet transmitted under conditions of saturation may have one of
its sidebands suppressed and the other enhanced by a squeezed input. These signatures suggest new
alternatives for the experimental study of the interaction of atoms with squeezed light.

I. INTRODUCTION

Recent progress in the generation of squeezed states of
light! by phase-sensitive nonlinear optical processes has
led to a reexamination of fundamental atomic radiative
processes and the role of the environment. In particular,
the presence of a highly correlated bath of squeezed elec-
tromagnetic field modes, instead of the usual free-space
environment of a thermal bath, or what at optical fre-
quencies amounts to a vacuum bath of field modes. In-
teresting predictions have been made, such as the inhibit-
ed decay of an atomic polarization quadrature,” and
shown to lead to subnatural spectral linewidths.> This
reflects the influence of phase-sensitive field correlations
on the atomic dipole dynamics, and suggests an experi-
mental test of the role of noise and dissipation in atom-
field interactions. To date no experimental confirmation
exists. This is in part due to the geometrical problem of
squeezing all the electromagnetic field modes to which an
atom is coupled in free space, i.e., a 47 solid angle or at
least a dipole profile. In practice squeezed light is gen-
erated in a beam from a given source, and would thus
subtend a small solid angle at the position of an atom.
The phase-sensitive features, proportional to the solid an-
gle subtended,” would be so small as to be practically
unobservable. To circumvent this problem a proposal,
where atoms are placed in a microcavity and the
squeezed beam is mode matched to the cavity mode,
effectively removing the coupling to other free-space
modes, has been suggested by Parkins and Gardiner.* It
is clear in any case that some modification of the isotro-
pic environment of the atom must be made for the effects
of squeezing to be manifest. The use of optical cavities is
the focus of our attention here.

The radiative properties of atoms inside microwave®
and optical® cavities has received a good deal of theoreti-
cal and experimental attention recently. The optical re-
gime has the advantage that direct measurements of the
output fields are possible. Apart from cavity and atomic
dispersion the intracavity interactions are characterized
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by three parameters (Ref. 6): g, the electric dipole cou-
pling constant, which determines the frequency of ex-
change of excitation between an atom and the intracavity
field; « the damping rate of the intracavity field; and y
the atomic spontaneous emission rate into modes other
than the resonant cavity mode. For cavities whose mode
function subtends only a small fraction of 47 solid angle,
v is approximately equal to the free-space Einstein A
coefficient.” Weak- and strong-coupling regimes are de-
lineated by the relative magnitudes of these parameters,
or combinations of them. Experiments on optical cavities
which contain N two-state atoms_have been carried out
in the strong-coupling regime gV N>>y >>«.%7 1In this
regime oscillatory exchange of excitation between the col-
lective atomic polarization and the field is likely to occur
before radiative escape via the cavity mirrors, or spon-
taneous emission into the continuum.® The spectral
characteristic is a two-peak structure due to the splitting
of the first excited state of the dressed atom-intracavity
field system. The linewidths of the doublet, which have
been observed experimentally, are an average of the
atomic and cavity decay rates, and may thus be smaller
than the free-space Einstein A4 value.®’ The splitting is
not an atomic saturation effect; it occurs at intracavity
photon numbers arbitrarily far below that necessary for
atomic saturation, and merely reflects the eigenvalue
spacing of the first and second excited dressed states. If
the intracavity field is resonantly pumped by an external
laser field, this will induce transitions among the dressed
eigenstates, possibly exciting higher dressed levels if the
field intensity is sufficient. The coherent scattering pro-
cesses which result have been used to generate squeezed
light.’

In this paper we investigate the spectral properties of a
large number of atoms in a cavity under very general con-
ditions, when the driving field is squeezed in some quad-
rature.’® In recent work Courty and Reynaud!! and Sa-
vage'? have considered the intracavity interaction of sin-
gle atoms with squeezed cavity fields, in the bad-cavity
and strongly coupled regimes, respectively. The presence
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of the cavity means that the geometrical problem of
effectively coupling atoms to a squeezed beam, alluded to
earlier, is offset somewhat if the incident field can be
mode matched to the resonant cavity mode, as the cavity
decay rate may be comparable with the rate of spontane-
ous decay into the continuum. In addition the dynamics
of the atom-cavity system is a good deal richer than that
of an atom in free space. From a pragmatic viewpoint
this is also perhaps the most experimentally convenient
scenario for investigating the response of atoms to
squeezed light fields. The essential problem is to find a
suitable source at optical frequencies, perhaps a similar
cavity stage, and to properly mode match it to the cavity.
The other elements of the system are already under
exceedingly good experimental control.®°

II. THEORETICAL MODEL

A. Squeezed inputs to a cavity

The input-output formalism of Collett and Gardiner'?
relates freely propagating input and output fields at one
port of an optical cavity, to the internal field, through a
local boundary condition at the mirror i:

a;, () +ag, (=1 2kalt), 2.1)

where a;, . are the input and output field annihilation
operators and a is the nearest resonant cavity mode an-
nihilation operator. The cavity amplitude decay rate, via
mirror i, is ;. Since the input and output fields are free,
their temporal evolution is simple and they obey (in the
optical regime)

[ap(0),a ) (t)]=[agy(t),ab, (1) ]=8r —1") . 2.2)

We consider a two port cavity, with a broadband field
squeezed around the frequency w; incident on port A,
while the vacuum is incident on port B. The input field
(to port A4) has a nonzero amplitude at frequency oy :

(a,())=V"2k Ee '“*', (2.3)

where E is complex. This driving field is assumed to be
phase coherent with the squeezed field which in practice
means they are derived from the same source. The pres-
ence of squeezing in the input is indicated by the nonzero
correlations

(al(),a,(t"))=N8(t—1"),
—2iw, t (2.4)
(a(0),a (1)) =Me ““H's(1—1") ,

where N,M =|M|e'?V are parameters characterizing the
squeezing and |M|><N(N +1). As the squeezed field is
incident on port 4 we will use the convention that the
output field from port A4 will be referred to as the
reflected field (R), to distinguish it from the output
transmitted field T from port B.

B. Atoms in a cavity with squeezed input

We consider a large number N two-state atoms suitably
prepared, for example, by preoptical pumping, in the cav-
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ity configuration discussed above. The intracavity field
couples to the collective atomic spin operators J and J,
defined by

(2.5)

where k is the cavity mode wave number, r; the position,
and o/ and ¢/ are the Pauli spin operators for atom j.
The collective spin operators satisfy the commutation re-
lations

[Jz’Ji]ZiJi ’
[T, J_1=2J, .

(2.6)

With coherent field input to a single-ended cavity,
Reid'* has derived c-number stochastic differential equa-
tions for this system, in the limit that the number of
atoms N is large enough that the positive P function
obeys a Fokker-Planck equation. The derivation associ-
ates c-number random variables with the operators of the
atom-field system, i.e.,

2.7

The only difference in the present case appears in the
correlations of the field noise sources, due to the presence
of the squeezed input. Details of the derivation which
uses techniques developed by Haken!’ and Drummond
and Gardiner'® may be found in Ref. 17. The stochastic
differential equations are

a=E —«(1+i¢)a+gv +T (1),
a"=E*—k(1—i¢la”+gv*+T _.(1),
v=—y (1+iAyw+gaD +T (1),

v ==y (1—iAw " +ga™D +T (1),

D=—y/(D +N)—2g (v at+vaT)+Tp(1),

with g the electric dipole coupling coefficient, and the
scaled atomic and cavity detunings A and ¢ defined by
Wy— 0, —w
A= -0 7L , b= Ze L ,
Y1 K

(2.9)

where k=« 4 +kj is the total loss rate from the cavity,
and the atomic and cavity resonance frequencies are
given by w, and w,, respectively. Spontaneous decay of
atoms into modes other than the cavity occurs at rate y,.
For purely radiative damping v, =73y,. The zero mean
Gaussian noise sources I';(¢), ke{a,a+,v,v+,D} have
the nonzero correlations
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(T _+(OT, (1) =2k (N&(z —1") , (2.10a)

(Fa(t)l“a(t’ﬂ=<Fa-(t)f‘a+(t') *=2k M8t —1'),

(2.10b)
(T,()T, (1) =2gavd(t —1') , (2.10¢)
(T, +(0)T 1 (t")=2ga v 8t —1"), (2.10d)
(Tp(OTp(e"))=[2y (D +N)

—4g(av ™ +aTv)]8(t —1') . (2.10e)

The effect of a squeezed input to port A is contained in
the nonzero correlations (2.10a) and (2.10b), which vanish
for a coherent input field.

C. Classical steady states and phase relations

Ignoring the noise sources in (2.8), the resultant equa-
tions become deterministic with ¢ =a*, v =v*. The
steady-state solutions of these equations are!’

_ 8agDy _ —MNI1+A?
g=——— P, Dy=—t =2 .11
v (1+iA) 1+A2+]
2 2
y=r1|{1+—25— |+ s——22_| | oen
1+A2+] 1+A2+]

where the atomic cooperativity parameter C is defined
2 2
N _gN (2.13)
2y 1k YK

The intracavity intensity I is expressed in terms of the
atomic saturation photon number n,, where

lal? YL 7}

= =TT 2.14)
ng 4g 8g

The state equation (2.12) relates the intracavity intensity

to the input intensity Y defined by

_ |EP?

K2n

Y

(2.15)

s

and exhibits both absorptive and dispersive bistability in
appropriate limits. We make the phase convention that
a, is real and positive.

The state equation (2.12) contains no phase informa-
tion. The equation relating the mean input field to the in-
tracavity field is

— . 2C(1—iA) \
=V | 1+ig+———|, (2.16)
Yin O AT
where
E 2K 4 ‘/z(am>
Y — (2.17)
KV n, n K

is the mean input field to port A.
The phase §;, of the input field with respect to the in-
tracavity field is defined by
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Y=V, (2.18)
where
4o 2C8
tang, = —ifczi : (2.19)
THATHT

This phase angle is helpful in defining the amplitude and
phase input quadratures for the field input to port A.
Similarly the output quadratures reflected and transmit-
ted by the cavity require the phases of the reflected and
transmitted fields. The boundary conditions'3

(2.20a)
(2.20b)

(a,,)+(ag,)=V2k (a),
(b)) +{(bo)=V2kz(a),

at mirrors A and B, respectively, where b, and b, are
the free field input and output annihilation operators for
port B, relate the mean input and output fields to the in-
tracavity field. Noting that (b;,)=0, {(a)=a, Eq.
(2.20b) implies that the transmitted field is in phase with
the intracavity field and is therefore real and positive.
Using (2.20a) we find

~ . 2C(1—iA)
w=VTI |k, —i6————=1, (2.21)
Fout 1+A2+1
where
2k 4 12 (agy? iCou
yout = n = |you[ [ ’
' (2.22)
b 2CA
_ 1+AZ+1
tangout_ - 2C ’
Ky — —————
1+A%+1
and k,, is the cavity mismatch factor
K4—K
Ky = -4 B (2.23)
K

Equations (2.19) and (2.22) will be used in Sec. IV to
define the amplitude and phase quadratures of the input
and output fields, for any set of atomic and cavity param-
eters.

III. LINEARIZED ANALYSIS
OF QUANTUM FLUCTUATIONS

The nonlinear stochastic equations may be solved ap-
proximately by linearization about a stable steady-
state solution. Define a(t)=(a,a,v,D,v )T,
ay=(Qp, @00, Dy,va )7, and dalt)=a(t)—a,, one finds
to first order the Ornstein-Uhlenbeck equations

d

—8al(t)=— Ada(t)+L(1),
dt

where the drift matrix A is defined

3.1
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k(1+id) 0 —-g 0 0
0 k(1—ig) 0 0 -8
A= | —gD, 0 y (1+iA) —ga, 0
2gvg 2gv, 2gay Yy 2ga,
0 —gD, 0 —ga, vy, ,(1—iA)

and the linearized noise source L'(t) satisfies

(L)) =0;(L(t)CT(t"))=D&(t —1') . (3.3)

The diffusion matrix D is partitioned onto orthogonal
subspaces spanned by field and atomic variables, respec-
tively, i.e.,

D 0
D= 0 D, |’ (3.4)
where
M N
Dp=2, |y M,], (3.5)
D ,=diag(d,,dp,d)) , (3.6
and
d,=2gawy ,
(3.7

dD:2')/”(D0+-N)_4g(v3a0+voa6) .

For a coherent input field the matrix Dy would be zero,
N=M =0.

In Fourier space the linear equation (3.1) becomes alge-
braic:

(A—iwl)da(w)=(w), (3.8)
where the Fourier transform is defined
_ 1 g 1ot
flo)=——= f_wf(t)e dt . (3.9)

The atomic variables may be exactly eliminated from the
set of 5X 5 linear equations in (3.8) to leave a set of 2 X2
equations for the field variables alone,'* i.e.,

[4/(@)—iol)das(0)=L o), (3.10)

where 8a (0)=(8a(w),5a™ (»))’, and the field drift ma-
trix is
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f

with @®=w/y,. The noise correlations define the field
diffusion matrix D (@)

(Cp@)L (") =D/ (@)8(0+w') , (3.12)
where
B d(®) AB)
with
- - K 4
d((ﬁ):d(“‘(ﬁ):d(a)+27M s
(3.14)
_ _ K4
A(E))ZA(“Q):A(E)'{’ZTN .
The drift matrix elements are!*
a(@)=1+i¢+y(®),
cI 1 (3.15)
b(w)=—
O)I(@) [1+iA®@)]
% 1. 1
1+iA  1—iA(—®)
with
—_ 2C I
y(@)= - -
MO)[1+iA(@)] 2(1—iMI(@)
_ I
A1+iA@) (@) |’
na=1-2+4L1 1, 1 . (3.16)
2 2 [ 14iA@) 1—iA(—)
ANo)=A—a .

The real and imaginary parts of a (@) represent atomic

a(®) b(@) and cavity absorption or loss, and dispersion, respective-
A;(o)=x b*(—5) a*(—a) (3.11)  ly. The diffusion matrix elements are given by
J
—\_ 2CI 1 1 1
do)=— ; - 1—
[0O)1+iA) [1+iA@)][1+iA(—d)] 2l(®)[1+iA(®)] 2M*(®)[1+iA(—)]
2C1? 1 cr’ 1

0N 1+A%) [1+iA@)][1+iA(—a)]|1(®)|? 2M(0)(1—iA) [1+iA@)][1—iA(—&)]1(@)]?

and

(3.17)
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2CI? 1

H@)(1—-iA)
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I

Al@)=

M0)1+AY) [[1+iA@)](@)]?

A thorough discussion of the physical interpretation of
d (@) and A(@) was given by Reid.'* To summarize,
d (@) is a phase-sensitive atomic noise source, and is re-
sponsible for squeezing, while A(@®) is the phase-
insensitive source term which tends to destroy phase sen-
sitive features in the spectral region around the pump fre-
quency (@=0 in the rotating frame). These terms
represent the atomic noise induced by the mean intracav-
ity intensity I. With a squeezed input the diffusion ma-
trix elements d(@) and A(@) contain contributions due to
the squeezed light which is coupled into the cavity
through port A, the coupling efficiency being determined
by the ratio « , /k of Eq. (3.14).

IV. CAVITY REFLECTION AND TRANSMISSION
SPECTRA

A. Input and output quadratures

Define the input quadrature operator for port 4, in the
interaction picture as

—i(g,+6) 60 +0) 1

Xin()=e a,(t)+e L. 4.1)

The output quadrature operator for port A (reflected
field) is similarly defined

—i(E  +0)

g +6) +
Xgut(t):e out e out
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out(

The phases §;, and &, are given by Egs. (2.19) and (2.22),
respectively. The output quadrature operator for port B
(transmitted field) is defined by an expression similar to
(4.2) with §,,,=0. The advantage of these definitions is
that the amplitude and phase quadratures of the input
and output fields corresponds to =0 and /2, respec-
tively, for any set of atomic and cavity parameters.

B. Optical and squeezing spectra

The squeezing spectrum of quadrature fluctuations is
defined

Viw,0)= [ © dre'( Xyt +7),X,4(0)) 4.3)
where X, is the appropriate input or output quadrature
of interest. The time ¢ is a time at which steady state has
been reached. Using the commutation relations (2.2) en-
ables (4.3) to be written *

Viw,0)=1+¢(0)+¢(—w)+x(w;0) , (4.4)

where the constant 1 is the vacuum or short noise level,
¢(w) is the optical spectrum which is independent of the
quadrature phase angle 6, and x(w;6) is a phase-sensitive
contribution. These are defined for the transmitted out-
put fields by

[1+iA(—3)]

C@)[1+iA®)]

} } . (3.18)
I

c;S(co)Efac dre'al  (),a,,(t +7)),
o 4.5)

—i260+&,,)

x(w;0)=2Re [e
><f°c dre'®(a, (t +71)a,,(1) |,

where {,,, is given by (2.22) if we are considering the
reflected field, and {,,, =0 for the transmitted field.

Similar definitions apply to the input fields. Consider
the squeezed input to port 4 (Ref. 13):

(a] (0),a,,(0")) =N8lo+0o') ,

(4.6)
(a;,(@),a,,(0")) =M8w+a')
with M =|M|e'?¥ imply that
$in(@)=N, 4.7)
Viilw,0)=1+2{N +|M|cos[2(0+&,,— )]} . (4.8)
The input is said to be amplitude squeezed when
Y=C;,+(n +1)m, n integer 4.9)
and phase squeezed when
Y=¢,,+nm, n integer . (4.10)

The input to port B is just vacuum, V; =1.
If the optical spectrum is an even function

é(w)=¢(—w), then (4.4) implies

V({w,0)+V , (4.11)

o
0+
@vTy

a result whose significance has been pointed out by Rice
and Carmichael.'”® For example, if there exists a quadra-
ture 6, such that V(w,0,)~1, the optical fluctuation
spectrum is due only to fluctuations of the conjugate
quadrature 6,+ 7 /2. This sort of possibility arises if the
optical spectrum is symmetric, and in general this is not
s0.

The reflected field is a superposition of light reflected
by mirror A4, and light which exits the cavity through
mirror A. Both contributions are influenced by the
squeezed input since some is reflected off 4 without
entering the cavity and the residual squeezes the intra-
cavity field and therefore modifies the atomic response.
A detector of R will register interference as a result of the
superposition. The transmitted field T, contains no such
interference, as it consists of a superposition of the field
exiting port B (including squeezed light that has passed
through the cavity) and vacuum field reflected from port
B. The interference on the reflected signal can thus be
isolated by comparing the reflected and transmitted field
spectra, suitably scaled by the exit port bandwidths. Ex-
plicitly the reflected ¢ (w) and transmitted ¢ (w) spec-
tra are related by
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Kp
¢R(&)): _¢T(C¢))+N
K4
4K 4 Re | Nla(=B)+iga]—Mb*@)
K P*(—iw) ’

(4.12)
where ¢ =y, /k and

P(—iv)=[a(@)—igo]la*(—@)—igp]—b(a)b*(—a) .

(4.13)

The details of the derivation are given in Sec. V. The in-
terference contribution is seen to vanish when N =M =0.
The interference feature is not itself a nonclassical effect,
as is easily observed by setting M =0, indicating that a
classical thermal noise input produces interference; at op-
I

(azut(t +7),80,,(1 )=

where O(7) is Heaviside’s step function. For a coherent
input the input correlation and the terms proportional to
N and M vanish leaving the output correlation function

(al (t+71)a,,(0))=2k (a(t+1),a(0)) . (53)

The optical spectrum may then be evaluated alone in
terms of normal and time-ordered correlations of the
internal field. These are precisely the orderings which are
evaluated in a normally ordered phase-space representa-
tion such as the Glauber-Sudarshan P or positive-P distri-
butions. In a linearized fluctuations analysis the spec-

]

$r(—@)= (=) +2, [ 7 dre’ (8at(t +)8alr))

+2k ,

+ f dTe_”"T{N([a

where ¢m( —w)= ¢m
and {(a'(t +7),a'(2)), (a(t
results derived there one finds (5.5) may be written

$r(—@)= ¢;p(—

(af (t+71),a,(0)+2c ,((al(z+1),
—{MO(1) ([a (t+71),

a(t+7)])—M*{[a(t),al(

+2KAf d‘re"’"<8a+(t+7)8a(1))
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tical frequencies however, this would be completely negli-
gible. Moreover the phase dependence of the optical
spectrum as ¥ is varied can be produced by a phase-
sensitive input with noise in excess of the vacuum
N >|M|. A phase-sensitive nonclassical feature, suppres-

sion of the vacuum noise spectra, will be discussed in Sec.
VI

V. COMPUTATION OF SPECTRA

We first compute the reflected optical spectrum in de-
tail. By definition
¢r(—)= [ 7 dre(al (1 +1)a5,(0) . (5.1)

For squeezed inputs, the correlation function in (5.1) may
be expressed in terms of input and internal field correla-
tions as'®

) +N{[a(t +7),a(0)])
a'(OD+M*e(—r){[at +7),a(D]}),
(5.2)

I
trum for coherent input could then be written
$r(—@)=2c, [ © dre'(8a*(t +1)8a(n) . (5.4)

The presence of a squeezed input means we must con-
sider the extra contributions in (5.2), which lead to non-
normal and non-time-ordered correlations of the internal
field. These correlations may however be calculated
straightforwardly with a normal and time-ordered repre-
sentation in a linearized analysis, with the aid of the re-
gression theorem,?® as we now show. Substituting (5.2)
into (5.1) gives

J drer(N(a" e +m),a(0]) =M([a"(t +1),a (0]}

t+7)]) (5.5)

The correlation functions {a(¢),a’(t +7)) and {a(t +7),a (¢)) are non-normal-ordered,
(t +7)) (r>0) are non-time-ordered. These are computed in Appendix A. Using the

-2, [fo“’dre"wf[zv(e—AT)ZZ+M<e—4f)2,]+ fo""dTe*"wf[N(e*AT>H+M*(e*Af)u] , (5.6)

where A is the 5X5 drift matrix of Eq. (3.2).
Using the result (see Appendix B)

[ZdreTione 4T, =(4tiwl);'
0

=[4,@)tiol];' (,j=12) (5.7

f
we have

¢ ¢m
—2k,{N[(4 +1wl)221+(_4_—1w1)1_11]

+2KAf dre“‘”(f)a t)8alt +7))

+M(A+iol)7'+M*(4—iol)}'},

(5.8)
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which gives dard spectral matrix theory. The spectral matrix is

@ . + defined as
$rl@)=2k, [~ dre(sat(balt +7)) +N o

e = [ 7 dre(8a,(06ak(t +7))
LY Nla(—®)+igw]—Mb* (@) T

Re - . _ e e AT e e
K P*(—iw) [4,(@)—iol] D (@) 4;(—d)+iol] " .
(5.9 (5.10)
The evaluation of the usual integral term in (5.9) is stan-  Thus
_

1

Sl f d‘re"'"<8a+(t Sa( t+7)>—m

([la(—®)+ig@d]*+|b(®)|*]A(@)

—2Re{b(@d)a(—a)+ignld*(@)}) . (5.11)

This completes the computation of the optical spectrum of reflected light. The transmitted optical spectrum ¢ () is
simply given by

br(0)=2kpS (@) . (5.12)

Calculation of the reflected field squeezing spectrum requires the computation of y(w;8) of Eq. (4.4). To evaluate this
we make use of the result'®

(ot +7)a0, (1)) =(a,,(t +7),a,,(t)) +2k ;[ (N+1){T(a(t +7),a(2)))—N{(T(a(t+7)a(t)))
+M{e(—r)[al(t +1),a (D)) +O(r){[a’(),a(t +7)])}], (5.13)

where T (T) is the time (antitime) ordering operator, i.e., earlier times to the right (left). By an analysis similar to that
used for the optical spectrum one finds that

Yrlw;@)=e T2 S (@) +M =2k JN[(A+ioD) G +(4 —iwl)]!
=2k M[(A+iol)'+(4—iol) ']} +c.c. , (5.14)
which yields
—i 2K —_\ X( _ —\__ =
(w;0)=¢ 20 | 5 (o) 4 M+ —A | No(@)=Ma™(~8)—iga]
K P(—iw)
+ Nb(—@)—M[a*(@)+igd) ||, (5.15)
P*(—iw)
where
Sile)=————([a*(—5)—ig@)[a*(®)+ign)d(@)+b ()b (—2)d*(B)
k|P(—iw)
—{[a*(@)+iga]b(®)+[a*(—d)—ignlb(—&)}A@)) . (5.16)
[
The transmitted phase function is given by squeezed input. For a coherent input this is identically
, zero. This may be written
Xr(@;0)=2kpS,,(w)e  *P+c.c. (5.17) (=2 )
—K,,
Equations (5.9), (5.12), (5.15), and (5.17) give the reflected A¢r(5>=———‘—|P(_l. B {Nlla(—a)+iga|—|b(@)| ]

and transmitted spectra of squeezing for arbitrary output
quadratures, for any quadrature of broadband squeezed —2[IM|n—N1l[a(—d)
input to port A, within a linearized approximation. +igalb (@]

VI. RESULTS (6.1)

In this section we illustrate some of the squeezed input  where 7 is a phase factor which varies between [ —1,1] as
induced modifications to the optical spectra seen in  the phase ¢ is varied. It is therefore possible to achieve
transmission and reflection. We denote A¢ (@) the con-  A¢,(w) <0, an effect which depends on the quantum-
tribution to the transmitted optical spectrum due to the = mechanical nature of the input, for at least some regions
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of the optical spectrum with a suitably phased, squeezed
input and provided that the degree of squeezing is not too
large. The latter is a somewhat surprising condition and
derives from the fact that the intensity of squeezed input
N should not be too large otherwise the positive defin-
ite term in (6.1) will dominate; the minimum quadra-
ture noise of input for a given N is V.
=1—2[VN(N+1)—N].
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In Figs. 1-3 we illustrate the reflected and transmitted
spectra in the strong-coupling regime, where for a
coherent input and intracavity intensity well below atom-
ic saturation I << 1, the spectra consist of a doublet posi-

tioned at the collective Rabi frequencies w=ig\/—./T/, in
the rotating frame.”~° The doublet is due to single quan-
tum splitting of the first pair of excited levels of the in-
teracting atom-field system, and is also sometimes re-
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FIG. 1. Shows the (a) transmitted and (b) reflected spectra, for the strong-coupling regime with I =0.5, C =20, A=¢=0, «,, =0,
and g =1. The solid line shows the spectra with a coherent input, the dashed line shows that for a phase squeezed input, N =0.1,
[M|=v0.11, and the chain-dashed line shows that for an amplitude squeezed input with the same values of N and |M].
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ferred to as vacuum Rabi splitting. The input is chosen
to be a moderate 46% squeezed (V;,=0.54, with
N =0.1and [M|=V/0.11). For the transmitted spectra a
phase squeezed input suppresses the vacuum Rabi peaks
somewhat, while the amplitude squeezed input with its
enhanced phase fluctuations enhances the doublet. Con-
versely, the reflected spectrum has fluctuations below the
level of the input N, for near-resonant normal-mode fre-
quencies with amplitude squeezed input.

o
N
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Increasing the intracavity intensity to 75% of satura-
tion (I =0.75), the central component of the spectrum
grows, since real excitation of higher dressed states of the
atom-field system leads to spontaneous transitions at this
frequency. The central component is also modified by the
squeezed input, but in an opposite sense to the doublet,
and this may be observed in transmission and reflection.

Figure 3 illustrates the transmitted spectrum for the
parameters of Fig. 2, as the phase of squeezing is continu-
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FIG. 2. Same as Fig. 1 except that I =0.75.
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FIG. 3. This shows the transmitted optical spectrum of Fig.
2(a), without the coherent reference, as the phase of squeezing
input is continuously varied from phase to amplitude and back
to phase squeezing.

ously varied from phase squeezed input to amplitude
squeezed input and back to phase squeezed input. Al-
though not clearly apparent from the figure, the spectrum
is only symmetric for the phase and amplitude squeezed
inputs ¥ —¢;,=0(modw) and 0.5, respectively. Even
this symmetry is a consequence of assuming atomic reso-
nance A=0.

The generality of our theory allows us to investigate
many different parameter regimes. So far we have con-
sidered the strong-coupling regime when the timescale
for atomic decay via spontaneous emission is comparable
with that for loss via the cavity mirrors, and both are
longer than the time in which the collective atomic polar-
ization may exchange quanta with the resonant cavity
mode; hence the normal mode splitting. Other interest-
ing features may be expected in the so-called bad-cavity
limit where the cavity decay time is much shorter than
the atomic decay time, i.e., ¢ << 1. Intuitively one ex-
pects that since cavity loss is the dominant source of dis-
sipation, the squeezed input may most strongly influence
the system dynamics, as it is precisely this decay route
which it modifies. Collective effects in the transmission
spectra, for coherent inputs, have already been con-
sidered in detail in this regime.'*?! Moreover it has been
pointed out that in the case of a single atom in a cavity
the bad-cavity limit is isomorphic with single-atom reso-
nance fluorescence in a vacuum except that y, the longi-
tudinal atomic decay rate, is replaced by y(1+2C),
where the first and second factors represent loss other
than via the cavity mode and via the cavity mode, respec-
tively, and C is the single-atom cooperativity.??> For large
enough intensities I, when atomic saturation becomes
dominant, the spectrum becomes a triplet with P(—iw)
proportional to the Torrey polynomial which determines
the Mollow triplet positions in free-space (single-atom)
resonance fluorescence.?> This can be seen by taking the
limit ¢ —0, C/I —0 with I >>1, in Eq. (34) of Reid."
Hence in this limit the sidebands are located at the Rabi
frequency @ = +(A2+2I)!/2,

In Fig. 4(a) we show that in the bad-cavity limit it is
possible to significantly suppress one of the sidebands in
transmission by use of a suitably squeezed input when
atomic dispersion is included. The spectrum for a
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coherent input is shown for comparison. Note that the
intensity chosen is quite moderate, and in particular the
sidebands are separated by less than the Rabi frequency
given above. For phase squeezed input the left peak is
significantly suppressed in transmission, while the right
peak is greatly enhanced. The spectrum is nearly sym-
metric for the amplitude squeezed input, with the side-
bands much larger than the central peak. The reflected
spectra shown in Fig. 4(b) are rather complex, but we
note that for the amplitude squeezed input the spectrum
is very asymmetric, in contrast to transmission. Figure 5
shows the transmitted spectrum as a continuous function
of the phase of squeezing, for the same parameters, and
may be compared with Fig. 4(a). In Fig. 6 the effect of in-
creasing the cavity mismatch on the transmitted spec-
trum is considered. This effectively increases the relative
loss through port 4 which is squeezed, and the suppres-
sion of the left peak appears more pronounced. Note
that in Figs. 4-6 the degree of squeezing is less than 83%
(V min=0.17), and no attempt has been made to optimize
the effect by fine tuning the parameters.

Recently Courty and Reynaud!! reported the suppres-
sion of one of the Mollow sidebands for single atom reso-
nance fluorescence, from the sides of a cavity driven by a
squeezed input, in what amounts to the bad-cavity limit.
This they interpreted as being due to dressed state popu-
lation trapping, which effectively stops spontaneous emis-
sion from one of the dressed states and thus at one of the
sideband frequencies, and required that the atom be ex-
cited off resonance. It appears likely that the phenomena
we observe in the transmission spectra for the many-atom
case are related, though we will not discuss this further
here.

VII. SUMMARY

In this paper we have given a general theory of the in-
teraction of a broadband squeezed light input with a large
number of atoms in an optical cavity under general con-
ditions of atomic and cavity loss, and dispersion. We
have concentrated on the optical spectra which may be
observed in transmission and reflection. The latter is
quite novel in that interference between the squeezed
light reflected from the input mirror and the cavity leak-
age field leads to distinctive structure, which changes
qualitatively with both the intensity and phase of squeez-
ing at fixed coherent driving amplitude. The structure of
the transmitted spectra is more closely related to that
which is found in the absence of squeezing. With a
squeezed input of appropriate phase it is possible to
somewhat suppress the vacuum Rabi peaks in the strong
coupling regime, provided the intensity of squeezing, and
hence the degree of squeezing, it not too large; this is a
nonclassical effect. In the “bad-cavity” limit in which the
cavity mode is the dominant decay rate, it is also possible
to suppress one of the sidebands of the triplet found for
saturated atoms excited off resonance. Recent studies of
single-atom resonance fluorescence with squeezed inputs
in the strong coupling and bad cavity limits, by Savage!!
and Courty and Reynaud,'° respectively, have admitted
similar qualitative features.
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FIG. 4. Illustration of the ‘“bad-cavity” limit (a) transmitted and (b) reflected spectra, for I =144, C =20, A=S5, ¢=3, «,, =0.5,
and ¢ =0.01. The solid line indicates the spectra for a coherent input, the dashed line for a phase squeezed input with N =1 and

M =V2, and the chain-dashed line for an amplitude squeezed input with the same N and |M]|.
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Lz()&p}\zy}ky )¥4,}\5)T ’

a=(a,,ayas,aas5) =(a,a”,v,D,0 )" (A2)
and

0, ot e iR, iR ’

0, ="M ¢ (A3)

are atomic and field operators, respectively. The measure
dp(a) defines the distribution P(q,t). Here we will con-
sider the Glauber-Sudarshan-Haken P distribution for
which

)((A,t)=fduH(g)e"g'LP(g,t)

(A4)

with  A=(A*,A, %687, a=(a,a*v,D,0*)7, and
duy(a)=d?ad* dD. We write the master equation in
the form

py=Lp(t), (AS)

which defines the Liouvillian £.
Consider, for example, the non-normally ordered
correlation function

(a(na’(t +7))=Tr{a e [p(t)a]} . (A6)
From (A1) and (A4) we find
Trlp(1a0 ,0;1= [ |a— aa* Pla,ne™duyla)
a
(A7)
and define
G (L) =Tr{e‘[p(1)alO O} (A8)
in terms of which
(a(na’(t +7)===G (M), . (A9)
Using (A1), (A7), and (A8) we find
fd,uH d#H( ) iL.QP(QJt-*'Tlg_Iyt)
! a ’
X |la'— P(a',t), (A10)
aal*
hence
(a(nalt +7))=(a*(t +)al(t))
+< 9 *(t+r)i[g’,t])>, (A11)
da'*
where
(a*(t +7)a )—fdyH Mduy(a')a*

XPl(a,t+71|a',t)P(a',t),
(a*(t +0)[a 1) = [duyl@)a*P(a,t +7la,1) .
(A12)

Using the normally ordered correspondence
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(a'(t +m)a(t))=(a*(t +7)al) ,

(A11) may be written

([a(t),a’t +1)])= <aa. *(z+r)l[g’,t])>. (A13)
a

Similarly one may derive the following results:

(et +ra' 0D =2 e + ol |
da

([a(t),a(t+¢)])=<aa* +7)|[g’,t])> , (A14)
a

([a(t+71),a"(D])= < ~(alt +7)|[, t])> (r=0) .

The conditional averages in Egs. (A13) and (A14) may be
computed in a linearized approximation by means of the
regression theorem. The regression theorem states that

%(Q(t+T)’[Q'yt]>=—é(g(t+T)|[Q',t]> (r>0),

(A15)
where A is the linearized drift matrix (3.2). Hence
< —(a;(t +7-)|[c_z',t])>
da
=(e 4N, (r20;i,j=1,...,5). (A16)

This result is used in Eq. (5.6).

APPENDIX B: DRIFT MATRIX INVERSION

Comparison of Egs. (3.8) and (3.10) implies that
5
da,(0)= 3 (A—iwl);]‘l“j(w)

j=1

2
=3 [4,®)—iol],' T, (0) (p=12), (Bl
v=1
where for clarity we label field variables with Greek
letters, and use Latin letters for a general (atom or field)
index.
1. We multiply (B1) by I' /(
chastic averages to give
5
S (4—iol),

Jj=1

o') (0 =1,2), and take sto-
D Oloto')

2
2 &) —iwl], (T, (@)l (o)) . (B2)

2. We use the results
(I‘f’v(w)ra(w'ﬁ=DVU5(co+w') (vic=1,2), (B3)
D;,#0=j=1,2 (B4)

in (B2) to give
(Ad—iol), =[4,@)—iol]l,, (n,v=1,2). (BS)

As a result of (B5) only inversion of the 2X2 reduced
drift matrix is necessary in Eq. (5.8).



3064

ISee the special feature editions: J. Mod. Optics 34, #6/7
(1987), edited by P. L. Knight and R. Loudon; J. Opt. Soc.
Am. B4, #10 (1987), edited by H. J. Kimble and D. F. Walls.

2C. W. Gardiner, Phys. Rev. Lett. 56, 1917 (1986).

3H. J. Carmichael, A. S. Lane, and D. F. Walls, Phys. Rev. Lett.
58,2539 (1987); J. Mod. Optics 34, 821 (1987).

4A. S. Parkins and C. W. Gardiner, Phys. Rev. A 40, 376 (1989).

SD. Kleppner, Phys. Rev. Lett. 47, 233 (1981); P. Goy, J. M.
Raimond, M. Gross, and S. Haroche, ibid. 50, 1903 (1983); Y.
Kaluzny, P. Goy, M. Gross, J. M. Raimond, and S. Haroche,
ibid. 51, 1175 (1983); J. J. Sanchez-Mondragon, N. B. Naro-
zhny, and J. H. Eberly, ibid. 51, 551 (1983); G. S. Agarwal,
ibid. 53, 1732 (1984); D. P. O’Brien, P. Meystre, and H.
Walther, Adv. At. Mol. Phys. 21, 1 (1985).

6L. A. Orozco, M. G. Raizen, Min Xiao, R. J. Brecha, and H. J.
Kimble, J. Opt. Soc. Am. B 4, 1490 (1987).

7R. J. Brecha, L. A. Orozco, M. G. Raizen, Min Xiao, H. J.
Kimble, J. Opt. Soc. Am. B 3, 238 (1986); M. G. Raizen, R. J.
Thompson, R. J. Brecha, H. J. Kimble, and H. J. Carmichael,
Phys. Rev. Lett. 63, 240 (1989).

8H. J. Carmichael, Phys. Rev. A 33, 3262 (1986).

9M. G. Raizen, L. A. Orozco, Min Xiao, T. L. Boyd, and H. J.
Kimble, Phys. Rev. Lett. 59, 198 (1987).

10T. A. B. Kennedy and D. F. Walls, in Coherence and Quan-
tum Optics VI, edited by J. H. Eberly, L. Mandel, and E. Wolf
(Plenum, New York, in press).

113.M. Courty and S. Reynaud, Europhys. Lett. 10, 237 (1989).

T. A. B. KENNEDY AND D. F. WALLS 42

12C. M. Savage, Quantum Opt. (to be published).

13M. J. Collett and C. W. Gardiner, Phys. Rev. A 30, 1386
(1984); C. W. Gardiner and M. J. Collett, ibid. 31, 3761
(1985).

14M. D. Reid, Phys. Rev. A 37, 4792 (1988); F. Castelli, L. A.
Lugiato, and M. Vadacchino, Nuovo Cimento D 2, 183
(1988).
I5SH. Haken, in Light and Matter, Vol. XXV of Handbuch der
Physik, edited by L. Genzel (Springer-Verlag, Berlin, 1970).
16p. D. Drummond and C. W. Gardiner, J. Phys. A 13, 2353
(1980).

7P, D. Drummond and D. F. Walls, Phys. Rev. A 23, 2563
(1981).

18p_ R. Rice and H. J. Carmichael, J. Opt. Soc. Am. B 5, 1661
(1988).

1YM. J. Collett and D. F. Walls, Phys. Rev. Lett. 61, 2442
(1988).

20C. W. Gardiner, Handbook of Stochastic Methods (Springer-
Verlag, Berlin, 1983).

21Y, J. Carmichael, D. F. Walls, P. D. Drummond, and S. S.
Hassan, Phys. Rev. A 27, 3112 (1983).

22H. J. Carmichael, Phys. Rev. Lett. 55, 2790 (1985); P. R. Rice
and H. J. Carmichael, IEEE J. Quantum Electron. 24, 1351
(1988).

23H. C. Torrey, Phys. Rev. 76, 1059 (1949); B. R. Mollow, ibid.
188, 1969 (1969).



