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Experiment on nonclassical fourth-order interference
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A new fourth-order interference experiment has been carried out and analyzed theoretically in
classical and in quantum terms. Two photons produced in the process of parametric down-
conversion provide the two inputs to a Mach-Zehnder type of interferometer, while two photodetec-
tors coupled to a coincidence counter measure the output. The coincidence rate, after subtraction
of accidentals, exhibits a cosine variation with the optical path diA'erence, in agreement with quan-
tum mechanics, but in disagreement with a classical analysis. By contrast, when two coherent light
beams from a He:Ne laser are used as inputs to the interferometer, no fourth-order interference is
observed.

I. INTRODUCTION

A number of optical interference experiments have re-
cently been performed in which the field is in a nonclassi-
cal state. ' The resulting interference patterns exhibit
certain explicitly quantum-mechanical features. For ex-
ample, in some fourth-order interference experiments
with photon pairs the observed visibility of the interfer-
ence was substantially greater than 50%%uo, whereas classi-
cal optics allows it to be no larger than 50%. Perhaps
even more striking were the results of two recent experi-
ments ' with down-converted photon pairs, for which
classical optics predicts virtually re interference under
the given experimental conditions.

In the following we report on another fourth-order in-
terference experiment with nonclassical light, for which
classical wave optics predicts no interference at all. The
experiment is based on photon coincidence detection at
the two outputs of a Mach-Zehnder type of interferome-
ter. Two photons produced simultaneously in the process
of parametric down-conversion, or frequency splitting, of
light provide the two inputs to the interferometer, and
the photons emerging simultaneously at the two outputs
are registered by two detectors. The rate of simultaneous
detection by both detectors in coincidence is found to ex-
hibit a cosine dependence on the optical path difference,
despite the fact that the two inputs are mutually in-
coherent and the two average output intensities do not
vary with path difference. The experiment therefore
violates the laws of classical optics. Finally, we compare
the results of experiments performed with classical light
wave inputs to the interferometer and show that the cor-
responding coincidence counting rate exhibits no fourth-
order interference.

II. CLASSICAL TREATMENT OF THE EXPERIMENT

We consider the experimental arrangement shown in

Fig. 1, in which two beam splitters BSI and BSO are used
in combination to form a Mach-Zehnder type of inter-
ferometer. Let Vo(t ), V, (t ) be complex analytic signals
representing the two stationary input waves. Waves

V, (t)= [V,(t)+i V, (t)],1

2

V, (t) = [i V, (t) + V, (t)],1

2

1
V4(t ) = —[ V2(t r2)+i V3(—t 73)],v'2

= 1
V, (t) — —[t V2(t —r2) + V3(t r3)]v'2

(2)
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FIG. 1. The principle of the experiment under discussion.

represented by V2( t ) and V3(t ) emerge from BSI, and
after time delays ~2 and ~3, which may differ slightly, are
introduced in the two interferometer arms, the two waves
are combined at the output beam splitter BSO. The two
output waves V4(t ) and V&(t ) then fall on two photo-
detectors D4 and D5, respectively, whose output pulses
are fed to a coincidence counter that registers simultane-
ous detections. For simplicity we take the two beam spli-
tters to be identical with 50%%uo transmissivity and 50%%uo

reflectivity.
Because of the 90' phase shift of the reflected wave rel-

ative to the transmitted wave introduced by a symmetric
beam splitter, we may relate the various light waves as
follows:
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By combining Eqs. (1) and (2},we obtain

V, (t ) = —,
' [ V, (t —r, )

—V, (t —r, )

small compared with the second-order coherence time
T, . Then we may put

+iV, (t r—,)+i V, (t —r, )],
V5(t ) = ,'[—iVo(t r—z)+i Vo(t —r3)

Vo(t rz—x—, ) = Vo(t —rz)e

V, (t —r3 —x, ) = V, (t —r, )e
(4)

—V, (t —rz)+ V, (t —r3)] .

Now suppose that very small variations of ~z, ~3 are intro-
duced. %e replace ~z, ~3 by ~2+x2, ~3+x3, respectively,
with the understanding that both ~xz~ and ~x3~ are very

where coo and co] are the midfrequencies of Vo(t) and

V, (t), which are taken to be distinct for the moment.
Frotn Eqs. (3) and (4} we obtain for the instantaneous
light intensities,

I4(t)=(V~(t)~ =
—,[Io(t rz)+—Io(t r&)+—I, (t rz)+—I, (t r3) —Vo —(t rz)V—O(t r3}e—' ' ' +c.c.

+V', (t —rz)V, (t —r3)e ' ' ' +c.c. +iVO(t —rz)V, (t —rz)e ' ' '+c c.
iV—

O (t —&r)V ((t r3)e —' ' '+c.c. +i Vo (t —rz)V, (t r,—)e ' ' ' ' +c.c.

iV() (—t —r3)V, (t rz)e—' ' ' ' +c.c.],
I5(t)=~ V~(t)) =

—,[I (ot
—r z) +I 0(t r3)+I—, (t rz}+I—, (t —r3)+ V() (t —rz}VO(t r3)e '—' ' +c.c.

(5)

—V", (t —rz)V, (t —rz)e ' ' ' +c.c. +iV() (t —r, )V, (t rz)e —' ' '+c.c.

—iVO (t r3)V((t —r3)e —' ' '+c.c. i VO (t ——rz)V, (t r3)e— ' ' ' ' +c.c.

+iVO (t —r3)V, (t rz)e '—' ' ' +c.c. ] .

The average counting rates R4 and R5 of detectors D4 and D5 are proportional to the expectations of (I4(t) ) and

(I,(t ) ). Let us assume that the optical field is stationary, and introduce the definitions

rI,"I(r)=—(V,"(t)V,(t+r)) (l,j=0,1},
1(z "(r)=(V,'(t)V,'(t+r)) (i,j=0, 1) .

Then Eqs. (5) and (6) yield

(I4) =
—,'(Io)+ —,'(I, ) —

—,'I (~"(rz r3)e " ' ' +c.c. + —,'I tI"(rz r, )e ' ' —' +c.c.

1((,(((0)(e ( 0 2 e ( 0 3}+cc + 1(l, l((r r )e ( 3 0 2

I ( I, 1 (( )
—(} (10)

When co(=coo, the terms in I o'('"(0) drop out. A similar
result is obtained for (I~ ), except that the signs of theI""terms are reversed.

Now suppose that input beam 1 is blocked momentari-
ly, so that V, =0, and yet no interference is registered by
detectors D4 or D5 when x2,x3 are varied. Then it fol-
lows from Eq. (8) that

I""(r—r )=0,
which implies that ~rz

—
r3~ exceeds the coherence time

T, of the light. Similarly, we conclude, when input beam
0 is momentarily blocked and no interference is regis-
tered by the detectors when x2, x 3 are varied, that

I'4,"(r)= (I~(t )Ig(t+r) ) (12)

between the two interferometer outputs. This is propor-
tional to the joint probability that a detection is regis-
tered by D4 at time t and another detection by D5 at

If the input waves Vo(t) and V((t) are mutually in-

coherent to the second order, then

r""(r)=001

for all arguments. It then follows from Eq. (8) that when
both inputs are present no second-order interference
effect is expected to be registered by detectors D4 and D5
as xz, x3 are varied.

Next we calculate the two-time intensity cross-
correlation function
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T~ /2
T I (2, 2)(7)

45 T /2 45
R

(13)

Because of the lengths of the expressions for I4(t) and
I5(t ) given by Eqs. (5) and (6), we shall not write out the

I

time t+7. The average counting rate %45 of the coin-
cidence counter is given by the integral of I 41' '(7) with

respect to ~ over the resolving time TR of the coincidence
counter,

full expression for I 4(&' )(7). Our interest centers mainly
on the interference terms involving factors like

exp[i (030+co) }(x3 x 2 )],
after the integration in Eq. (13) is carried out.

Let us first suppose that input V, is blocked momen-

tarily. Then the fourth-order interference terms are of
the form

j ([I,(t 7, )—+I,(t 7, )—]V,'(t 7,—+7)V, (t 7, +—7) )

—([I,(t 7,+—7)+I,(t 7, +—7)]V,"(t—7, )V,(t —7, })je ' ' ' +c.c.

—( V() (t —12)V()(t —73) V() (t 72+7—) V()(t 73+—7))e ' ' ' +c.c. ,

and similar expressions are encountered when input V0 is blocked instead. Because ~12
—7, ~

greatly exceeds the coher-
ence time T„there will be no phase correlation between V0(t —72) and V0(t —73) and no phase correlation between

Vo (t —72) V() (t 72+7)—and Vo(t —7, ) V0(t 7&+7—) Henc. e all the fourth-order interference terms vanish when one or
the other input is blocked.

Next let us concentrate on the fourth-order cross correlations between V0(t) and V, (t ) that contribute to interfer-
ence in I 45' '(7) when both inputs are nonzero. As V0(t ) and V) (t ) are mutually incoherent, we expect any average in

which either V0(t ) or V) (t ) is unpaired to vanish. The remaining interference terms in I'41' '(7) are of the form

2—[( V() (t 72) V()(t 73)V) (t 72+7)V)(t 73+7)) +( V) (t T2)V)(t 73}V()(t 72+1 )V()(t 73+1 ) }

+ ( V() (t 72) V) (t 73)V()(t 7+3)7V) (t 12+T}) ]e +c.c.

+( V() (t 12) V)(t 13)VO (t T2+1 }V)(t 13+1))e +c.c.

—( V()(t —7, )V*, (t —72)V()(t 73+7)V—', (t 72+7))—e ' ' ' ' +c.c. (14)

Because of the lack of phase correlation between Vo(t ) and V, (t ), it might be expected that all the fourth-order correla-
tions in Eq. (14) factor into the product of two second-order correlations, in the form

2=[2r" "(7,—7, )r, ', "(7,—7, )+rI)I) "(7 —7&+7)I,", "(72—7&+7)]e " ' ' ' +c.c.

+1(2,0)( )I(o, )(7)e ( 3 0 2 +c c I(o, )( )I 2, 0)( )e 0 3 I 2 (15)

As v2 T3 exceeds T„eachI"" term is zero and the
remaining terms vanish because I I)o' )(7)=0=I I)' '(7)
for a stationary Geld.

Actually, because of the possibility that the product of
two functions of t may have a correlation time that is
substantially longer than that of either function separate-
ly, this argument leading to Eq. (15) is not always valid.
The problem has been analyzed more carefully in a recent
paper dealing with another experiment, where it is
shown that the contribution to %4~ of interference by
terms of the form encountered in Eq. (14) is negligibly
small when T, «TR. It then follows that under these
conditions the coincidence rate %41 is expected to exhibit
no interference as the optical path indifference is
changed.

Next let us consider a different situation. Suppose that
the two input waves V()(t) and V, (t) are completely
correlated, with

T, is very 1ong compared with all delays ~2, ~3. More-
over, let the intensity

I()(t ) = i V()(t ) =I) (t )

be free from fluctuations. This might be the situation if
Vo(t) and V, (t) were derived from splitting a laser beam
into two parts. Then it follows when we examine Eqs. (5)
and (6) for I4( t ) and I~( t ) that all randomness disappears
from the equations, and I4(t ) and I&(t ) become indistin-
guishable from (I4) and (I5 ). Both of them exhibit a
sinusoidal variation with optical path difference
c(x3 —x2). For the same reason also

I 4(q' '(7 ) = ( I4( t I~}(t +7) )

is indistinguishable from (I4 }( I& ), and

V, (t ) = V, (t )e'4',

where P is some constant phase and the coherence time

But the left side of this equation is a measure of the aver-
age counting rate of the coincidence detector, whereas
the right side is a measure of the accidental coincidence
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rate A„,due to the accidental arrival of uncorrelated
pulses from D4 and D5 within the resolving time TR. It
then follows that %4~ —A „=0,and any interference
effects that show up in %4, disappear when we subtract
accidental coincidences. Hence there is again no fourth-
order interference effect. The situation is quite different
for a quantum field, as we now show.

III. QUANTUM TREATMENT
WITH TWO-PHOTON INPUT

1 . I4,
a, = —(i3ie '-+a3e '),

2

(17)

in which P„g3are the phase shifts introduced in the two
interferometer arms. Now it has been shown that when
two similar photons enter the input beam splitter at ports
0 and 1, two photons always emerge together either at
port 2 or at port 3,"' so that modes 2 and 3 are in the
superposition state

Iq &
= ~- (I2 & I0& + I0& I2& ) .

For this state we readily obtain, with the help of Eqs.
(17), for the expected number of detections by detector
D4or D5,

(18a)

and for the joint detections by D4 and D5,

(PI& 4a, a5a4IQ& =
—,'[1+cos2(gz —P, )] . (18b)

Hence there is no second-order interference, but there is
fourth-order interference with 100% visibility. This is
quite different from the classical situation treated in Sec.
II, and it is a consequence of the interference of photon
pairs, rather than single photons, in the interferometer.

However, the down-converted photons are far from
monochromatic. The two photons are also entangled
with each other and with the vacuum, ' so that our
quantum calculation needs to be repeated under more
realistic assumptions. If we suppose that all signal (s)
and idler (i ) down-converted photons are collected by the
apparatus, so that directional effects can be ignored, and
the initial signal-idler field is in the vacuum state at time

For the quantum treatment we consider the inputs to
the interferometer to consist of one photon at port 0 and
one photon at port 1, which are produced simultaneously
in the process of spontaneous parametric down-
conversion in a nonlinear medium. This process was the
basis for a number of recent fourth-order, nonclassical in-
terference experiments, and it has been treated
theoretically several times recently.

In order to illustrate the main difference between the
experiment with two photons and with two classical
waves, let us first adopt a grossly oversimplified point of
view, in which all fields are monochromatic. Corre-
sponding to the classical Eqs. (2), we have the operator
equations for modes 2,3,4,5,

1 id'
a4 ~—(ape +l33e )v'2

Xa, ( co' )a, ( co" ) +H. c.

XIvac&, Ivac&; . (19)

We have used a discrete-mode decomposition with mode
spacing 5co, and in the limit 5co~0 sums over co become
integrals. P(co', co") is a symmetric weight function that
depends on the nonlinear y' ' susceptibility and charac-
terizes the spectrum of the down-converted light. It is
normalized so that

2n5cog . IP(co, co —co)I =1 . (20)

co is the frequency of the pump light and V is its com-
plex amplitude. g is a parameter that represents the
efficiency of down-conversion, such that if I VI is the rate
at which pump photons are incident on the nonlinear
medium, then IrtVI is the rate at which down-converted
photons are produced.

In the following we regard the state Ig(t) & given by
Eq. (19) as the input state to the Mach-Zehnder inter-
ferometer, with the signal photon corresponding to port 0
in Fig. 1 and the idler photon corresponding to port 1.
The fields E ~+ '(t ) and E 3+ '(t ) on the output side of the
50%.50% input beam splitter BS1 can then be given the
mode expansions

]/2

E'+'(t) =
2

1 ICE)~Eg [ao(co~)+ i3, (co~)]e2.
(21)1/2

Geo 1 I Cg)3f

2~ 2.—g [i30(co3)+a, (co3)]e
3

These quantum relations correspond to the classical Eqs.
(1). After suitable propagation delays ~z and ~3, the fields
are again mixed at the output beam splitter BSO shown
in Fig. 1, such that the fields emerging from the inter-
ferometer are represented by

1/2

E' '(t)=
3

1

v'2E (+)(t )—

E )+' t){=

X g [az(co4)e ' '+i33(co4)e ' ']e

1/2
1

v'2

(22)

X g [i3z(co&)e ' '+83(co&)e ' ']e

Here az(co), a3(co) are the mode amplitudes of fields
E z '(t), E 3+'(t) given by Eqs. (21). On combining Eqs.
(21) and (22), we arrive at

t =0, then the state at a later time t, which is short com-
pared with the average time interval between down-
conversions, can be well approximated by

sin —,'(co'+co" —co )t
I 1(i( t ) &

= 1 +g V5co g g Q( co', co" ) —(co +co co& )

1(cg + co cc) )f /2
Xe
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1/2

—g [ao(co4)(e ' ' —e ' ')+i3 )( co4)(e
' '+e ' ')]e

E (+)( )—
2~

1/2

—g [i30(co~)(e ' '+e ' ')+&)(co, )( —e ' '+e ' ')]e
COg

(23)

We may now use Eqs. (17) and (21) to calculate the rate of photodetection by detector D4 at time t, which is propor-
tional to

R.(t)=(,g(t) ~4 '(t)&4"(t)lg(t) t

—,'l2)vl (5co) g g g g g g P'(co', co")P(co"', co'"')

4 ct)4

s111(co +co cop )t /2, (,„+~",„),c2X, „e(co'+ co"—cop ) /2

sm(co"'+co""—
co& )t /2 i( ~~ ru '")')—I2 i(su& ca&)(—

( co"'+co""—co~ ) /2

Xo(co'l((co" l[& 0(co4)(e
' ' —e ' ') i3,—(co4)(e ' '-+e ' ')]

I I I I

X[ao(co4)(e ' ' —e ' ')+i3, (co4)(e ' -'+e ' ')]leo'")Oleo'"')( . (24)

The matrix element M yields We then find that provided t &~2, ~3 all dependence on

72, r3 disappears from Eq. (24), and we are left with

) I

X(e ' —e ')5 5 „,, 5 ~

R4(t ) =2ir l2) Vl g (t)'(co —co",co")p(co co",co—")X4
N

=lqv', (27)

II II

$*(co~ —co"+0',co")=P*(co —co",co") .

We also note thatl, sin 0't 2 +jQ(f/2 —g)e —'

2' ~ ~z 0 /2
1

d ~, i s(Qn't /2) ~;n ((q2, ) e( )
2m — 0'/2

(25)

where e(r; t ) is the unit step function defined by

—=1 for 0&r&t
e r;t —=0 for r&0, r&t . (26)

We now substitute this result into Eq. (24) and introduce
changes of variables of the form

co —
co& co +0

etc. We let 5co~O so that the sum over 0' converts to an
integral, and we assume that P"(co',co") is a sufficiently
slowly varying function of co', so that for large t we may
write

when we make use of Eq. (20). Similarly we may show
that the photodetection rate at D5 is proportional to

(28)

It follows that no second-order interference effect
shows up in the experiment illustrated in Fig. I when two
down-converted photons serve as inputs to the inter-
ferometer. If we compare this conclusion with the classi-
cal result given by Eq. (8), we see that it corresponds to
the classical conditions

r""(r —r )=o=r""(r —r )00 2 3 11

r(1, 1)( ) 0
(29)

The first condition is a consequence of the very short
coherence time T„and the second condition, implying
absence of mutual coherence, is connected with the fact
that single photons have no definite phase.

Next we turn to the calculation of the joint probability
of detecting a photon with detector D4 at time t and with
detector D5 at time t+~. Provided that the probability
of two down-conversions is much smaller than that for
one, the required probability is proportional to
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P45(t, t+r)=(g(t)~(E4 '(t)E', )(t+r)E', '(t+r)E,+)(t)~(P(t)) . (30)

After substituting from Eq. (19) for ~g(t) ) and from Eqs. (23) for E 4+'(t ) and E ~+'(t), and evaluating the matrix ele-

ment, we arrive at

P4(t, t+ r)= g g g g P*(co',co")(t)(co'",co"")
(2vr) 16

sin(co'+co" —co )tl2 sin(co'"+co'"' —co )tl2
(co'+co"—co )/2 (co'"+co'"' —co )/2

c(ccc'+co"—cu"' —cu )C"I"2c c'(cu" —co )r""i ((cu' —cu )r'"'~ ((co"—co )r"'i c'(cu —ro
' )r")'

X [F' (co')F* (co")+F+ (co')F+ (co")][F+ (co'")F+(co'"')+F (co'")F (co"")],
(31)

where we have written

(32)

( )(z(
', '2+ ' )')(z

4

(2~) V
)y(r)/ [1+cosco (r~ —r3)] . (33)

We have written

1y(r)—: I (t)(co, co co)e' 'dc—o
2m o

(34)

for the autocorrelation function associated with the spec-
tral function P(co, co —co) of the down-converted photons.
Because of the wide bandwidth of the weight function

P(co, co —co ) which is symmetric and centered on
co=co /2, ~y(r) ~

has a very short range T„typically less

than a picosecond.
As before, the average coincidence rate measured by

the coincidence counter is proportional to the integral of
P45(t, t+r) with respect to r, over the range —T„/2to

Tt( l2. When TR ))T„this is equivalent to integrating

P4~(t, t+r) over the infinite range. With the help of the
Plancherel theorem

co, co& co d co

and the relation (20), we then arrive at

%4~= f P4, (t, t+r)dr

=-,' lqVl'[I+cos~, ('Tp 73)] (35)

By making use of Eqs. (27) and (28), we can derive the
accidental rate of coincidence counting, which is given by

(36)

and we note that so long as ~rtV('Ttc && 1, this is negligi-

We again introduce changes of variables
co'+co" —co =0",etc. , as above, and make use of the in-

tegral relation (25). Then provided rz and r3 are long
compared with the coherence time T, of the incident
light, we may drop all the B(rz r, t ), —B(r3 r,'t ) fun—c-
tions, and obtain

P~,(t, t+r)

ble compared with %~5 given by Eq. (35). In other words,
when T~ is much shorter than the average time interval
between down-conversions, the excess coincidence rate is
expected to exhibit interference with 100% visibility, in
agreement with the earlier equation (18b). This may be
contrasted with the classical situation described by Eq.
(14) that predicts no fourth-order interference.

IV. EXPERIMENT

We have tested some of the foregoing theoretical pre-
dictions expenmentally. An outline of the setup for the
first experiments is shown in Fig. 2. The two photons
entering at the input to the (slightly unbalanced) Mach-
Zehnder interferometer are produced by down-
conversion in a nonlinear crystal of LiIO3, which is
pumped by an incident light beam at a wavelength of
351.1 nm from an argon ion laser. Down-converted and
simultaneous signal and idler photons of about 700 nm
wavelength emerge at relative angles of +7' from the
crystal and provide the inputs to the input beam splitter
BSI. This part of the apparatus is very similar to that
used previously. " BSI is mounted on a micrometer that
allows its position to be translated. It has been shown
that when BSI is in the symmetric position, the two pho-
tons emerging from the output sides of BSI almost always
appear together on one or the other side, and almost nev-
er on both sides simultaneously, because of destructive in-
terference. "' This principle is used to adjust BSI until
it is symmetrically located with respect to the signal and
idler photons. The light emerging from BSI passes
through the interferometer and is eventually mixed by
the output beam splitter BSO, whose output beams are
directed to the two photon counting detectors D4 and
D5. The path difference c(r3 —r2) through the inter-
ferometer, which is slightly unbalanced permanently, can
be varied over a range of a few wavelengths by mounting
BSO on a piezoelectric transducer and varying the ap-
plied voltage. A pinhole and an interference filter of
bandwidth 10' Hz placed in front of each detector deter-
mine the angular spread and the frequency spread of the
detected light. After amplification and pulse shaping, the
photomultiplier pulses are fed to counters and to a
computer-controlled coincidence counter that yields the
coincidence counting rate. The resolving time T„was
made about 13 ns, but the precise value was determined



42 EXPERIMENT ON NONCLASSICAL FOURTH-ORDER INTERFERENCE 2963

Pinhole

~b' %&i g4

M1
D4

Amp.
&

Disc.
Counter

UV
LiI03

BSO
cR

Coincidence

Counter
PDP
11/23+

D5

Disc

Pinhole

IF(+]2 )

Counter

FIG. 2. Outline of the experimental setup.
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by use of the relation A„=R4R&Tz for the accidental
coincidence rate. Counts due to the detector dark
currents were measured separately and subtracted out.

Figure 3(a) shows the measured counting rates R~, R~
of detectors D4,D5 as a function of optical path
difference c(r3 —r2). Background counting rates of 105
sec ' and 115 sec ' have been subtracted out. It is evi-
dent that there is no second-order interference, as pre-
dicted by Eqs. (27) and (28). Also shown in Fig. 3(b) are
the counting rates R4, R 5 when one or the other input to
the input beam splitter BSI is blocked and the laser
power is turned up a little. The absence of second-order
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FIG. 3. The measured counting rates R4, R, of the two
detectors as a function of optical path difference (a) when two
photons enter simultaneously at ports 0 and 1 and (b) when the
input to port 1 is blocked (and the pump power is increased
somewhat). The standard deviations are smaller than the spot
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FIG. 4. The measured coincidence counting rate A4&, after
subtraction of accidentals, as a function of optical path
difference with two simultaneous photons as inputs.
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FIG. 6. The measured coincidence counting rate /74&, after
subtraction of accidentals .A'&, as a function of optical path
difference, with two mutually coherent laser beams as inputs.

interference in the last case is a reflection of the fact that
the interferometer is unbalanced and the optical path
difference c(rz r3) ex—ceeds the coherence length cT,
when T, =10 ' sec. This experimental result is the basis

of the conclusion leading to Eqs. (9) and (10) above. Fig-
ure 4 shows the measured coincidence rate %45, after sub-

traction of accidentals (R„-0.17 sec '), as a function of
the optical path difference c(r3 —r2) through the inter-
ferometer. This time we clearly have a fourth-order in-
terference pattern, in agreement with the quantum pre-
diction given by Eq. (35), although the visibility is a little
less than 100%%uo. The reason is probably connected with
imperfections in the alignment. This result is, however,
in violation of the conclusion resulting from the classical
equation (14), which predicts no fourth-order interference
for this case.

For comparison with the quantum effect just described,
we then performed a second series of experiments, in
which the inputs to the Mach-Zehnder interferometer at
BSI were two classica1 light beams derived by splitting a
He:Ne laser beam. The two input beams were therefore
mutually coherent. Figure 5 shows the measured count-
ing rates R4, R 5 of photodetectors D4,D5 as a function of
the optical path difference (after subtraction of back-
ground rates of order 150 sec '), and, as expected,
second-order interference is observed. Figure 6 shows
the measured coincidence rate, after subtraction of ac-
cidentals. Because R4 and R~ vary strongly with path
difference, so does the accidental rate %„,with values os-

cillating between about 1.1 sec ' and 2.6 sec '. Howev-
er, once %

„

is subtracted out, we are left with near zero
values of the coincidence rate. The standard deviations

are relatively large, because it was found desirable to
keep the measurement time per point to a few seconds in
order to minimize the effect of slow phase drifts. As pre-
dicted by Eqs. (13) and (16), no fourth-order interference
exists for this classical field. This further emphasizes that
the effects shown in Fig. 4 are nonclassical and charac-
teristic of a quantum field.

V. DISCUSSION

We have demonstrated that under the conditions
(72 73) &) T, , when the entangled two-photon state pro-
duced in the down-conversion process is the input to the
Mach-Zehnder interferometer, no second-order interfer-
ence is observed, but there is fourth-order interference.
On the other hand, when two mutually coherent beams
from a He:Ne laser serve as inputs to the interferometer,
then there is second-order but no fourth-order interfer-
ence. To some extent the quantum state and the classical
state behave as direct opposites.

One possible way to understand the difference between
the two cases is to emphasize that with the down-
converted light as input the interference is between pho-
ton pairs, whereas with two coherent or classical fields as
input, we observe only one-photon interference. As in
the Franson type of interference experiment, ' it appears
that no ergodic classical field can give rise to the interfer-
ence effects observed with two down-converted photons.
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