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The process of making a measurement on a quantum-mechanical system introduces quantum
noise to that system. A quantum nondemolition measurement scheme seeks to make a measurement
of an observable to better than this quantum limit, by feeding all the introduced noise into a conju-
gate variable to that under consideration. In this paper three quantitative criteria are suggested for
the evaluation of nonideal quantum nondemolition measurements. The application of these criteria
is illustrated using both a simple beam splitter and the g interaction in a Raman-active medium.

I. INTRODUCTION II. QND CRITERIA

General principles of quantum nondemolition (QND)
measurements have been discussed in the literature by
Caves et al. ,

' and recently there have been a number of
theoretical papers proposing schemes for quantum
nondemolition of back-action-evading measurements in
optics. There have also been somewhat fewer experimen-
tal realizations. ' In this paper we wish to define clearly
the objectives of such quantum measurements. These ob-
jectives may differ depending on the motivation for the
measurement. For example, in a transmission line with a
series of receivers, the goal may be to tap information
from the signal without degrading the signal transmitted
to the next receiver. In a system used to measure the
magnitude of an external force, the goal of the quantum
measurement may be state preparation. That is, an initial
measurement prepares the system in a known quantum
state. The presence of a perturbing force will be detected
by a subsequent measurement on the system.

We shall define a set of criteria for quantum measure-
ments, one or more of which may be desirable in a given
experimental situation. As a benchmark to evaluate the
effectiveness of any scheme as a QND device, we shall use
a beam splitter deAecting part of a signal to a detector.

To illustrate the utility of the criteria we have intro-
duced, we consider two examples of nonideal QND mea-
surements. The first scheme we consider is a near reso-
nant Raman transition. This differs from ideal QND
schemes which are based on far-from-resonance transi-
tions. The advantage of a near-resonant transition is that
it gives a higher nonlinearity, but the QND character
may be degraded by loss and scattering. We evaluate the
performance of the system as a QND device for various
detunings from the resonant transtion. We are able to
find regimes of operation where the Raman system will
have an enhanced performance with respect to the beam
splitter. Experimenta1 results based on a Raman system
will be discussed in a future publication. As a second ex-
ample of a nonideal QND measurement we consider a
beam splitter with a squeezed probe input.

We consider making a good quantum nondemolition
measurement of the amplitude quadrature of an optical
signal field. If the boson annihilation operator for the
signal is a, then appropriate definitions for the amplitude
quadrature X, and phase quadrature X are given by

hX, AX ~ 1, (2)

where hX, and bX are the root-mean-square deviations.
A precise measurement of the amplitude quadrature must
therefore be at the expense of uncertainty in the phase. A
good back-action-evading scheme must be able to feed all
the quantum noise induced by the act of measurement
into the phase quadrature of the signal leaving the ap-
paratus. In the general scheme we consider here, the am-
plitude quadrature of the signal interacts in the apparatus
with the phase quadrature of the probe field on which a
subsequent readout measurement can be made (Fig. l). If
the annihilation operator for the probe field is b, then ap-
propriate definitions for the amplitude quadrature Y, and
the phase quadrature Y are given by

Y, =b+b

Y~=i(b b) . —

The interaction must be such that there is a strong corre-
lation of the probe leaving the apparatus to the signal
field. In an ideal QND scheme, the input and output
quadratures are related by

Xout Xin
a a

Yout GXin
p a

(4)

where the variable G is known as the QND gain. In a

X, =a+a
X =i(a —a) .

Note that according to Heisenberg s uncertainty princi-
ple
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FIG. 1. A schematic quantum nondemolition device. The
signal field interacts with the probe field in the apparatus. A
subsequent readout measurement of the probe output is then
well correlated with either the signal input making a good mea-
surement, or the signal output preparing a well-known state.

y ((Xtn)2) (Xto)2
a

system which satisfies this, the amplitude quadrature of
the signal is not perturbed at all by the interaction, and
the phase quadrature of the output probe is perfectly
correlated with the incident signal.

In practice, real QND couplings using nonlinear opti-
cal interactions may have additional terms corresponding
to quantum fluctuations in the incident probe field and
additional scattering processes. There is a requirement
for criteria which evaluate the performance of a QND
measurement scheme operating in a nonideal regime. We
can describe the fluctuating quantum or classical noise in
terms of the variances of the two input and two output
fields;

This is a measure of the QND efFect, the ability of a
scheme to isolate quantum noise introduced by the mea-
surement process from the observable of interest. For an
ideal QND scheme we require this correlation to be uni-

ty.
3. How good is the scheme as a state-preparation de-

vice? If we have a perfect measurement device that does
not degrade the signal at all, i.e., we satisfy the two previ-
ous requirements exactly, then we must be able to com-
pletely predict the state of the signal output. However,
once we leave this ideal case, the predictability of the sig-
nal output is no longer fully determined by correlations
with the signal input. The extreme example is that of a
destructive measurement: independently of how well the
input is measured, the output is always a vacuum. On
the other hand, the correlation between the signal and
probe output fields is not a good indicator of the quality
of state preparation. Figure 2 shows a situation in which
both output fields are well correlated, but a probe mea-
surement does not allow inference of the value of the sig-
nal output field to better than the quantum limit. This
situation arises when the interaction within the QND
medium introduces significant correlated noise to both
output fields. A better indicator to measure the quality of
state preparation for a possible QND scheme is the vari-
ance in the signal output given a measured value for the
probe field. If the output fields can be described by gauss-
ian probabilities, or the predictor for the signal field given
measurement of the probe is linear„

g [X
ou't

I

yout ]— +p yout

then we can evaluate the performance of a state-

V —((yto)2) ( yto)2
p

—( (Xout )2 ) ( Xout ) 2

a

V (( yout)2) ( yout)2
p

(5)
out

~hen examining a possible QND scheme there are three
criteria to consider.

1. How good is the scheme as a measurement device?
This is determined by the level of correlation between the
probe field measured by a detector and the signal field in-
cident on the apparatus,

I(X'"Y'"')—(X'")(Y'"')
Ia p a p

gin yOUt V Va p ~tn yout
Q p

For a perfect measurement device, the phase quadrature
of the probe output is equal to the amplitude of the signal
input multiplied by the QND gain. For this situation, the
correlation coeScient is unity.

2. How much does the scheme degrade the signal field?
The quantity of interest here is the correlation between
the signal input field and the signal output field,

Circle of unit
quantum
variance shown
for reference

Measured
Value

out
Yp

FIG. 2. Good correlation between the signal output and the
probe output does not necessarily indicate a good state prepara-
tion device. The diagram illustrates a situation in which a value
of the probe output has been measured but when mapped onto
the error ellipse does not allow inference of the value of the sig-
nal to better than the quantum limit.
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III. THE BEAM SPLITTER

We consider first a quantum-mechanical beam splitter
deflecting part of the incident electromagnetic signal field
onto a homodyne detector (Fig. 3). From the point of
view of comparison this is an ideal device to analyze.
There is obviously little point in constructing complicat-
ed cavities containing nonlinear media, or using off-
resonance atomic transitions, for example, if these de-
vices cannot improve on this simple scheme.

We would like the beam splitter to measure the ampli-
tude quadrature of the input signal field, report an eigen-
value of this observable, and leave the signal field in the
corresponding eigenstate. The phase change on reflection
gives coupling between the amplitude quadrature of the
signal field and the phase quadrature of the probe. The
input quadrature fields can be related to the output quad-
rature fields using the transformation at the beam
splitter,

goutQ

yout
P

( 1 ~2)1/2 gin

( 1 2)1/2 y&n
P

(10)

where g is real and represents the mirror amplitude
refiectivity, and there is a tr/2 phase change upon
reflection.

The first criterion for a good QND measurement
scheme is that it must be a good back-action-evading de-
vice. In other words, it must be able to isolate the signal
field from quantum noise introduced by making the mea-
surement. How well the beam splitter achieves this is

preparation device by considering

l

(xoutyout ) (xout ) ( yout ) l2
~2 Q P Q P

g OUt yOUt
0 P gOUt yOUt

Q P

v(x.'"'l y;"')= v .„,(1—c'„„,,„„,) .
a a p

A perfect state-preparation device would have zero vari-
ance, which occurs for C,„,,U,

= l.
0 P

represented by the correlation between the input and out-
put signal fields,

(1—
r) )V,

„

C2
x I ll ~A u I

a P

~2
C~ ln out

a&p
(12)

t) V,„+(1—t) )V,
„

a P

Again for a 50% beam splitter, the correlation is given by
the ratio of the incident signal noise to the total intro-
duced noise.

The third criterion is that the measurement must
prepare the output observable in a well-known state.
This is given by the variance in the output state after the
measurement has been performed. Using

~2~g OUt yOUt
0 P

rI (1—
rl )(V,„—V,„)

a p

[(1 rl )V,„+—rl V,„][tIV,„+(1—g )V„,„]
(13)

V „„,=(1—
21 )V „,+rl V „,,

0 0 P

where V, n denotes the variance of the signal input and
a

V,„correspondingly for the probe. These quantities are
yP

a measure of the magnitude of quantum or classical noise
present in the input fields at the appropriate quadrature
phase. For a beam splitter with 50% reflectivity, the
correlation between the signal input and output is given
by the ratio of the signal noise to the total noise intro-
duced to the system through both input ports.

The second criterion is how well the scheme acts as a
measurement device. The readout measurement is made
on the probe output field, so the level of correlation be-
tween this quantity and the signal field incident on the
device determines how well a measurement can be made.
The appropriate correlation coefficient is

2gVln
Q
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and that the predictor for the beam splitter is linear, the
residual variance is given by

v(x:"'l y;"')= v,„„,(1—c,'.„,, „,)
a a p

V~in Vyl.
(14)

rj V,„+(1—g )V,
„

0 P

We would like this variance to be zero. If both signal and
probe inputs are in vacuum or coherent states with unit
quantum variance in both quadratures, then

V,n= V „,= 1,
0 P

~2 — 2~~ ln youl I
a p

2 = 2
C~ tn~out

a a

2
X U'y "'

0 P

FIG. 3. A QND measurement scheme using a beam splitter. V(Xoutl yout) —
1a p
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As expected, the correlation between the signal input
field and the signal output field is the intensity transmis-
sion coeScient for the mirror. To reduce the amount of
noise added to the signal variable we would like to split
off only a small portion of the light field. However, this
reduces the correlation between the signal input field and
the probe field upon which the readout measurement is
made, which is given by the intensity reflection
coeScient. It is not possible therefore to simultaneously
satisfy the first two criteria for a good QND measure-
ment scheme. Since the signal and probe output fields are
completely uncorrelated, a measurement of the probe
does not reduce the variance in the signal output variable
at all. The result is that you cannot use a beam splitter to
prepare the state of the output signal without the pres-
ence of a squeezing device. In Sec. VI we shall demon-
strate how these conclusions are modified if a squeezed
probe input is used.

IV. QND MEASUREMENTS
USING A RAMAN TRANSITION

The interaction between two light fields in a Raman
transition creates a possible system for making QND
measurements. We consider an arrangement in which we
place a Raman-active medium inside an optical cavity, as
illustrated in Fig. 4. If we label the intracavity mode cor-
responding to the external signal field as a, the corre-
sponding mode for the probe as b, and the phonon mode
as c, then the Raman interaction can be depicted as in
Fig. 5. In Raman scattering, an incident photon energy
A'co, is destroyed within the medium, while at the same
time a second photon of energy %cob is emitted. The
difference between the two appears as a quantum of exci-
tation in a vibrational mode of the medium itself, with
energy Ace, . Both spontaneous Raman scattering and
stimulated Raman gain have this overall form. The many
various Raman interactions have been reviewed in the
context of coherent Raman spectroscopy. 9

The appropriate Hamiltonian to describe this interac-
tion is

Mode a
(em)

Mode b
(em)

Mode c
anon

Ground State
FIG. 5. The Raman transition. A photon at frequency co, is

destroyed within the medium producing a photon at frequency
cob and a Raman phonon exciting a vibrational mode of the
medium itself. There is a detuning 6 between the levels of the
system interaction.

While the strongest interaction will occur if the energy of
the phonon is exactly equal to the difference of the des-
troyed and emitted photons, stimulated Raman loss and
scattering will degrade the quantum correlations between
the signal and probe fields. We also introduce a detuning
6 between the energy levels of the system,

Q)b =N N

The higher we make the detuning, the weaker the non-
linearity becomes; however, the effects of stimulated 1oss
and scattering are less. We wish to find the optimum
conditions for a QND measurement. To solve this prob-
lem we proceed using standard quantum statistical tech-
niques. The first step is to remove the high-frequency be-
havior of the system operators by transforming to the in-
teraction picture:

H=ik(ya bc y*ab c ) .— (16)

X&

Yp

X
OUt

out, i
Y

I tel

a, =ae

b; =be
i(u, +A)t

C, =Ce

The Langevin equations of motion for this system are

da, y,
dt 2i i ai ya ln i

(18)

dt
= —y"a, c, — b, Qysb, „,, —yb

Nonlinear
Raman
Medium

FIG. 4. A ring cavity containing a nonlinear Raman medi-
um. The Raman transition produces coupling between the sig-
nal and probe fields allowing QND fluctuation measurements to
be made.

dC(
=inc, —y*a, b, — c, —Qy, c,„,

Here y„yb, and y, are the cavity line widths for the
three modes, and the Langevin noise sources a;„and b,

„

are the signal and probe inputs at the cavity mirror in the
usual way, with c,„corresponding to phonon noise intro-
duced from a thermal bath. Implicit in the choice of y,
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and y& real is the assumption that the cavity is simultane-
ously resonant at both optical frequencies. In a high-Q
optical cavity, the linewidth y, for the phonon mode is
very much larger than that for the two optical modes.
This allows us to adiabatically eliminate the phonon
mode by setting

x
yby, (1+43, )

y, y, (1+46, )

(27)

dc; =0.
dt

(20) gives the following equations for the mean values:

The equation of motion for the phonon operator can be
solved, giving

Va a(1+B ) = —Qy, a;„,

cI

~C

2

a, b;— V'y,
C In, i

~C

2

(21) ~b
p(1 —A ) = —Qybp,„. (28)

The phase of the phonon mode in this regime is thus
given by the phase dift'erence of the two optical modes
with an additional detuning phase shift Pd, where

Here we ha e set (, pc,„,~ and ~ ac
is only valid if the number of thermally introduced pho-
nons is small. Using the usual boundary conditions at the
mirror surface,

tanPd =26, (22)

Here 6, is the detuning measured in phonon linewidths

(23)

+out +&n++ya+

P...=p,.+V ybP,
(29)

Equations (19) can then be written as

the mean fields leaving the cavity can be related to the in-
cident fields,

daI
(cosPd)e "(y'a, b, b, +Qy, b, c,„,).dt y,

Xa
a, — y, a;„,, Out

1+ A

1 —A

1 —8
OUt

~ +g ln

(30)

db;
(cos(t d )e "(ga; a; b, +Qy, a, c,„,)

dt y'c

~b
b; —Qybb;„; .

(24)

a, =Ua;U

b, =Ub, U,

These resulting equations are nonlinear, and hence in or-
der to solve them we linearize about the steady-state am-
plitudes for each of the modes. In order to simplify the
resulting equations we also transform to the signal in-
teraction picture,

It can be seen from this result that the interaction does
not cause any phase shift in the output optical fields. Im-
plicit in this is again the assumption that both modes are
exactly on resonance with the cavity or else even in the
absence of the nonlinear interaction the cavity will cause
a phase shift. The parameter A can be defined as the in-

0.9
0.8
0.7

with the unitary operator
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C

Linearizing about the mean amplitudes a and p,

(25)
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and defining scaled intensities for the signal and probe
internal fields,

FIG. 6. C-',„„,as a function of the probe intracavity inten-

sity for curve a, A =0; b, A =0.1; c, A =0.2; and d, A =0.5.
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tracavity intensity of the signal scaled so that at 3 = l,
the intensity of the signal is sufficiently strong to cause
free oscillations in the cavity amplifying spontaneous
emission at the probe frequency. Similarly, the parame-
ter 8 can be defined as the intracavity intensity of the
probe scaled so that at 8 =1, the probe is sufficiently in-
tense to completely deplete the signal field leaving the ap-
paratus. No matter what the probe detuning b„stimu-
lated Raman oscillation starting from vacuum fluctua-
tions will occur at co, =co, —co, whenever the intracavity
signal field exceeds ~cr ~,„=y, /(4~X~ )y„where y, is the
cavity loss at cu, . A similar phenomenon limits the max-
imum probe field to ~p~,„=y,/(4~X~ )y„,where the
second Stokes frequency is cu„=co&—co, and the cavity
mode nearest ~„haswidth y„.A tuning element may
be included in the cavity to suppress these oscillations by
making y, ))y& and also y„))y, .

If we now make X, a, and p real, then the equations of
motion for the fluctuation operators are

daf (1+8)afdt 2

2XP
(cospz)e "(XaY, +Qy, c;„f )

—Qy. a,
„ f,

dbf yb= ——-(1—A )b
dt 2 f

+ (cospq )e '(Xi33X, +Qy, c;„f )
y, -

Qy—bb,
„ f,

(31)

where X, and F, are the signal and probe amplitude fluc-
tuation quadratures, X and F are the corresponding
phase fluctuation operators„and all the relevant quadra-
tures for the fluctuation operators of the external and
internal fields are defined by

X af+af X =i(af af )

Y, =bf+bfpt Yp l(bf bf )

ln
Q a&n, f + in, f p ( 1n,f in, f

Y,'"=b,„f+b;„f,Yp"=i(b,„fb;„f), —

jn lPd ~
—l$d ln y

—l$d lgdZ, =c;„fe +c,„fe,Zp =i(c;„fe —c,„fe ) .

(32)

Using this, we can then derive four equations of motion for the intracavity quadratures by taking sums and differences
of Eq. (31):

X,
X

dt
Y

(1+8)
2

—Qy, yb AB

2
(1+B) 2b, ,gy, y b

AB—

(1—A)
2

X,
X +
Y

Qy, BZ,'"——Qy, X,'"
—Qy. Bz,'"—Qy, x,'"
+Qy b A Z,'" i/ y b Y,'"—
—Qy, A z,'"—Qy, Y,

'"

26, +y, yb AB— (1—A)
2

(33)

We solve these equations for co=0 by setting the left-hand side equal to zero. The problem then reduces to that of in-
verting the 4X4 matrix. This can be done using the following identity:

a 0 b 0
0 a c 0

—b 0 d 0
c 0 0 d

ad 2 0 —abd
—bcd ad +b d —acd

ad(ad +b ) abd O a d
—acd 0 abc

0
a d+ab

(34)

To eliminate the intracavity mode operators we apply appropriate boundary conditions at the mirror surfaces. These
are
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X'"'=X'"+/y X
Xout Xin+ Q~
Yout Ytn+ Q Y

Yout Yin+ Q~ Yp p b p

This gives the following solutions for the output field amplitude quadratures:

(35)

X,'"'=—
[ [D —2(1 —A ) ]X,'"+4&AB Y,'"—2&8 ( 1+ A )Z,'"),

Y;"'=—I[D —2(1+8)]Y,'"—4&ABX,'"+2&A (1 8)Z—,'"),
(36)

and for the phase quadratures,

X'"'=—8b &AB Y'"+1

p D C a

Y'"'=—8b, &ABX'"—1

p D C a

166 AB Y'" D —Y'"+85, 8&A Z'"— Z'"
1 —A '

1 —A

(37)

where D is defined as

D—:(1+B)(1—A)+4AB . (38)

V. EVALUATION OF THE RAMAN SCHEME

We can now establish how well the near-resonant Raman transition wil1 perform as a quantum nondemolition mea-
surement scheme using the criteria previously outlined.

A. Signal degradation in the cavity

If we assume unit quantum noise from both the phonon bath and from the optical sources, then the correlation be-
tween the signal input field and the signal output field is given by

[D —2(1 —A )] (39)
[D —2(1—A )] +16AB+48(1+A )

A graph of this function is given in Fig. 6. The input-output correlation of the signal quadrature is large only near
A =B=0. The maximum value of unity is achieved only at B=0 as stimulated Raman loss interactions otherwise add
noise. Even without loss, the sort of device proposed here unacceptably degrades the signal quadrature fluctuations
when the normalized intracavity powers are larger than roughly 0.1.

B. Optimum measurement correlations

The appropriate quantity to consider here is the correlation coeScient between the amplitude quadrature of the input
signal and the phase quadrature of the probe output field. Once again assuming unit quantum noise from all sources,
this can be written

646,, AB(1 —A )

645, AB[(1—A ) +4AB+8(1+ A ) ]+D [4A+(1+ A ) ]
(40)

An illustration of dependence of this function on the in-
tracavity field intensities is given in Fig. 7 for a detuning
of 6, =4. The optimum operating point around A =0.11
and B=0.08 achieves a correlation of C,„.„,=0.71.

Figure 8 illustrates this optimum correlation for detun-
ings of 0—10 photon linewidths away from the Raman
resonance, showing how stimulated Raman loss and
scattering destroys the measurement correlation when

the detuning is too small. Figure 9 shows the normalized
intracavity power that results in this optimum. The max-
imum correlation appears always to occur near A =0. 1

for all detunings. The value of B that gives the best
correlation decreases as 6, increases, but the necessary
po~er to achieve the best correlation increases with de-
tuning. For detunings less than 2, the maximum correla-
tion is predicted to be less than 0.52. The actual power
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FIG. 7. An illustration of C',„,„„
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nal input field to the probe output field, as a function of the sig-
nal and probe intracavity intensities for 6, =4. The maximum
of 0.71 lies at A =0.11 and 8=0.08.
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FIG. 8. The maximum possible C,„,„,for a given detuning.
a p

needed to achieve this correlation is more modest than
for larger detunings where the Raman nonlinearity is re-
duced. For 6, =10, the maximum correlation is nearly
90%, and near optimum correlation occurs over a wide
range of power.

A good QND device, however, must not only make a
good measurement but must also not degrade the signal
field significantly in the region of operation. We consider
then simultaneously maximizing both correlation
coeScients by considering their equally weighted sum

).tnyOUt + -~tn ~Out ~X X a p

For the beam splitter this equals —,
' and is independent of

the mirror reflectivity. Figure 10 illustrates this for the
Raman cavity, showing the dependence of the sum on the
detuning. The intracavity signal and probe internal fields
have been chosen to maximize the sum. For detunings

less than 5, =1.5, the optimum operating point is for the
cavity to reAect all of the signal field and not to make a
measurement at all. However, for detunings greater than
this, it is possible to improve significantly on the beam

1' . F xample with 5 =4, and a signal input to
signal output correlation of 0.8, it is possible to obtain a
measurement correlation of 0.61. In comparison, a beam
splitter with the same signal degradation could record
only a measurement correlation of 0.2.

C. The Raman scheme as a state-preparation device

To measure how well we can predict the state of the
signal field leaving the cavity, we are required to calculate
th d ree of variance in the signal output field given that
a particular value for the probe has been recorded. e
probe output field to signal output field correlation and
the variance in the signal output field can be written as

2
gOUt yOUt

a p

2 2646,, AB I (1—A )[D —2(1 —A )]—SAB —2B(1+A ) )

I [D —2(1 —A )]~+16AB+4B(1+A ) I (643,,4b, 'AB[(1—A) +4AB+B(1+A) ]+D [4A+(1+A) ]I

V(X""')=
I [D —2(1 —A )] +16AB+4B(1+A ) I .a D

(41)

The residual variance after the measurement can then be
d t

'
d using Eq. (9). Figure 11 is an illustration of

this function for 5, =4. A minimum variance o . is
achieved for normalized intracavity powers of
A =B=0.09. Figure 12 shows the dependence of the re-
sidual variance on the interaction detuning with Fig. 13
indicating the intracavity power which results in this
minimumimum variance. Again the loss and scattering at low
detunings destroys the QND nature of the scheme. For
optimum s a e prepparation the required norma ize

robe ower drops with increased detuning, while t e
normalized signal power increases. In absolute p ower
units, reaching optimum as a state preparation device re-

quires rnuires more power the larger the detuning for both probe
and signal.

D. The optimum probe phase

At infinite detuning from the Rarnan line center, the
coupling is between the amplitude quadrature of the sig-
nal and the phase quadrature of the probe as previous y
stated. However, for the finite detuning considered here,
the optimum quadrature phase may include some o t e
pro earobe amplitude as well. Let the best quadrature phase
be denoted by
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FIG. 9. Values of the intracavity fields which result in the
maximum possible measurement correlation. The two graphs il-

lustrated are curve a, the normalized signal field A, and b, the
normalized probe field B.

oo

FIG. 11. An illustration of V(X;"'/Yp"'), the variance in the
signal output field after a measurement of the probe, for 5, =4.
This is a measure of how well the scheme acts as a state
preparation device. The minimum of 0.31 lies at 3 =B=0.09.

+OUt — l Eb OUt + l Gb Ooked—e

= (cose)(b'"'+ b'"' )

—i(sine)(b'"' —b'"' )

= ( cose }Y;"'+( sine }Y'"' .

Using Eqs. (37), this gives

(42)
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Yb"'= —[T,X'"+T2 Y,'"+T3 Y'"+ T4Z,'"+T,Z'"],l

(43)
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curve a, C,„,„„b,C,„,„„'and c, the equally weighted sum of
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the two correlations. The value for a comparative beam splitter
is —, and is independent of the mirror refiectivity. Above detun-

ings of 1.5 photon linewidths, the diagram illustrates that there
are regimes in which the Raman cavity has an enhanced perfor-
mance with respect to the beam splitter.
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FIG. 13. Values of the intracavity fields which result in the
minimum possible variance in the output signal. The two

graphs illustrated are curve a, the normalized signal field A, and

b, the normalized probe field B.
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ing the best quadrature phase for the probe, Illustrated is curve

a, 6, =3; b, b, =5; c, 6, = 10; and d, b, =20.

T, =4&AB (1—A )(2b, ,sine —cose),

T2 = [D —2(1+B }](I —A )cose 165,—AB sine,

T, = D(1+ A—)sine t

T4=2&A [(1+B }(1—A )cose+46,B(1+A )sine],

Tg = 2Dv A sine

(44)

Then the rneasurernent correlation coefficient is given by

Tl
X'"Yb T2+ T2+ T2+ T2+ T2

(45)

To evaluate the optimum operating phase, we consider a
system maximizing the sum

2 2x'"x'"'+ x'" r'"' ) '
a a a b

(46)

VI. BEAM SPLITTER WITH SQUEEZED PROBE

As another example we shall consider a beam splitter
with a squeezed probe. Such a system has been discussed
by Shapiro as a means of detecting a signal without any
significant degradation of the signal. Its usefulness as a
QND device has been discussed by Yurke. In this section
we shall evaluate its suitability as a QND measuring
scheme according to the criteria set out in Sec. III.

Figure 14 illustrates the value of this sum for given e

maximized over the possible intracavity intensities, for
detunings of 5, =3, 6, =5, 6, = 10, and 6, =20. For
amplitude to phase coupling we would expect the maxi-
ma of the graphs to lie at @=vs/2, as indicated by the
vertical line. However, the position of the peak is skewed
to higher values of e than this. Amplitude quadrature to
phase quadrature coupling is not the optimum situation
for finite detuning, but the improvement made by choos-
ing the best quadrature phase is not great. Notice also
that for large detuning, there is a broad range of e that
gives good measurement correlation as well as low signal
degradation.

The correlation functions for a beam splitter were
given in Eqs. (11), (12), and (14). If we take the probe in-

put as a perfectly squeezed vacuum, then

~ In~OUt ~ itl yOUt g OUt yOUt
Q a a p a p

(47)

for which the variance in the output signal variable after
measurement of the probe field is

y(~outl pout} —oa p
(4&)
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FIG. 15. The optimum operating point for a beam splitter as
the level of squeezing in the probe field is varied. Shown is

0 p a a

This is exactly what is required for a ideal QND device.
Under these circumstances the device acts as a perfect
von Neumann measuring device which reports an eigen-
value and subsequently leaves the system in the corre-
sponding eigenstate. It also has the potential to prepare
an ideally squeezed coherent field by introducing a
coherent light source to the signal port. Note that in this
case, the output contains fluctuations transmitted by the
mirror, but that since the same fluctuations can be mea-
sured at the homodyne detector, the output can be pre-
dicted with complete precision. It is only knowledge of
the measurement that allows collapse of the output signal
state.

The ideally squeezed vacuum, however, requires an
infinite mean photon number so is an unrealistic limit. If
we consider the incident signal field to have unit quantum
fluctuations in the amplitude quadrature, then it remains
to evaluate how well the device can perform for a given
squeezing in the incident probe field. We consider here
all three criteria presented in Sec. II to be equally impor-
tant and maximize their equally weighted sum

c,',„., +c, , ,
—v(&;"'l z,'"')

a a a p

by choosing the best reflectivity of the beam splitter. Fig-
ure 15 illustrates this optimum operating point as the
squeezing level in the incident probe field is varied, and
Fig. 16 shows the reflectivity used to achieve this. Clear-
ly, the noise component in the projected output state is
worse than that in the incident field, but the level of de-
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