
PHYSICAL REVIEW A VOLUME 42, NUMBER 5 1 SEPTEMBER 1990

Temporal correlations of sidebands of the Auorescent spectra from a three-level atom
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An analytical study of the sideband correlations in a strongly driven three-level atom in the cas-
cade configuration is presented. The quantum nature of the sidebands is discussed in terms of
intensity-intensity correlations and photon statistics.

I. INTRODUCTION

The study of temporal correlations between fluorescent
photons has been a subject of much theoretical' and ex-
perimental interest. Measurements involving the
correlation of the intensity of the light or the degree of
second-order coherence can distinguish between classical
and quantum predictions. ' A number of experiments re-
lating to violation of classical inequalities have focused
attention on single-beam resonance fluorescence measure-
ments and on double-beam intensity correlations in two-
photon cascade emission. Various methods for observ-
ing violations of the Cauchy inequality rely on processes
in which two photons of different frequency are emitted
more or less simultaneously. Another important applica-
tion of the measurement of photon correlation is found
in tests of Bell's inequalities in studies of polarization
correlations for photons emitted in an atomic cascade.
Kimble, Mezzacappa, and Milonni investigate the pho-
ton statistics of the field arising from the atomic cascade
with photodetectors placed in the far field of the atomic
emission. Also reported is the experimental observation
of strong Zeeman beats in the temporal correlations be-
tween the two photons emitted in an excited atomic cas-
cade. Further, the measurement of the correlation of
photons emitted in an atomic cascade is an accepted
technique for determining lifetimes of excited atomic lev-
els. Time correlation of photon detections at given fre-
quency is of interest for radiation fields generated by mul-
tiphoton processes such as emission of photons in many-
level atoms, resonance fluorescence, and Raman scatter-
ing under strong irradiation. The intensity correlations
between fluorescent photons have also been analyzed in
the literature revealing some quantum features of the
fluorescent light such as antibunching, quantum jumps, '

etc.
Experiments of Aspect et aI. , based on a mixed

analysis (i.e., time correlations between fiuorescent pho-
tons previously selected through frequency filters), have

shown that the photons emitted in the two sidebands of
the Mollow's triplet" are strongly correlated, bunched,
and emitted in a given time order. These results have
motivated us to investigate the quantum characteristics
of the sidebands of the fluorescent spectra of a three-level
atom. It is well known that for a three-level atom irradi-
ated by two strong laser fields the fluorescence spectrum
consists of a central peak at each transition frequency
and three pairs of sidebands for finite detunings. ' ' At
exact resonance, that is, when the two laser frequencies
are exactly equal to the respective transition frequencies
of the atomic system, there are only two pairs of side-
bands near each transition frequency. ' ' Under the con-
dition that the detunings and/or the driving fields are
large enough it may be interesting to study the properties
of the sidebands and the correlations between them. We
present here an analytical study of the sideband correla-
tions in a strongly driven three-level atom in the cascade
configuration. We also study the photon statistics of
sideband emission.

We present in Sec. II the basic theory leading to the
definition of the sideband correlation functions. The
derivation and discussion of the analytic expressions for
the correlation functions and the sideband response func-
tion are presented in Secs. III and IV, respectively, fol-
lowed by the concluding remarks in Sec. V.

II. FORMULATION OF THE PROBLEM

A. Basic equations

We consider a three-level atom with unequally spaced
levels (E& )E2) E3) in the cascade configuration, in-

teracting with two monochromatic applied fields of fre-
quencies 0& and 0,2 which are near resonant with the
atomic transition frequencies co, =(E, E2)/A and-
co2=(Ez E3 )/fi, respective—ly (see Fig. l). The dynamics
of such a system is described by the master equation' for
the reduced atomic density operator p(t):

dp(t) = —t [Ho,p(t)] —y, [ A „p(t)+p(t) A „—23~,p(t) A, ~]—y2[ A~~p(t)+p(t) 2~2 —2A32p(t) 323],dt
(2. 1)
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and the closure property

+322+3331 (2.3b)

Analytical expressions for one-time expectation values of
the atomic operators can be obtained under the condition
that one or both the external fields are intense. We essen-
tially follow the method of Ref. 17. A secular approxi-
mation is invoked to derive a Markovian equation for
p(r) in terms of the dressed operators B;J=IQ;&(QJI
where If; & are the eigenstates of 00 corresponding to an
eigenvalue X;. ' The dressed states Ig, & are defined in
terms of the bare atom states i & as

Ig; &=u, 1&+b; I2&+c;I3& . (2.4)

The a;, b„and c; (i =1,2, 3) have the explicit expres-
sions

FIG. 1. Schematic diagram of a three-level atom in a cascade
configuration interacting with two monochromatic fields.

where

0 1( ~12+ ~21)++2( ~23+ ~32)+~~11+~2 22

a, =a,a2N;,

b, =cr2(A, ,
—A)X, ,

C; =[(b2—
A, , )(b, —A, , ) —a, ]X, ,

where the constants N, are defined as

( 2+b2+ 2) —li2

(2.5a)

(2.5b)

(2.5c)

(2.6)

(2.2a) and A, , (A,2) A, , ) A, 3) are the roots of the cubic equation:

b, =b, , +62, a =d, EJ I2 (j =1,2) . (2.2b)
A,

—
A. (6+62)—A(Q —AA2)+a&A=0, (2.7a)

l ~mn& ~pql= ~mq~np ~pn~qm (2.3a)

Here E, , d 12a, , 2 y„b, 1(E2,d2, 2a2, 2y2, b2) are, respec-
tively, the amplitude of the field, induced dipole moment,
Rabi frequency, Einstein A coelcient, and frequency de-
tuning (b, ; =0;—co;, i =1,2) corresponding to the upper
(lower) transition. The operators A „= m & ( n I, with
Im & representing the mth state of the atom
(m, n =1,2, 3), satisfy the commutation relations

with

g —
( 2+ 2)1/2 (2.7b)

Using the usual definition for the average of an operator
0, (0 &

=Tr(Op), we can obtain the equations of motion
for (B;~(t) & and hence their solutions. ' For the present
studies we require only the diagonal components (B,, (t) &

which are given in the following compact form:

1

VlV2 =. .. V VlV2
(v 2h;v+g;—)(B;;(0)&+ g ( 2f Jv+g;)(BJ&(0)&—exp( vt), —

J
(j&I')

(2.8)

where (B,, & =g, Iv, v, , (2.12)

f,, =y, b, a,'+ y2c, b, (i Wj ),
f„=y1a, (1 b, )+y2b, (1—c;—),
b1 f13+f22+f23

b2 fll +f13+f23
h 3 =f11+f22

g1=4(f13f22+f23f12»

g2 (f11f23 f13f21)

g3 4(f11f22 f12f21)

(2.9b) v —(h, +h2+h3)v+(g, +g2+g3)=0 . (2.13)

(2.10a)

(2.10b)

(2.10c)

(2.11a)

(2.11b)

(2.11c)

B. Photon detection operators

To study the sideband correlations we are required to
introduce the photon detection operators. For the cas-
cade configuration under consideration the upper spec-
trum is characterized by the dipole operator 3 l2 and the
lower spectrum by the dipole operator 323. We may ex-
press these original atomic operators 3; in terms of the
dressed operators B„by means of the relations

(2.9a) and v, , v2 are the two roots of the quadratic equation
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3

A12= g a;blBl —A21,
l, J =1

3

A23= g b;c B;,=A32 .
l, J —1

(2.14a)

(2.14b)

D2L a b B (D2L )t D2R —
12 b B (D2R )t

D3L 12 b B (D3L )t D3R a b B =(D3R )t

(2.17b)

B;l(t) e. volves with time under the action of the Hamil-
tonian Ho as

Bl(t) =Bl(0)exp[i(A, ; —A, )t] (ij =1,2, 3), (2.15)

and gives rise to the spectral components at frequencies
co„=A,,

—
k~. (lan=1, 2, 3), with respect to the central peak.

Here, p characterizes the sideband frequencies in the fol-
lowing manner:

(2.16)

(2.17c)

corresponding to the detection from left (L) and right
(R) sidebands. By left ( right) we mean that the particu-
lar sideband has a frequency less (more) than that of the
central peak. '

III. SIDEBAND CORRELATION FUNCTIONS

with respect to the center of the spectrum, co3 corre-
sponds to the farthest sidebands (A,2) A, , )A, 3), whereas
a2, and co2 correspond to the nearest and the next-nearest
sidebands if co, &co2 and vice versa if ~2&~, .

%ithout any loss of generality, we may restrict our-
selves to the discussion of the upper spectrum, since the
lower spectrum is obtained by a mere replacement of a,.

by b; and b; bye;. Using Eq. (2.14a) we can write A, 2 ex-
plicitly as

3

A12= g a;b;B;;+alb2B12+a, b3B,3+a2b1B2,

2~3~23 +~3b2~32+a 3b1~31

Now we can identify our photon detection operators as

D1L b B (D 1j )t D1R b B (D1R )t

(2.17a)

The photon detection operators can be used to obtain
the quantum properties of sidebands in terms of the
second-order correlation functions:

Gf"(r)= lim (D+(t)D+~(t+r)D" (t+r)D"'(t))
l —+ co

(ij =L,R;p=1,2, 3) . (3.1)

Physically the correlations GL"„'(r) [GgL'(r)] represent
the probability of detecting at time t +~ a photon of fre-
quency co„on the right [left] given that a photon of the
same frequency on the left [right] has been detected at
time t.

Using the solutions for (B;;(t)) [Eq. (2.8)] we obtain
analytical expressions for the cross- and self-correlations
G,.'f"(r) and G/'(7), respectively, for the general case of
nonzero detunings. The expression for cross-correlations
GLR'(r) is given by

GLR(r) (~kbk~lbl ) +(p)
V V v=v v1' 2

V 26k V+gk

V V1V2
2

exp( —vr) (Bll ) . (3.2)

The indices k and l take values depending on the pair of sidebands studied. Thus (k, 1) take the values (1,3), (2, 1), and
(2,3), respectively, for lan= 1, 2, and 3. The expressions for GlIL'(r) are obtained by replacing k~/ in Eq. (3.2).

The analytical expressions for the self-correlations GL11L'(r) are

4 gk
—2fkl++ gk

GL~L'(r) =(akb, )' + g 2 exp( —vr) (Bkk ) .
v=v, v1' 2

(3.3)

The indices (k, l) take the values (3,1), (1,2), and (3,2) for
1M=1, 2, and 3, respectively. The expressions for Gtt'R(~)
are obtained by replacing k~1 in Eq. (3.3).

Figure 2 displays the general behavior of the cross- and
self-correlations for the case of unequal detunings
(b, ,&b,2). The inset of Fig. 2(a) displays the seven-peak
fluorescence spectrum for the upper transition. A general
conclusion is that the photons from a pair of sidebands
are strongly correlated. Further, the cross-correlations
show a bunching property, G,'l"(0))0 [see Fig. 2(a)],

I

whereas the self-correlations show an antibunching prop-
erty, G,'/'(0) =0 [see Fig. 2(b)]. The antibunching proper-
ty is physically obvious as the emission of a photon of a
particular sideband frequency precludes the possibility of
a simultaneous observation of another photon of the
same frequency. In fact, detection of the first photon of a
certain frequency implies a quantum jump of the atom
from the lower excited state to the upper excited state;
the atom can emit the same frequency photon only after a
finite interval of time during which it gets deexcited and
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FIG. 2. (a) Cross-correlations G~R{r) and Ggz'{r) as a func-
tion of y[~ for a, =20yl, a, =30y[, y2=y„61=50y[ and
62=30yl. Curves A-C are GL,&', GL&', and GL&, respectively,
and curves D-F are the corresponding RI. correlations. The
inset shows the fluorescent spectrum from the upper transition.
coo is the upper transition frequency. (b) Self-correlations
GL'~z'{r) and Gg'R'{r) as a function of y, r. Other data as in {a).
Curves A —C are GLL', GLL', and GLL', respectively, and curves
D-F are the corresponding RR correlations.

excited again. In the usual antibunching experiments
with a two-level atom, carried out in the time domain,
detection of a photon is associated with the atom making
a jump from a upper to the lower state rather than the
lower to the upper state.

On the other hand, the nonzero value of the cross-
correlations initially (at r=0) implies that the emission of
a photon of a particular frequency from the left (right)
sideband does not necessarily preclude the probability of

observing a photon of the corresponding frequency from
the right (left) sideband simultaneously. A simple physi-
cal interpretation of this result may be given by invoking
the picture of the energy levels of a combined system of
the three-level and the laser photons interacting togeth-
er. ' As a consequence of the quantization of the laser
field, this "dressed atom" has an infinite number of levels.
After absorbing a photon, the dressed atom can cascade
downwards from the excited state either to its original
state (elastic Rayleigh scattering) or to any of the per-
turbed states of the original state (Raman scattering} with
the emission of a photon at the transition frequency 0,.
(i =1,2) or at the sideband frequencies Q;+co„
(@=1,2, 3), respectively. The former contributes to the
central peak of the spectrum. The correlations between
the left and right sideband photons may be viewed as a
manifestation of such cascade emission. In our formula-
tion in terms of the dressed state of the atom we have in-

herently summed over all these microscopic processes in-

volving photon absorptions and emissions. The temporal
correlations between the photons belonging to a pair of
sidebands are, however, reflected in the behavior of
theoretically calculated correlation function G,~'(t).
Hence Gf')(r)WO for all times. The time-ordered nature
of G J'( )rand G,',)"(r) is clearly seen from Figs. 2(a) and

2(b), respectively. In general, it is observed that
Gzz ( r )AGE&'( r ) and GI'L'(r )W Gg'z'( r ) More. over,
GI"z'(r) »GII'L'(r) and Glz'(r) »Ggz'(r}. With respect
to the cross-correlations, this implies that, for a pth pair
of sidebands, if an L photon has a high probability of be-

ing followed by an R photon after time z then, necessari-
ly, the probability of the R photon being followed by an L
photon after time ~ is very low. A similar pattern is ob-
served in case of self-correlations also, i.e., if GLI'(r) is

very high, then, necessarily, Ggz'(r) is very low. This be-
havior can be seen clearly from Fig. 2. However, wheth-
er LR, LL correlations are greater than RL, RR correla-
tions or vice versa depends solely on the value and sign of
the detunings. For the data considered in Fig. 2, the
curves show that the values of GL„' '(7)and GL'L ' '(r. )

are much greater than those of G„'L '(r) and G„"~ '(r),
respectively, implying that the time ordering is such that
the L sideband photon always precedes the R sideband
photon. A further interesting aspect of the self-
correlations is that one pair of sideband correlations ex-
hibits a humped behavior [curves B and E of Fig. 2(b)].
This is reflected as a super-Poissonian characteristic of
photon statistics in the response function Q( T) and shall
be discussed in Sec. IV.

We next consider the case when the two driving fields
have opposite detunings (b, ,

= —62). In this case, the
nearest sideband on one side of the center and the next-
nearest sideband on the other side of the center disap-
pear, reducing the normal seven-peak spectrum to an
asymmetric Stark quintuplet [see inset of Fig. 3(a)]. It
can be seen from Eq. (2.7) that one of the roots of the cu-
bic equation is A, , =O and, hence, the coefficient b, =O.
Thus the dipole operator A, z [Eq. (2.14a)] now contains
only six terms, two of which contribute to the central
peak. Therefore we now define our photon detector
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operators in the following manner:

D1RD+ =a, b&B&z=(D'"), D+ =a, b2B,2=(D'
(3.4a)

D2R a—bB =(D ) D =abB =(D~t2R

(3.4b)

%e must qualify here that the operators D'" and D'
thou h refg re erring to nearest sidebands on the ri ht
left, res ectivel arp

'
y, are, however, not placed symmetricall

p s in the general case of unequalabout the central eak as i
e rica y

etunings discussed earlier. But the operato D dra ors + and

+ s i refer to the outermost sidebands of th
and the

s o e spectrum
hese are placed symmetrically about the center.

The pattern of behavior for the cross- and the se-
correlations for the optical double resonance b, , +62=0
is similar to that of the general cas Th' ' d'e. is is aisplayed in

Figs. 3(a) and 3(b. Th
(1)

The notable di6'erence here is th t
zz show an antibunching property, 6,'"(0)=0

[curves A and C of Fig. 3(a)].
V

I
S

n the resonance case (6 =6 =0) h, i e asymmetric
tark quintuplet becomes a symm t

'
S ke ric tar quintuplet,

e detectionand is shown in the inset of Fig. 4(a). The d
operators are still given by the relations (3.4a) and (3.4b .
As can be seen from Figs. 4(a) and 4(b) theere is no time

bands un
ag etween the appearance of the 1 ft d

'
he an rig t side-

eral as
ands un er pure resonance conditions. Th h

era aspects of their behavior are much the same as for
the optical double resonance case.

IV. RESPONSE FUNCTION

determined from the detector response function Q "'(T
which is directly related to G,~f '(r) in the steady state
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FIG. 4. (a ) Same as Fig. 3(a) but for b, , =52=0. (b) Sam
Fig. 3(b) but for 6, =62=0.
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Q,'"'(T)= I dr(T —r)[G't"(r) —(D+D"' ) ]i(D/+D/" ) (@=1,2, 3 and i =L,R),2g' T

0
(4.1)

where q is a parameter related to detector efficiency and has the dimension of frequency. Using the expressions for
G;"'(r) and D/+' we obtain

Q,-'"'(T) =2q [K "'(v, )+K "'(v2)],

with

(ak b/ )' 2f/(—/v+ g/&

V V V)V2

[1—exp( vT—) ]
VT

(4.2)

(4.3)

where for the general case of detunings we have for i =L, (k, I)=(3,1), (1,2), and (3,2) when (u
= 1, 2, and 3, respectively.

For i =R the corresponding values of (k, l) are interchanged. For the case when 6)= —b, z we have for i =L,
(k, l) =(1,2) and (3,2) for /tt =1 and 2, respectively. For i =R, (k, 1)=(1,3) and (2,3) for (tt= 1 and 2, respectively. For
the special case of resonance, i.e., 6) =62=0, we have the following explicit expressions for Q "'(T):

4e )zg() )( T) —g() )( T)—
V2

1

O/
2

g(2)( T) —g(2)( T) —2qL R

Q2

20
1 —exp( v) T)——1

viT

f,2 1 —exp( v, T)—
1—

V)
2 v]T

1 —exp( v2T)—1—
2V2 V2T

(4.4)

(4.5)

Figure 5 shows the variation of Q "'(T) with time for
unequal detunings. It is observed that two pairs of side-
bands exhibit purely sub-Poissonion statistics (see curves
A, C, D, and I' in Fig. 5). However, curve 8 in Fig. 5 in-
dicates that the photons belonging to the third pair of

sidebands show sub-Poissonian character for very short
times. For longer times the L photon exhibits a super-
Poissonian nature (curve 8) while the R photon tends to
show a pure Poissonian behavior (curve E). Moreover,
this super-Poissonian behavior is highly dependent on the

0 00

0. 00 -0. ]S-

-0. 35- -0 26-

C3 -0. /'0-

—1.05- -0 52-

-1.40
0

-0. 65
0 2

Yt

FIG. 5. Response functions QL"'(r) and QI(')(r) as a function
of y) T. Curves A —C are QL ', Ql", and Q/', respectively, and
curves D —F are the corresponding R response functions. Data
as in Fig. 2(a).

FIG. 6. Same as Fig. 5 but for 5, = —62=70@,. Curves
A Dare QL', QL—, Q„'', and Q/( ', respectively.
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nature and hence the super-Poissonian behavior disap-
pears.

For the case of equal and opposite detunings (including
exact resonance} all sidebands display a sub-Poissonian
behavior as seen in Figs. 6 and 7.

-0. 6-

C3 -0. 9-

— 1. 5

YT

FIG. 7. Same as Fig. 6 but for 6& =6&=0.

V. CONCLUSIONS

We have examined in this paper the quantum nature of
the sidebands of the fluorescent spectra of a cascade sys-
tern. We conclude that there is a definite correlation and
time ordering between photons from corresponding pairs
of sidebands. Whether the sideband of frequency greater
than central is followed by the corresponding sideband of
frequency lesser than the central depends mainly on the
value and sign of detunings. At the microscopic level this
may be interpreted as due to a "dressed three-level atom"
cascading through an infinite quasiperiodic array of ener-

gy levels. Further, the quantum nature of the sideband
correlations is reflected in the sub- and super-Poissonian
nature of the response functions Q ( T).

value of the detuning. The super-Poissonian behavior is a
reflection of the humped nature of the corresponding
self-correlation. It is further observed that in the case
when the detuning is comparable to the field, the humped
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