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We treat the scaling of thermal phase-noise effects and quantum fluctuations for solitons in opti-
cal fibers. The central result is that the size of the thermal noise relative to quantum noise is re-

duced in proportion to the soliton duration for solitons whose duration is less than the thermal
correlation times, suggesting that squeezed quantum solitons should be realizable in optical fibers.
The physical basis for this effect is largely the fact that squeezing, which is nonlinear, occurs more

rapidly for shorter pulses.

I. INTRODUCTION

Squeezed light, in which Auctuations in one quadrature
of the electromagnetic field are reduced to less than the
vacuum or shot-noise limit, has been produced and
detected in several different laboratory experiments. '

This nonclassical light might be used to improve the
signal-to-noise ratio in sensitive optical experiments, and
perhaps in technological applications. Means of genera-
tion must still be developed that are simple, reliable, and
that produce squeezing over a useful bandwidth. Optical
parametric oscillators (OPO's) have shown themselves to
be nearly ideal devices for the transformation of vacuum
fluctuations into squeezed light, but are still quite com-
plicated and unreliable. Compact, monolithic, OPO's are
currently being developed, and these may one day result
in a simple and inexpensive source of squeezed radiation.
Semiconductor diode lasers, when pumped with a sub-
Poissonian current source and operated many times
above threshold, have been shown to directly generate an
amplitude-squeezed state; however, noise-generation
mechanisms in these devices are poorly understood and
are very sensitive to optical feedback.

In previous experiments, we have investigated the
squeezing of light by self-phase-modulation in single-
mode optical fiber. It was believed at the outset that
single-mode fiber could provide a low-loss, readily avail-
able, broadband nonlinear medium. Because the non-
linearity is nonresonant and electronic in origin, nearly
ideal behavior was expected, with useful amounts of
squeezing at easily attainable pump powers. However,
excess phase noise partially obscured the squeezed quad-
rature, and less than 20% squeezing was observed. This
excess noise originates from thermally induced Auctua-
tions in the fiber refractive index. The observed thermal
noise arises from two different origins: a structured spec-
trum from acoustic waves confined by the cylindrical
fiber geometry [guided-acoustic-wave Brillouin scatter-
ing (GAWBS)] and a power-law spectrum from thermal-

ly activated relaxational modes of the amorphous silica
matrix. The latter mechanism, essentially 1/f noise in
the refractive index of the fiber, was the limiting one in
cw squeezing experiments, and our recent investigations
have led to a more thorough understanding of its origin
and to new knowledge of the microscopic structure of
fused silica. However, cooling the fiber to liquid-helium
temperatures was not sufficient to reduce this noise to an
insignificant level relative to the vacuum noise, subject to
the constraints of limited pump power due to stimulated
Brillouin scattering.

The extent to which thermal phase noise limits squeez-
ing can be characterized by a parameter proportional to
the ratio of the light-scattering cross section to the
effective fiber nonlinearity. One approach to reduce this
ratio is to consider the use of a train of short pulses, e.g. ,
from a mode-locking laser. " Distortion of the pump
pulses due to self-phase-modulation and group velocity
dispersion led us to consider pump pulses in the form of
optical solitons. ' The high peak power of these pulses
should increase the effective nonlinearity and thus reduce
the length of fiber needed to produce squeezing. On the
other hand, the spectrum of phase noise for pulses will,
roughly speaking, be the convolution of the pulse spec-
trum and the spectrum of refractive-index fluctuations,
and the relative bandwidth of the refractive-index noise
and the pulse is an additional important parameter. The
main goal of this paper is to discuss qualitatively how the
phase noise and nonlinear effects should be expected to
scale with pulse width and to present quantitative results
obtained from detailed computer modeling of the propa-
gation of quantum noise and thermal phase noise associ-
ated with a soliton pulse. We find in the limit that the
pulse bandwidth is large (i.e., the pulse short) relative to
the refractive-index noise bandwidth, squeezing perfor-
mance improves as the pulses are shortened further, and
squeezing of quantum noise by a factor of ten should be
obtainable after propagation of a few soliton periods.
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II. THERMAL PHASE NOISE IN OPTICAL FIBERS

A. Introduction

We have investigated in detail light-scattering process-
es in fused silica optical fibers for frequencies between
100 kHz and 1 GHz. ' Guided-acoustic-wave Brillouin
scattering (GAWBS) produces a structured phase-noise
spectrum beginning near 20 MHz and extending beyond
our instrumental cutoff of 1 GHz. Phase-noise peaks are
observed, corresponding to the resonant modes of an
elastic cylinder (i.e., the fiber). The light-scattering spec-
trum for a typical plastic-jacketed fiber is shown in a
schematic fashion in Fig. 1. The figure was based on our
own extensive experimental investigation of low-
frequency thermal phase noise in silicon fibers, our
theoretical knowledge and physical intuition regarding
how this noise should behave, as well as on information
in the literature on light scattering in glass. The vertical
scale in this figure corresponds to a scattering cross sec-
tion normalized to be independent of measurement band-
width and numerical aperture of the fiber (the solid angle
of collection). This is done by normalizing the mean-
square optical field due to light scattering to the mean-
square vacuum-noise field for the same spatial mode and
measurement bandwidth, leading to a noise power spec-
tral density measured in vacuum-noise units, or
VNU. ' ' The scattering is also proportional to the

pump power and fiber interaction length. The peaks
above 10 MHz are due to GAWBS and are assumed to
broaden toward higher frequencies because of damping of
the fiber elastic modes by the plastic fiber jacket, and also
because of variations in the fiber diameter. Above a few

S(co, T) ~ T"fD(E), ' dE .
I+co H(E, T)

(2. 1)

By fitting the observed temperature and frequency depen-
dence of the phase-noise spectrum, we have determined
that D(E)=exp( E/Eo), w—here Eo/k —350' K, and
varies somewhat depending on glass composition. The
phase noise has a power-law spectrum and a temperature
dependence with a maximum at about 80 K, given by

hundred MHz the peaks tend to merge, leading to a rela-
tively structureless spectrum. The GAWBS is believed to
have a cutoff frequency at about the point where the
acoustic wavelength becomes small compared with the
size of the confined optical mode, taken as 20 GHz for
this figure. This cutoff has not yet been verified experi-
mentally.

Glasses are nonequilibriurn materials, and the complex
potential surface for the accessible configuration space of
the glass is often modeled as a distribution of double-well
potentials or so-called "two-level modes" (TLM). 's Fluc-
tuations in the refractive index result from the relaxation-
al motions of groups of atoms modeled by thermal hop-
ping over the barrier of the two-level mode. The low-

frequency phase noise originates from these refractive-
index fluctuations. The mean time to hop from one well

to the other for a particular local group of atoms is given
by r(E, T) =roexp(E/kT), where E is the barrier height
which is distributed according to the function D(E), and

~o is an attempt time —10 ' sec. Each scattering center
produces a Lorentzian spectrum, yielding an overall
power spectrum: '

S(co, T) ~ (2.2)
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FIG. 1. The solid curve shows a schematic representation of
the absolute light-scattering cross section for fused silica optical
fiber. The left vertical axis gives the scattered noise power rela-
tive to the vacuum noise (i.e., in vacuum-noise units, or VNU)
for 1 mW of pump power and 1 m of fiber. The right vertical
axis shows the corresponding phase-noise coefficient p(6), as-
suming a typical value for the Kerr coefficient. The dashed
curve is the Lorentzian approximation to the phase-noise spec-
trum assumed for the numerical simulations (drawn here for

g =10). The dotted curve shows the onset of Raman scattering

by localized phonons. The dot-dashed curve is a representation
(arbitrarily scaled for this figure) of the spectrum of a hyperbol-
ic secant soliton pulse corresponding to phase-noise width

y =0. 1 (see text).

Recent measurements' have shown that this light
scattering is quite highly polarized, with a polarization
ratio on the order of 10. The spectrum has been investi-
gated thoroughly for backscattering and shown to have
the form of equation (2) from below 100 kHz, where laser
noise and microphonic pickup by the fiber become dom-
inant, to over 100 MHz, where vacuum noise limits our
ability to extract accurately the thermal noise contribu-
tion. Polarized and depolarized measurements confirm
the presence of this noise in forward scattering, although
the spectrum is partially obscured by the presence of the
GAWBS peaks, beginning at about 15 MHz for typical
fibers. An additional background contribution which
cannot be accounted for by simple superposition of
GAWBS and TLM spectra, and which is not yet well un-

derstood, also appears in the forward direction. A full
discussion of the phase-noise behavior of optical fibers is
planned to be published elsewhere. '

The dotted curve in Fig. 1 shows the onset of spontane-
ous Raman scattering in fused silica. For pulses whose
spectra are sufficiently broad, the Raman scattering can
be expected to add significant classical excess noise. We
are not aware of any experimental investigations of excess
noise on short pulses due to spontaneous Raman scatter-
ing, and the pulse width at which this noise becomes
comparable to the vacuum noise is not known.
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B. Sealing properties

In this section we wish to examine the scaling of the
thermal-noise effects in a qualitative way. It is useful to
start with a relatively simple model that gives the princi-
ple scaling behavior, deferring until later the discussion
of the details of the thermal-noise spectrum. In previous
papers, ' we have demonstrated that a quantum soliton
can give rise to a squeezed output field, given a coherent
input. In reality this gives the minimal behavior that is
compatible with quantum mechanics. The results ob-
tained in a laboratory experiment will also include phase
noise due to the environment of the nonlinear medium.
In the case of quantum-optical solitons, the phase noise is
well described by thermal Auctuations in the refractive
index.

In order to show how these effects scale, we initially
suppose that the linear fluctuations can be effectively
decoupled from the nonlinear interactions causing
squeezing. In this limit, the fiber acts as a phase modula-
tor. The induced variance in the transmitted phase will

scale linearly with fiber length. Thus an input field b(t) is

transformed to C(t)e' '", where 8(t)=(8(t))+68(t)
For simplicity, we assume in this section that (8(t) ) =0.

In the simplest prototype of a squeezing experiment,
the output field is combined with an intense local oscilla-
tor, and the variance in the photo count is measured over
a time interval tp. For the present purposes, more com-

plex measurement schemes will have similar behavior
with respect to scaling. We therefore suppose that the lo-
cal oscillator field is itself a soliton pulse of duration to.
For this calculation, the local oscillator will, in fact, be
treated just as a square pulse of duration t p and phase 0&

relative to the signal-field output mean phase. Numerical
simulations using a more realistic model will be discussed
below.

In the semiclassical limit, the output intensity at the
photodetector in units of photons per second is of the
form

(2.3)

Here we can always choose a reference phase such that
8O=O. If we suppose that the signal field 6(t) is also of
approximately uniform amplitude in the detector time in-
terval of to, this result for I (t) can be then simplified to

I(t) = i@o~ +26ohcos[8(t)]+O(6 ) . (2.4)

(2.5)

Here we have neglected the small count rate of the signal
field e and assumed that 6 p includes any factors due to
beam-splitter and photodetector efficiency. We note that
in a squeezing experiment, the shot-noise variance can be
canceled by the interference between Dp and 6, resulting
in fluctuations below the shot-noise limit.

We now consider the additional Auctuations due to the
phase-noise term in Eq. (2.4). This contributes an extra

The shot-noise variance V, in a coherent field is equal
to the total number of photons counted in the time tp,
i.e.,

On integrating over the detection time of tp, we obtain an
additional contribution to the detected photon-count
variance of

5V=4~eob~ I I ([b, cos8(t)][6,cos8(t')])dt dt' .
0 0

(2.7)

We note that 8(t) includes all of the phase fiuctuations in-

duced in a propagating signal that is detected during tp.
Next consider the behavior of 5V for different observa-
tion times tp compared with the correlation time T, of
the phase noise. In general, quite complicated behavior
will occur on intermediate and long time scales. Howev-
er, if we suppose that T, &) tp, which is the most interest-

ing limit for investigating squeezing, then we obtain the
result that

5V=4~6o@ ([b, cos8(t)] ) . (2.8)

The quantity of interest is the relative size of the phase-
noise variance 6V compared with the shot noise V, .
Combining (2.5) and (2.8), we have

(2.9)

However, Eq. (2.9) does not yet display all the scaling
dependence required by the propagation of soliton pulses
in optical fibers.

For a given pulse width, tp, soliton pulses are associat-
ed with a characteristic photon number n and propaga-
tion distance zp. The characteristic distance is given by

zo=tgk "~, where k"=8 k/Bco is a measure of the
group-velocity dispersion of the fiber. zp is the distance
over which a pulse of width tp is significantly broadened

by dispersion. ' For soliton propagation, this linear
dispersion is balanced exactly by nonlinear self-phase-
modulation, requiring a characteristic intensity or photon
number, n =

~

k"
~ /yto, where y is a measure of the third-

order nonlinear susceptibility of the fiber. Thus, if the
signal field 6 is a soliton, then it varies inversely with
time duration tp.

(2.10)

where T, = ~

k"
~ /y is the characteristic time for a one-

photon soliton. Combining Eq. (2.9) with (2.10), we ob-
tain the unpromising result that

(2.11)

Noting that typically T, ))tp, we see that this result
predicts a larger phase-noise effect for shorter coherent
soliton inputs. This has a straightforward physical ex-
planation. The effect of phase noise is much greater on a
large coherent signal than on a small coherent signal, in
terms of quadrature amplitudes. Thus, since short-pulse

term in the intensity correlation function, given by

( EI(t)AI(t') ) =4~ 608~ ( [b cos8(t)][A, cos8(t')] ) .

(2.6)
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solitons have a greater amplitude [see Eq. (2.10)], they are
more strongly perturbed by the effects of phase modula-
tion.

In reality, this picture is unnecessarily pessimistic. The
reason we are investigating phase noise is in order to
determine its effect on a squeezing experiment. However,
squeezing occurs on a distance scale characteristic of the
nonlinear effects, which itself depends on intensity and is
given by zo. We expect the intrinsic phase-noise variance
to scale linearly with z. Thus, at fixed scale distance,
g=z/zo,

(2.12)

On linearizing with respect to 68,

p(5), which is proportional to the ratio of phase noise to
fiber nonlinearity, such that the phase fluctuation quadra-
ture of a continuous wave beam would receive an excess
noise power relative to the vacuum-noise level given by
(~X&(5)~ ) =2rp(5), where X&(5)= i—(a+ —a ) is the
usual quadrature amplitude for phase fluctuations of a cw
beam at Fourier frequency 5. ' ' Here a+ and a are
annihilation operators for modes at frequencies coo+6
and coo

—5, respectively, and r is a parameter which
characterizes the effective strength of nonlinear effects
(i.e., squeezing: hence the term squeeze parameter). As
defined and used in this paper, the quantity r is propor-
tional to the aUerage pump power, the fiber nonlinear sus-
ceptibility, and the propagation distance, and is defined
by

5V ro
=4ag —sin 80 .

x
(2.13) r =(3'~' '/4nc)~E~

~
1, (3.2)

Thus we see that for experiments at a given soliton in-
teraction distance, g, the relative phase fluctuations are
linearly proportional to the pulse duration to. This sug-
gests that the use of pulses that are short relative to the
correlation time of the thermal refractive-index fluctua-
tions can minimize the impact of these fluctuations on a
squeezing experiment. In the following sections we
study the squeezing of soliton pulses in the presence of
thermal phase noise in more detail and confirm these
scaling ideas with numerical simulations.

III. NOISE ON SOLITON PULSE TRAINS

E ( r ) = )/ n b, cu /2 me' g P
.e

J
(3.1)

The P, are normalized, such that g ~P ~

=1. Therefore
n hem/2m. is the pump pulse train average power, and here
n is the number of photons per pulse. Each pump spec-
tral component is modulated by the refractive-index fluc-
tuations, characterized by the phase-noise parameter

We anticipate that experimental measurements of
quantum- and thermal-noise fluctuations on soliton
pulses will be performed using a continuous train of pi-
cosecond pulses derived from a cw mode-locked laser.
Such lasers have been employed in other squeezing exper-
iments. ' ' It has been demonstrated that the photo-
current power spectrum, resulting from the detection of
such a pulse train, consists of a series of sharp spikes at
multiples of the pulse repetition frequency, corresponding
to the mean field of the pulses, and that at other frequen-
cies, broadband noise is observed, corresponding to quan-
tum fluctuations and excess classical noise.

We now consider the effect of therma1 phase noise on
such a periodic train of short pulses with repetition rate
Aco/2nThe pump fi. .eld, centered at frequency coo, can be
written in terms of amplitudes P'

P =(nhco/4o„)' sech(j~b, co/2o„), (3.3)

corresponding to a pulse width to=cr '. We describe the
effect of the refractive-index fluctuations in terms of
quadrature operators XJ (5)=a+ +a and XJ&(5)

i (a+, ——a, ) corresponding to amplitude and phase
modulation, respectively, of the jth spectral component
of the pulse train. The annihilation operators a+ are
defined for modes at frequencies cuo+jAco+5 in an in-
teraction picture which tracks the phase of the jth pump
component. ' The overlapping phase-modulation side-
bands result in the following expressions:

where g' ' is the usual third-order nonlinear susceptibili-
ty. E~ is the pump field strength, and 1 is the fiber length.

For a train of pulses, refractive-index fluctuations pro-
duce phase-modulation sidebands on each spectral com-
ponent, and, since the phase-noise bandwidth is likely to
be large compared with the pulse repetition rate, these
sidebands will overlap with many other spectral com-
ponents of the pulse train to produce contributions to the
low-frequency (compared to the pulse repetition rate)
phase noise from high-frequency porti. ons of the
refractive-index fluctuation spectrum. In fact,
refractive-index fluctuations at frequencies near every
multiple of the pulse repetition rate, he@/2~, will all con-
tribute to observed phase noise near zero frequency. As
the pulse is shortened by adding more spectral com-
ponents thus increasing its bandwidth, the low-frequency
phase noise will thus increase, assuming that the average
power of the pulse train is held constant, until the band-
width of the pulses becomes larger than the bandwidth of
the refractive-index fluctuations. Beyond that point, the
phase noise ceases to increase as the pulse is shortened
and depends only on the total mean-square phase fluctua-
tions imposed on the beam.

To be more quantitative, consider hyperbolic secant
pulses with bandwidth cr„, i.e.,

XJ (5)=
27T

' 1/2

g [[R(nhco+5)+R(nba —5)](PJ „P,+„)], —
n =1

(3.4)
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X~ (5)= —i
1/2

2P R(5)+ g [R (nba+5) —R (nhco —5)](PJ „+P,+„)
n =1

(3.5)

Here R (5} is a phase-modulation index operator for
Fourier frequency 5.

It will be assumed that the noise is detected with a
train of local oscillator pulses which are phase-shifted
and attenuated replicas of the pump pulses, yielding pho-
tocurrent given by

I(5,8)=
n LoAN

2'

1/2

P [X'„(5)cos8+Xt,(5)sin8],
l — Qo

(3.6)

( II(5,8=m /2)I') = ( IXqI')2'

g If„I [p(nAcg+5)
2% 0

+p( n b a) 5)], —

where n Lp and 0 are the photon number per pulse and
phase shift of the local oscillator. Since Xz—= g&P, X~ =0, there is no net amplitude modulation of
the pulse train. On the other hand, for 8=m/2, the ob-
served photocurrent fluctuations are proportional to
( IX&I ), where X& =g~P/X~&.

phase shifting the coherent field of the pulse relative to
the stochastic field by reflecting the pulses from a phase-
shifting interferometer with free spectral range matched
to the pulse-train repetition rate, and thus the 1/f part of
the phase noise will be filtered out. ' As discussed above,
we expect the bandwidth in real frequency units to be on
the order of tens of GHz, and should be approximately
inversely proportional to the core diameter a. The
strength g should characterize the average GAWBS spec-
tra1 density near 5=0, and this depends on the diameter
of the fiber cladding, A, with A —100 pm. The spacing
between GAWBS peaks scales as 3 ', while the scatter-
ing strength (area) of a given peak scales as A . Thus
we expect g ~ 3 ', and the integrated area under the
function p(5)~(aA) '. As a, A~ac, we approach the
bulk case and forward Brillouin scattering vanishes, as
expected.

Consider a measurement of noise at low frequencies
(relative to the repetition rate, which for a typical mode-
locked laser is of the order of 100 MHz}. Since the
GAWBS cutoff is of the order of tens of GHz, we have
the relationship 5 & b,co «y, cr Two .limits are obtained
depending on the relative magnitudes of the GAWBS
bandwidth and the pulse bandwidth. If y «0„, then f„
is constant over the range that p is nonzero, and

where

(3.7} nLO
( I(5,8=~/2)I') = (2m.gr)(y/beg) .

2%
(3.9)

1 +$2/ 2
(3.8)

This Lorentzian spectrum is shown as the dashed curve
in Fig. 1 for comparison with the typical fiber phase-noise
spectrum. This model spectrum ignores the large phase-
noise singularity near 5=0 because of the 1/f contribu-
tion. This is not a serious omission, since we anticipate
that the noise spectrum will be homodyne detected, by

=2(nmbco/2cr„)csch[nmbcu/2a ] .

The phase-noise parameter p is defined by
(IR(5)I )(nba/2m)=—rp(5), where the squeeze parame-
ter r is defined in Eq. (3.2). The quantity p is thus propor-
tional to the ratio of the mean-square refractive-index
fluctuation density at frequency 5 to the nonlinear sus-

ceptibility.
To proceed further, it is useful to introduce a simple

model for the spectrum of the phase-noise parameter 5.
Since the fine structure of GAWBS will be washed out by
the many overlapping spectral components produced by
the multifrequency pump, it is sufhcient to adopt a
Lorentzian spectrum characterized by strength g and
bandwidth y:

In this case the noise is proportional to the area under
p(5), i.e., to the total mean-square phase fluctuations, and
is independent of cr and thus independent of the pulse
width. It should also be noted that this result is propor-
tional to the average power.

On the other hand, when y ))cr, p(5) =g over the en-
tire pulse bandwidth, and

( II(5,8=77/2) ') =

n Lpkco
2g p'

13.160

&Ado
(3.10)

In this case the noise is proportional to the peak power
and therefore increases as the pulse width is decreased,
while maintaining constant average power.

In the case that y &&o. , the dependence of the excess
thermal phase noise on the pulse-train average power and
independence on the pulse width confirms the results of
Sec. IIB. By decreasing the pulse width, the effective
nonlinearity increases as reflected in the quadratic de-
crease in z0, while the average power and also the phase
noise only scales linearly. To verify quantitatively the ex-
pected quantum-noise reduction, we now consider the
propagation equation for the soliton field and the fluctua-
tions, including the thermal phase noise.
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IV. SOLITON PROPAGATION:
THE STOCHASTIC NONLINEAR

SCHRODINGER EQUATION

In general, the spectral and temporal structure of a
coherent pulse propagating in an optical fiber will be
modified by self-phase-modulation, which tends to gen-
erate new spectral components, and by the group-velocity
dispersion of the fiber, which tends to broaden the pulse
temporally. These processes can be accurately described
by the nonlinear Schrodinger equation (NLSE), well
known in the study of nonlinear pulse propagation in
fibers. ' For wavelengths in the anomalous dispersion re-
gion of a fiber, the fundamental soliton solution to the
NLSE exists in the form of a hyperbolic secant pulse,
which for classical coherent light propagates in the ab-
sence of loss without distortion.

The role of quantum noise in soliton propagation is an
area of considerable recent theoretical activity. ' ' Our
quantum treatment of this problem' consists of writing
the field in terms of the positive-P representation and
deriving stochastic differential equations for the associat-
ed c-number field amplitudes, P(r, g), where r and g are
the local time and propagation distance, scaled in the
customary way. ' These stochastic differential equations
contain noise sources which take proper account of the
quantum and thermal noise and have a form similar to
the NLSE:

5 t

Bg 2
—1 +i/ p+(i/n)' 71(r, g) (4.1)

Here, n = ~k" ~/yto is the characteristic photon number
per soliton, and n(P P)/to is the dimensionless photon
flux in the fiber. The dimensionless variables, r=t/to
and g=z/zo, are defined in terms of a characteristic time

to and length zo=to/~k"
~

as defined earlier. The Kerr
coefficient g = n 2ficop/c A, where n z is the intensity-
dependent refractive index, and 3 is the effective cross-
sectional area of the fiber mode. The noise source q(r, g)
contains a 5-correlated quantum-noise term and an ex-
ponentially decaying thermal-noise term. Explicitly, this
noise source is defined by the following moments:

=5(g) —(2)5(ri —r2)+iG(ri —r), () —(2),
(q(~, , g, )q (~2&gz)) =G(r, r2, (,—g, ), —

(4.2)

(4.3)

where G (5r, 5() is the real-valued scaled correlation func-
tion for the fluctuating refractive index at (r, g) and
(r+5v, /+5'). In terms of the index fluctuations,
5n (w, g), we have

G(r, —r~, g,
—(, )

2

1 ~o
zoto(5n(r, , g, )5n(r2, (2)) . (4.4)

n 6)

The physical decay rate is thus y/tp, which is fixed for a
given fiber, and I characterizes the strength of the index
fluctuations. Our dimensionless phase-fluctuation param-
eters are defined from here on by y and

2
Np

(4.6)

Thus phase noise due to GAWBS is modeled by a
Lorentzian; i.e., p(5)=(gy )/(5 +y ), where the param-
eter g corresponds to the phase-noise parameter used in
the analysis of earlier cw fiber-squeezing experiments.
Based on our continuous-wave fiber-squeezing experi-
ments and the scaling of GAWBS intensity with pump
wavelength and fiber geometry, we estimate g -5 for a
typical plastic-jacketed fiber at A, =1.55 pm and a tem-
perature of 2 K. The value of the GAWBS bandwidth is
unknown, but probably is near 20 GHz, yielding y & 1 for
a soliton pulse width to of about 10 psec or less.

The stochastic nonlinear Schrodinger equation can be
linearized about the classical soliton solution, yielding
Fourier domain equations for the propagation of the sto-
chastic part of the field and its correlations. ' Field
correlations of the form

S„(~,, a), , ()—:(5$, (~, , g)5(t J(~2, ()),
where 5P, =P —(P) and 5/~=/ ((()"),can thu—s be nu-

merically propagated.
Homodyne detection of the noise spectrum would be

accomplished by phase shifting the coherent field of the
pulse relative to the stochastic fields, e.g. , by reflection
from a phase-shifting interferometer matched to the
pulse repetition rate. This technique also eliminates local
oscillator phase jitter due to phase noise within the inter-
ferometer bandwidth, e.g. , from microscopic pickup by
the fiber or the low-frequency 1/f refractive-index fluc-
tuations.

If P exp(iH) are the local oscillator spectral com-
ponents, the detected photocurrent noise spectrum rela-
tive to the vacuum is given by

Here co'=Bee/Bk is the group velocity of the pulse.
We note the refractive-index fluctuations as being local

but having exponentially decaying time correlations.
Hence we take

(5n ( r, , g, )5n ( r2$~) ) = 5((,—g, )e
I y —yl, —,l

2zptp

(4.5)

V(j b,co)=b,cugP I/I, [S,2(idaho, —kb, co)+S,~(
—kb, co, idaho)+e' S»(lb, co, —kb, co)+e ' Szz(lb, co, —kb, co)t .

l&, 1
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FIG. 9. Noise variance in VNU for 6=0 as a function of
propagation distance in meters. Curves (a) and (b), for g =0
and for g =5, @=1,respectively, are plotted assuming a 5-psec
pulse width and zo =625 m, which corresponds to a dispersion
parameter which is typical for X=1.55 pm. Curves (c) and (d)
correspond to g =0 and to g =5, y=0. 2, respectively, but with

a soliton pulse width of 1 psec, a factor of five shorter. Thus
zo =25 m, and squeezing occurs over a much shorter propaga-
tion distance. All four curves correspond to a scaled propaga-
tion distance over the range from (=0 to 8.

noise, is completely dominant. It can be seen that the
phase-noise variance grows faster for the shorter pulse
because of the increased photon number required by the
scaling of the fundamental soliton. [See Eqs. (2.11) and
(3.9).]

We have also calculated the entire squeezing spectrum
for a variety of values of g and y. This is shown in Figs.
6-8, for g =5 and y=0. 1, 1, and 3, respectively. As the
pulse propagates, dispersion converts the thermal phase
noise into amplitude noise, and this enhances the noise

FIG. 11. Local oscillator phase necessary to obtain the
minimum noise variance shown in Fig. 6, plotted as a function
of scaled propagation distance and scaled frequency. Thermal-
noise parameters are g =5.0 and y =0.1.

amplification away from 5=0. Since the thermal noise
adds uncorrelated phase noise, the local oscillator phase
shift 8(5) for best noise reduction is pushed in toward
zero, as shown in Fig. 11.

Finally, we have investigated the use of both hyperbol-
ic secant and Gaussian local oscillator pulses with vari-
ous widths. The resulting noise reduction at 5=0 is
shown in Fig. 12 for several of these. LO pulses that are
shorter than the soliton yield somewhat greater squeezing
near zero frequency for short propagation distance, as
might be expected from the argument that the greatest
squeezing is near the peak of the pulse, where the instan-
taneous intensity is highest. However, for longer propa-
gation distances, the noise continues to decrease mono-
tonically only for the case of unity-width hyperbolic
secant. For comparison, a cw beam with pump field
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N
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O)
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0 200

z (m)
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FIG. 10. Growth of the 6 =0 phase-noise quadrature
(9=m/2) for g =200 and y=0. 2 [curve (a)] and 1 [curve (b)].
The propagation distance is plotted in meters for the same pulse
widths and dispersion parameters as in Fig. 9, so that the two
curves can be compared on the same physical distance scale.
The thermal-noise magnitude is chosen large enough to dom-
inate over phase noise due to self-phase-modulation in order to
demonstrate the faster growth of thermal phase noise for short-
er soliton pulses (which correspond to greater photon number).

FIG. 12. Noise reduction in the squeezed quadrature at 5=0
for a variety of local oscillator pulse widths and for both hyper-
bolic secant [curves (a) —(c)] and Gaussian [curves {d)—(f)]
pulse shapes. The bandwidths of the local oscillator pulses are,
in scaled soliton frequency units, (a) 1.0, (b) 0.5, (c) 2.0, (d) 1.0,
{e) 0.5, and (f) 2.0. For these simple pulse shapes, the best
choice is a hyperbolic secant of bandwidth 1.0. The dotted
curve is the function I+/ /2 —g(1+/ /4)' (see text).
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strength EI, gives, after propagation through a fiber of
length I, a squeeze parameter r defined above in Eq. (3.2),
corresponding in soliton units to a scaled propagation
distance of g =2r. The resulting noise power at 5 =0
relative to the vacuum is V,„=1+2(g/2)
—2(g/2)(1+(g/2) )'~, and this is plotted as the dotted
curve in Fig. 12. Recent analytical results by Lai and
Haus indicate that the optimum local oscillator pulse
shape is a more complicated function depending on prop-
agation distance. %ith such a local oscillator, it may be
possible to improve slightly upon the performance pre-
dicted for a simple hyperbolic secant local oscillator
pulse.

VI. CONCLUSION

Probably the most important problem to be overcome
to generate useful amounts of squeezing in an optical
fiber is that of thermal fluctuations of the fiber refractive
index and the resulting excess phase noise. These
thermal fluctuations, originating in acoustic modes
confined by the cylindrical fiber geometry, and in local-
ized relaxation modes of groups of atoms (the so-called
two-level inodes), have limited all previous nonlinear
quantum-optics experiments in optical fibers. To mini-
mize the effect of this noise, we discuss the use of soliton
pulses that are short compared with the inverse of the
bandwidth of the phase noise, allowing significant squeez-
ing to be obtained in fibers that are short compared with
the propagation distance required for significant phase
noise to accumulate.

In addition to the enhanced squeezing that is obtained
as a result of the greater peak power of short pulses, the
generation, propagation, and detection of squeezed pulses
is of importance for sub-shot-noise time-resolved mea-

surements, as well as in potential applications of nonclas-
sical light to communications and optical computing.

%'e have given scaling arguments, verified by numeri-
cal solution of the stochastic nonlinear Schrodinger
equation, to show that in the short-pulse limit substantial
noise reduction below the vacuum level can be obtained
with soliton pulses in a cryogenic optical fiber. The
phase-noise bandwidth (and thus the necessary pulse
width) is not known, although a reasonable estimate
would put the bandwidth of the GAWBS spectrum at
about 20 GHz, implying that pulses of the order of 1 psec
are required.

It should be noted that, for pulses significantly nar-
rower than 1 psec, Raman scattering from localized
acoustic phonons may begin to add noise. The Raman-
scattering cross section increases as frequency squared in
the region from 1 to —100 cm ', as shown by the dotted
curve in Fig. l. Also shown in Fig. 1 (the dot-dashed
curve) is the spectrum of a soliton pulse, with width
chosen to yield y =0. 1 with the GAW'BS cutoff frequen-
cy chosen for this figure, i.e., 20 GHz. Although the hy-
perbolic secant falls off quite rapidly in the wings, a sub-
stantial fraction of the intensity could overlap the region
where Raman scattering is becoming significant. The
effect of Raman scattering on noise at the quantum level
has not been considered in any detail, but it must be tak-
en into account if extremely short pulses turn out to be
necessary to circumvent the low-frequency thermal phase
noise that is known from previous fiber-squeezing experi-
ments.
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