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Two-atom resonant radiative coupling in photonic band structures
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Radiative coupling between identical atoms sharing an excitation is studied in media where

dispersion creates photonic band gaps, i.e., forbidden bands of light propagation for all directions
and polarizations. Photonic band gaps can exist in media whose dielectric index exhibits strong
three-dimensionally periodic modulations {"photonic crystals" ) or in bands of polaritonic media. It
is shown that the resonant dipole-dipole interaction as well as cooperative fluorescence of two-atom

systems can be strongly enhanced or suppressed, to the extent of being essentially eliminated, by one
of the following mechanisms: {a) dependence on location of the atoms within a unit cell of a pho-
tonic crystal, i.e., sensitivity to the spatial variation of the field normal modes; {b) dependence on the
density of normal modes in allowed bands and on the density of virtual (evanescent) modes in band

gaps. The ability to suppress the dipole-dipole interactions at interatomic separations characteriz-
ing quasimolecules would have far-reaching implications on their dissociative or collisional dynam-

ics, spectroscopy, and rates of energy transfer.

I. INTRODUCTION

Two identical atoms sharing an excitation are coupled
by a resonant radiative interaction (self-energy) whose
imaginary part expresses the change in the rate of atomic
radiative decay while the real part corresponds to a spec-
tral shift, known as the resonant dipole-dipole interaction
(RDDI). ' In free space the RDDI between atoms with
transition frequency coo and dipole moment p attains the
electrostatic limit —p /A'R at separations R much
shorter than the emission wavelength. This short-range
limit of the RDDI is largely responsible for the spectra,
energy transfer rates, and dynamics of electronically ex-
cited diatoms or molecular dimers in bound states ' or
during collisions ' and dissociation, as well as for de-
phasing in multiatomic cooperative emission. It is there-
fore of conceptual and phenomenological import to study
modifications of the free-space interatomic radiative cou-
pling by the medium containing the atoms, which can ei-
ther enhance or suppress the RDDI relative to its electro-
static short-range limit.

Until recently, little eff'ort has been made to address
such questions, in contrast to thorough studies of
modified fluorescence and Lamb shift properties of a sin-
gle atom near a surface (mirror) (Refs. 9 and 10) or in a
resonator (two parallel mirrors). " ' Yet recent works
have indicated that the electrostatic free-space limit of
the RDDI is by no means an immutable property: (a)
RDDI enhancement at small separations has been
demonstrated for molecules in a dielectric microsphere,
when a dipolar transition frequency coincides with a Mie
scattering resonance. ' ' ' (b) The possibility of RDDI
suppression has been suggested' for dipolar transitions
within a photonic band gap, i.e., a spectral band of for-
bidden dispersion where the density of propagating pho-
ton modes vanishes for a11 directions and polarizations.

A photonic band gap has been originally conceived' to

be an environment where spontaneous emission at a
chosen frequency is extinguished by the vanishing of the
density of modes (DOM) at that frequency. This vanish-
ing is a spatially invariant property, which should affect
radiatively coupled atoms independently of their loca-
tion, in contrast to modifications of radiative properties
in previously considered structures (surfaces, resonators,
or microparticles) where atomic location plays a crucial
role. " A photonic band gap therefore promises to be a
unique type of environment of field-matter interactions,
which merits detailed investigations. Photonic band gaps
can be studied in the following wide range of media com-
bining the requirement of forbidden dispersion with that
of weak dissipation (since dissipative effects spoil band-

gap properties, as shown here).
a. Photonic crystals. It has been proposed' that struc-

tures whose dielectric index exhibits strong three-
dimensionally periodic modulations can have a photonic
band gap at wavelengths that are roughly twice the
modulation period. Photonic crystals are also candidates
for strong localization of light at frequencies near the
band gap edge in the presence of some disorder. ' Anom-
alous Lamb shifts are predicted for atomic transitions
near band gaps. ' A photonic crystal with a band gap at
microwave frequencies has already been realized, and it
should be possible to obtain band gaps at infrared or opti-
cal wavelengths using analogous structures: superlat-
tices, ' colloidal crystals, or three-dimensional optical
gratings saturating near-resonant media. '

b. Anomalously Dispersiue Nearly Uniform Media
Band gaps arise in many isotropic materials at frequen-
cies between the pole and zero of their frequency-
dependent dielectric index associated with polaritonic
disperson. "Optically-dressed" phonons give rise to po-
laritonic band gaps in the infrared region, ' while sa-
turated two-photon biexcitonic transitions (e.g. , in CuC1)
produce polaritonic band gaps in the visible or near-
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ultraviolet region. Another type of forbidden band is

found below the cutoff frequency of the medium in metal
plasmas (typically in the ultraviolet region) or in mi-

crowave waveguides.
This paper is aimed at providing a more comprehen-

sive understanding of radiative coupling between atoms
whose transition frequencies lie within or near photonic
band gaps. The present treatment is based on the as-
surnption that the dispersion is isotropic, which can be
accurate for band gaps in nearly uniform media but is

only qualitatively applicable to photonic crystals. The
general analysis (Sec. II) shows that the interatomic radi-
ative coupling depends on the modified DOM, but, in

photonic crystals, is also sensitive to atomic location
within a unit cell. This result allows us to elucidate the
connection between the radiative effects of photonic crys-
tals and those of resonators or microparticles. Section III
describes the modified radiative coupling in allowed
bands, including band tails occurring in partly disordered
photonic crystals, where the DOM function can nearly
vanish but remains smooth (analytic) at all frequencies.
Sec. IV considers the effects of the abrupt, singular van-

ishing of the DOM function at band gap edges in perfect
photonic crystals or lossless polaritonic media. Striking
differences are found between the RDDI behavior in

band gaps and band tails, yet strong suppression of
RDDI and fluorescence rates occurs in both cases. Dissi-
pative effects are shown to bridge between these two
types of suppression. (Sec. IV). The implications of
RDDI and fluorescence suppression on the temporal evo-
lution of diatoms and donor-acceptor energy transfer are
discussed in Sec. V.

dispersive properties of the medium.
In structures with three-dimensional periodicity the

dielectric index e(r) can be expanded as a Fourier series
in reciprocal-lattice vectors g,

e(r) = g ese's' (2a)

The shortest g&0 in this expansion can have the length
2~/d, d being the shortest structure period. The ap-
propriate mode functions are labeled by their quasi-
momentum AK, which is restricted to the first Brillouin
zone ~K~ ~ m/d, band index n, and polarization cr:

l(,(r) =e' 'g C e'&' .
8

(2b)

where eo is the nonresonant dielectric index, CL+ is an
effective plasma frequency of the ionic lattice, and coT is
the transverse optical phonon frequency. The region be-
tween the (far-infrared) frequencies of transverse and lon-
gitudinal optical phonons coT and ~L

Band gaps arise in such structures when the vectorial
wave equation for E(res ) near the edge of the Brillouin
zone ~K~ =~/d has only complex K solutions for all
directions and polarizations' ' [Fig. 1(a)].

In isotropic ionic crystals, field propagation with fre-
quencies near phonon resonances is described by polari-
ton modes, which are plane waves labeled, for each wave
vector K, by a branch index n =+ of the approximate
dispersion relation

c E /cd =e(Q7)=co+Op/(Q)r —cd )

II. GENERAL ANALYSIS
Cd r + 6) +

COL
—[( td T +0p /eo ) ] (3b)

A. Self-energy expansion in normal modes

We consider two atoms located at points r~, and r& in

a dispersive medium and sharing an excitation at a transi-
tion with dipole moment p and frequency coo. The intera-
tomic interaction (two-atom self-energy) is associated
with cross products of the dipole coupling to the vacuum
field' at the two atomic positions and times t, t'

(vac~p E(r„,t) p E(ra, t')~vac)

corresponds to e(td ) & 0 and is therefore a band gap,
where propagating field modes are forbidden. A more
complicated but essentially analogous polaritonic disper-
sion and band gap are exhibited by isotropic semiconduc-

and therefore expresses the interference between the
emission and absorption of a photon by the two atoms.

In free space the field is conveniently expanded in

terms of plane waves with wave vectors k and frequencies
ck, whence the foregoing cross products are written as k
sums of the interference factors' (p rt ) .exp(ik R)
where g is a unit vector of polarization and R=r„—r~.
The general prescription used here is the expansion of the
field in normal modes of the medium

I
~biex ~exc ~. --

pump

exc

Im K

(b)

Re K

E(r)= g g (27rco /V)' g (r)a +H. c,
o. =K, n, o

where co, f, and a denote the mode frequency, spatial
envelope (mode function), and annihilation operator, re-

spectively, and V is the quantization volume. The mode
functions g (r) incorporate the boundary conditions and

FIG. 1. Dispersion and bandgaps in (a) periodic media and
(b) media with induced polaritonic dispersion, e.g. , CuC1. In (a)
the gaps occur at the Bragg resonance I(:=m. /d, and ImK in the

gap is denoted by the dashed curve. In (b) the gap occurs be-
tween coT and ~~ in the presence of pump saturation near
cob„„—~,„,where cob„„and co,„,are the biexcitonic and excitonic
transitions.
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tors in the presence of a saturating optical pump, near
half the frequency of their biexcitonic transition (3.185
eV in CuC1) (Ref. 25) [Fig. 1(b)].

A third type of normal mode that will be considered
here is the transverse mode of field propagation in elec-
tronic plasmas. The medium is transparent above the
plasma frequency co (a few electron volts in alkali met-
als), where the dielectric index is

e(a))=1 —co /co (4)

1 —cos( co~ cg)0 )t-
t (CO COO)

sin(co mo) t-+
Nz COp

+ (coo~ —coo), (5)

where the last term has the same form as the first one,
but with cup replaced by —~p. For long times compared
to an optical period (coot )) I) and moderate retardation
[which is ensured in our case, since we wish to consider
K (coo)R ~ 1, cooR /c 5 1] we can take the Markovian limit
of Eq. (5):

and has a cutoff at co=co, below which e(co) &0. Mi-
crowave waveguides behave analogously.

On adapting the prescriptions of Lehmberg or
Agarwal to the normal-mode basis, the time-dependent
self-energy can be written as follows, on separating its
real and imaginary parts:

iQ" +—y" =(2m/V) gee 1("(r„)g,(r~)(p ri )

B. Directional integrals in the isotropic approximation

The next assumption to be made here is the strongest
restriction on the present treatment, namely, that of iso-
tropic dispersion, in which co depends only on the
modulus of K. This assumption is accurate for isotropic,
nearly uniform media with polaritonic or plasma disper-
sion. It can also be invoked in periodically modulated
media (photonic crystals), as is commonly done for elec-
tron or phonon bands in natural crystals, ' approxi-
mating the polyhedral Brillouin surface in K space by a
sphere. In the photonic (microwave) fcc crystal recently
fabricated by Yablonovitch the band gap width normal-
ized to the frequency of the band center is —

—,
' in the L

direction of the Brillouin surface and only —
—,', in the X

direction. The isotropic approximation, which implies
the replacement of these widths by a directionally aver-
aged width is then rather crude, yet it is qualitatively val-
id as long as the gap width is non-negligible in all direc-
tions. This approximation is obviously inadequate in
strongly anisotropic media where the alignment of molec-
ular dipoles with inequivalent symmetry axes leads to the
splitting of RDDI shifts known as the Davydov split-
ting. ' Likewise, it fails for atoms located between two
mirrors, whose mirror images form a one-dimensional
lattice whereas the DOM in the mirror planes is that of
free space. ' '

The evaluation of 0" and y" jn the foregoing ap-
proximations first requires the performance of angular in-
tegration over the terms of Eq. (6). This integral has the
following form for plane wave lit and dimer states with

p~~R (X states) or pl. R (II states)

i A" +y" —=(2n. /V) +co g*(r„)P (rtt)(p g )

,' f dfI—K[1—(P K) ]exp(iK R)

X —iP 1 1

CO~ COp 67~ +COp =F(KR) (8a)

+m5(cu —coo)
where p, denotes the unit vector along p. Explicitly

The principal-value (P) term fI „z is recognized to be the
RDDI shift, whereas the 5-function term y is the
cooperative change of the atomic rate of Auorescence.

The Markovian limit is equivalent to the pole approxi-
mation, ' in which one neglects shifts from the
difference between mode and resonance frequencies
co + ct)p. This approximation assumes that the modes
constitute a continuum, so that any reasonable pole shift
is replaceable by a mode frequency co . Such a continu-
um causes irreversible decay of excited states. Equation
(6) is then evaluated in the limit

Fn(KR ) = —
—,
' [sin(KR ) l(KR ) —cos(KR ) l(KR )

—sin(KR)/KR] . (8c)

The generalization of Eqs. (8) to Bloch waves (2b)
yields, on ignoring the dependence of C on the direc-
tion of K (consistently with the isotropic approximation)

F& (KR ) =3[sin(KR ) l(KR ) —cos(KR )l(KR ) ], (8b)

a=K, n, o.

-Vg fdn„fK'dK-
n, o f dftk(p g ) (li*(r~ )g (r~)) = ,'F(KR)4"—

with jd Qk denoting solid-angle integration and jK dK
extending over the first Brillouin zone (in periodic media)
or a single polariton branch.

where the angular brackets denote averaging over the
orientations of R and r~[&], and
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sin( ~g
—g'~ r~ )

(9b)

expresses the effects of lattice diffraction. Note that in
general 4 WN " because r~ and r~ are not necessarily
symmetric with respect to the origin r=O of the unit cell.
This origin is arbitrarily positioned, but, since this choice
determines the Cz s, it is convenient to place it at a peak
or trough of e(r). An analogous dependence of radiative
properties on location within the unit cell is found for an
atom between two mirrors, ' ' whose spacing is the unit
cell of the one-dimensional lattice of image atoms.

The form of 4" in (9b) is convenient when the atoms
are located in spatial regions where the modulation of
e(r) in (2a) is moderate and nearly sinusoidal, allowing us
to retain only a few g and g' contributions (See III).
However, when the atoms are located within or on
spheres whose dielectric index is strongly different from
that of the surrounding, as in the Yablonovitch muffin-tin

crystal, then an altogether different approximation is
called for. Although the KKR (Korringa-Kohn-
Rostoker) approximation is better suited for band struc-
ture calculations in muffin-tin structures, ' the wave
functions have a more transparent form in the
augmented-plane-wave (APW) approximation ' In this
approximation, each plane-wave component of the Bloch
wave C e ' N'" outside the spheres is matched with
the single-sphere solution of the wave equation at the sur-
face of a sphere which is centered at a point r in the unit
cell. The equivalent of Eqs. (9) can be written for r„and
r~ located near the spheres at r and r. , on averaging

J
over the atomic angular positions relative to the spheres.
This averaging allows the elimination of cross terms of
electric and magnetic multipoles of different spherical
harmonics. ' The result is

F(KR)4" :F(K~r& —rJ ~)4g

IC.'I"'I'JI(k R, )JI(k Rg)+ IC ~ I JI+~(k, Rg )J~+&(k,Rg)
2I +1

l+ j.+ JI(k, R „)J(,(k, R~ )2t+1 (10)

C. Generalized expressions for two-atom coupling

The final step towards obtaining the general expres-
sions for 0 and y" in the considered media involves
the conversion of K dK in Eq. (7) into the frequency-
space density of modes:

N„(cu)= ,
' g K (co)- dK

(11)
= 1,2 dc'

where the sum is over polarizations and ~K~ is a well-
defined function of ~co~, and vice versa, in the no band
(this point will be further discussed in Secs. III and IV).

It is now possible to write the self-energy expressions in
their final form, using Eqs. (7)—(9), and normalizing them
by their free-space counterparts:

1,»(~ R r ) c N„(coo)[F(KR)4" ]„
yf"~(~o, R) F(cooR /e)

(12)

0" (coo, R, r, )

Of„„{o)0, R }

N„(co)co [F(KR)4" ]„gP dc'
cooG (cooR /c) CO COO

(13)

I

Here 4g has the same form as (9b), but with r„,r~ re-
placed by rj, r' Also, k. , = (co /c)»,', e, being the dielec-
tric index of the sphere, R„=~r„r~~, Rz = ~r~ rj'—~,

—
and C„'&

' and C„'I ' are magnetic and electric multipole
contributions, respectively, of the single-sphere field ex-
pansions which are determined by matching to the plane
wave outside the sphere. It is obvious that for atoms
within the same sphere the coupling will mainly be sensi-
tive to the field variation within the sphere, whereas for
atoms located near or at different spheres the spherical
field variation will be modulated by the same diffraction
factors as in Eqs. (9) [Fig. 2(a)]. This reveals the strong
dependence of the coupling on the radial positions of the
atoms and the radii R, of the spheres themselves. If the
Mie resonance condition is satisfied within a sphere (this
requires e, » 1 and close packing, so that k, R, & 2m ),
then certain C„'I ' or C„I in Eq. (10) become enormously
enhanced compared to others. The interatomic coupling
would then exhibit an enhancement of the type that has
been demonstrated in a single sphere, ' ' yet
F(K~rJ —rj ~

)N J would impose periodic structural
modifications on the Mie-type enhancement. Thus, the
Mie-resonant field would be strongly diminished when
the appropriate Bloch wave has a node at one or both of
the atomic locations [Fig. 2(a)].
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Here, coo/c is the free-space DOM, the summation of
principal-value integrals in Eq. (13) extends over the
band(s) and band gap adjacent to the coo transition, and
the free-space R dependence of 0 is given by'

Ag Bg Gz(cooR /e) =i [Fz(+cooR /e) Fz—( —cooR /e)]

cos(cooR /e) sin(cooR /e)
+

(cooR /e) (cooR /e)
(14)

Gt~(cooR /e) =i [Ft&(+coDR /e) Fn(——cooR /e)]

cos(cooR /e) sin(cooR /e)+
4 (cooR /e) (cooR /e)

cos(cooR /e)

(cooR /e)
(15)

We shall be mostly concerned with the short-separation
limit cooR /e ((1 in which [Fig. 2(c)]

Fx( n i (cooR /e) = )'rree(cooR /e ) /X(coo) (16)

-0.5- I

27r
y(coo) being the Einstein A coefficient, whereas
Q&"„a(coo,R) attains the electrostatic limit, as [Fig. 2(b)]

Gx(n) (cooR /e) :(cooR /e) (17)

2.5 i—

On examining Eqs. (12) and (13) it is seen that the
enhancement or suppression of y" and 0 by the
medium is determined by the DOM modification factor
N„(co)e /co, the ratio eK/co and the difFraction function

(in crystals). All of these factors stem from nonloeal
properties of the medium averaged over many optical cy-
cles. Thus, in photonic crystals N„(co) and 4„" are both
determined by Bragg reflections of the photon, which
affect the interference between its emission and reabsorp-
tion by the coupled atoms.

III. ALLOWED BANDS AND BAND TAILS

A. General results

27f

FIG. 2. {a) Spatial dependence of the field normal modes
which couple pairs of atoms in periodic arrays of spheres.
Atoms A& and B& "feel" the variation of a Bloch wave in the
cell. A Bloch wave superimposed on Mie-resonant field varia-
tion couples atoms A2 and 8, in different spheres or A 3 and B3
in the same sphere. {b) Separation dependence of the RDDI
without crystal diffraction. {c) Same as {b) for the cooperative
contribution to the decay rate.

In this section we consider atomic transition frequen-
cies coo located within bands of allowed dispersion where
the DOM function is analytic in the range contributing to
RDDI. We thus avoid meanwhile the case of close prox-
imity to a singularity of the DOM, e.g. , a band edge in an
ideal photonic crystal or a lossless polaritonic band [Figs.
3(a)-3(c)].

In addition to the analyticity of N„(co), we can make
use of its even parity with respect to co in isotropic, nearly
uniform media and simple periodic structures (in both the
nearly free and tight-binding regimes). The factors
[F(ER)4"~] „are likewise even in co in these media.
These properties allow us to extend the integration limits
to f dco, keeping the positive-frequency part of
F(KR)„„[Eqs.(8)] in the integrand. When E is an odd
function of co„(nearly linear dispersion) this implies keep-
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exp(iKR )

(KR )

ing the complex, positive-K part of F(KR), namely,

3 exp( iER )

i (KR)'

and likewise for F„(KR)+„„.If K is even in co„, then the
entire F(KR) function is retained in the integrand. In ei

N(au)

n

N(~)
FIG. 4. Integration contours in the complex plane used in

the evaluation of RDDI for duo in (a) allowed bands or band tails
and (b) below the cutoff [Fig. 3(b)].

1

big

(b)

ther case, integration along an infinite-radius semicircle in
the upper half plane avoiding the poles to=+coo [Fig.
4(a)] and use of the residue theorem yield, by virtue of the
parity of N„(co),

0" (coo, R)/0&"„,(coo,R)
= [c N„(coo) /coo][G (KR )„„IG (cooR /c)]4" „,

(19)

4)el cuc2

(c)
FIG. 3. The density of modes near the edge of a tightly

bound band (a), near a cutoff (b) or near the gap between nearly
free crystalline bands (c). The solid curves are modified into
dashed curves in the presence of disorder, which smooths out
the singularities. The dots mark locations of ~0 in allowed
bands and the crosses mark the ones in forbidden regions.

(KR ) = —cot(KR ) =Gx(KR) =0, (20)

where 0 vanishes irrespective of the DOM factor.
The DOM factor in Eqs. (12) and (19) can be written

for allowed bands of nearly uniform media as

where G(KR) is given for X or II states by Eqs. (14) or
(15).

B. Nearly uniform media

The short-separation limit for the RDDI shift is seen
from Eq. (19) to be of the same form as in free
space, -(KR) . However, when e„(coo)))1, e.g. , for tuo

just below the polaritonic resonance cuT [Eq. (3)], separa-
tions satisfying the electrostatic free-space limit
R ((c/~o can actually correspond to (KR )Etio

=e„(coo)(cooR /c) —1, for which retardation effects are
1/2

significant. The same is true for y" (coo, R) [Eq. (12)],
whose separation dependence is given by F(KR)„„.The
most dramatic retardation effects would be, e.g. , [Fig.
2(b)]
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67
N„(cop) =(cop/c )e„(cop) 1 —— inc„(co)

cc)0

(21)

y" (cop, R)/y, "„,(cop, R) =e„(cop) 1 —— In@„(cp)
2 dc'

(23)

In the range of anomalous dispersion (but as long as
ImE„«Res„) 0&@„(cop)&1, occurring near the plasma
cutoff [Eq. (4)] or cop & cpL on the longitudinal polaritonic
branch [Eq. (3)], y" (cop, R) and the single-atom rate of
emission y(cpp) will be suppressed (relative to free space)
by a factor of at least e„(cop). In the other extreme
e„(cop)»1 (cop cpr on transverse polaritonic branches)
there will be strong enhancement of y" and y.

C. Allowed bands of photonic crystals

In the nearly free diffraction regime, we can retain in

Eq. (9b) only the reciprocal-lattice vectors 0 and 2mld
and the corresponding Fourier coefficients Co and C, ,

which become near the edges of the allowed
band Cp=+C, =+2 '~ (cosine or sine Bloch waves).
Equation (9b) then reduces to

1+ sin(mR ld)
(m.R /d)

sin(m. rs /d)
l+

(mr& /d). (24)

which ranges between 4 and 0 in the limit R /d « 1, de-

pending on the Bloch wave. Thus, although N„( c)vis

enhanced near the band edge [Fig. 3(c)], diffraction can
extinguish both y

" and 0 if one of the atoms is locat-
ed at a node of the field [Fig. 2(a)].

D. Band tails (psendogaps)

We turn now to cup in a pseudogap (band tail) of a
nearly-periodic medium. A slight deviation from periodi-
city (by thermal or structural disorder) would only
smooth out the DOM singularities at the edges of allowed
bands, while keeping the DOM nearly vanishing in spec-
tral regions that are forbidden in perfect crystals (Fig. 3).
The resulting 0 and y would then be subject to
nearly the same R-independent suppression relative to
their free-space values

0" (cop, R)/II,"„,(cop, R) =y" (cop, R)/yc"„„(cop,R)

Nc„( o )/cd «cp1 . (25)

IV. BAND GAPS
A. Nondissipative band gaps

In ideal photonic crystals or in nearly uniform media
with negligible dissipation (absorption), the edge of a

When the short-separation limit holds for both copR/c
and (KR ), the use of this factor in Eq. (19) yields

0

0" (cop, R) c
1 —— inc„(co) . (22)

Qr", s(cp, R) idea/dKi 2 dc@

Since the group velocity dco/dK =0 near the edges of
allowed polariton bands ~T and coL, 0 then becomes
strongly enhanced. The corresponding limit of Eq. (12) is

band gap is a singularity of the DOM, where the real part
of dK/dco changes discontinuously and N„(cp) vanishes
abruptly. ' This immediately implies that within a
bandgap

y" (cpp, R) cc y(cop) o-N„(cop)=0 . (26)

The evaluation of 0" calls for more care. Guidance is
given by standard methods of electron or phonon band
calculations. The frequency is expanded about the
singularity cp, (the lower or upper edge of the bandgap or
the cutoff frequency in plasma or a waveguide):

CO COc +~ K + ' ' (27)

where ~ is the deviation from the wave vector of the band
edge K, ( =m /d in the lowest Bragg resonance) and the
erst-derivative term in the expansion vanishes at the
singularity. Just below a cutoff frequency or the upper
edge of a gap cp, [Figs. 3(b) and 3(c)] this expansion corre-
sponds to

1

N„(cp) =co(co —cp, ) '(2cp, b) e(cp co, ),— (28)

where e is the Heaviside step function. A similar expres-
sion is obtained for co, at the lower edge of a gap.

Using this form of N„(cp), 0" can be evaluated for cop

just below a cutoff point co, on extending the integral in

Eq. (13) over the domain ao &co&cp, and —cp, &co& —co

(allowing for the even parity of the integrand as in Sec.
IIIA), excluding the forbidden band and its singular
edges co, ~ co ~ —co, by branch cuts and closing the con-
tour by a circle of infinite radius [Fig. 4(b)]. The evalua-
tion of 0" for coo in a gap between two allowed bands is
similar, although the contour is more involved.

In both cases, the +~o residues contributing to the in-
tegral are determined by the analytic continuation of
N„(cp) [as given by Eq. (28)] and [F(KR)4"s] „ into the
gap. This yields

N (+co )=x =+ico ~cp cp ~'~ —(2bcp )
BK

N
(29)

where ~ is the imaginary part of the wave vector and co,
denotes, in a gap between two bands, the edge closest to
coo. The analytically continued DOM is thus a purely
imaginary, odd-symmetry function. The analytic con-
tinuation of F(KR)4" amounts to the replacement of
the angular integral Eq. (9) by an integral over evanescent
modes with complex wave vectors:

f dAk(p rI ) (%*(r„)%(rz))

= JdQK(P ri ) exp(.iK R~a R.~) .

The diffraction function 4 is also strongly changed
within the gap. Thus, in the nearly free diffraction re-
gime, the Fourier coefficients at the center of a narrow
gap and the corresponding N are changed from their
values in Eq. (24) to

Cp C& -+i /2, @+ -[I+sin(mR /d)l(mR /d)], (30)
0

i.e., the m/2 phase shift in the Fourier coefficients elimi-
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XF(KR) IG(cooR/c), (31a)

where we have used the imaginary antisymmetric form of
N„(+coo) in Eq. (29) to obtain [cf. Eqs. (8), (14), and (15)]

i [F—(KR )+„+F(KR ) ]=F(KR ) (31b)

Usually, ~ K for cop just within forbidden bands or in
narrow gaps, where K =m/d at the first Bragg resonance
in photonic crystals, or E=coLep /c in a polaritonic
bandgap [Eq. (3)]. The predominant change in R
dependence of RDDI within a gap is then that G (KR),
characterizing allowed bands, is replaced by F(KR), be-
cause of the n/2 phase shift and symmetry change in the
argument of F(KR }+

0

The analytically continued DOM in Eq. (29), which
has introduced these changes into F(KR)+„, is responsi-

0

ble for interatomic coupling via evanescent modes that
have wave vectors i~ and are resonant with a virtual fre-
quency whose imaginary part is (coo—co, )'/. This is
equivalent to coupling via allowed (normal) modes out-
side the gap which are shifted by ~p —co,

' from reso-
nance with the atomic frequency coo. The resulting ir/2
phase shift marks the interference between the emission
of atom /I and the Uirtual absorption (i.e., scattering reso-
nance) of atom 8, instead of the real absorption occurring
in allowed bands. The consequence of the resonance be-
ing no longer real is that the R -divergent limit of
G(KR) is "smoothed" out, becoming F(KR) [compare
Figs. 2(b) and 2(c)]. For typical intermolecular or intera-
tomic separations R of a few A and cop in the optical

nates the location-dependent term.
This combination of analytically continued factors pro-

duces a remarkable change in the residue contributions to
Eq. (13), as compared to Eq. (19), leading to

0" (coo, R)/Qf"„,(coo, R)

=4"„[c/(2',b) ] I
1 co, /~ol' exp( —vR)„

range, the factor F(KR) IG(cooR/C) in Eq. (31a) can
0

be as small as 10 or 10 ', i.e., the suppression is ex-
tremely strong.

Additional suppression of the RDDI in a band gap can
occur because the density of evanescent modes in Eq. (31)
nearly vanishes for cop =m„ i.e., just inside the gap. This
result is accurate for nearly uniform media, where the
isotropic approximation (Sec. II B) is at its best. In fcc or
bcc crystals, this approximation involves some smearing
of the band edges, so that ~1

—coo/ru, ~'/ cannot be
neglected, and should be considered comparable to the
gap width normalized by the central frequency. Note
that for cop near the middle of a gap of appreciable width,
the form of N„(co) in Eq. (29}, which is obtained from a
second-order expansion about ~„should be replaced by a
more accurate analytic continuation.

8. Dissipative eÃects

Dissipation relaxes the sharp separation between al-
lowed and forbidden bands, and leads to the mixing of
effects pertaining to both types of dispersion. Near a
band edge, the dispersion relation Eq. (27) is now
modified into

(co+i I ) cu, =2c—o, bx. (32)

4i I co

icoo
—(co, + I )i

(33)

The use of this complex DOM in the evaluation of
RDDI, analogously to the nonabsorptive case adds
another term to the latter result [Eq. (31)]:

where I is the absorption width associated with the
imaginary part of the dielectric index.

The corresponding analytically continued DOM in the
gap is then

N„(+Coo)=+1Cgo(2& b)
—3/2~~2 (~2+ I 2)~1/2

I cop

„s =[cl(2',b)' ],4"„exp(—xR)„F(KR) +G(KR) +O(I /coo)
i coo

—
( co, + I' ) i

(34)

I « italo
—co, i «cu, . (35)

V. DISCUSSION

The application of the formalism presented in Sec. II to
allowed bands (Sec. III) and band gaps (Sec. IV) has

It is seen that the real part of the DOM restores the
G(KR) dependence characteristic of allowed bands. This
means that the resonance broadening caused by dissipa-
tion permits resonant interatomic coupling in the gap via
a "tail" of allowed (normal) modes. In order to keep
RDDI small in the presence of dissipation one must mini-
mize the prefactor of G (KR ) in Eq. (34), i.e., keep

demonstrated that the RDDI as well as cooperative
fluorescence of two-atom systems can be strongly
enhanced or suppressed, to the extent of being essentially
eliminated, by one of the following basic mechanisms.

(a) Dependence on location within a unit cell of a pho-
tonic crystal, i.e., sensitivity to the spatial variation of the
field normal modes [Eqs. (9}and (24)]. In periodic struc-
tures composed of spheres, the location relative to the
sphere center is also important [Eq. (10)].

(b) Dependence on the density of normal modes in an
allowed band [Eqs. (22) and (23)] or a band tail [Eq. (25)],
and on the analytic continuation of the DOM function
into a band gap [Eq. (29)] which can be interpreted as the
density of virtual modes. The m/2 phase shift and parity
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change introduced by this analytic continuation into the
integrand of RDDI leads to the elimination of the elec-
trostatic R -divergent limit of this interaction [Eq.
(31)]. The RDDI is thereby strongly suppressed at in-
teratomic separations that are small compared to the
emission wavelength.

The ability to essentially eliminate the RDDI at intera-
tomic separations characterizing quasimolecules (a few
A) would have far-reaching implications on their dissoci-
ative or collisional dynamics, spectroscopy and energy
transfer properties. ' The symmetrized (ungerade) and
antisymmetrized (gerade) states of a dimer: '

~+& =Ice & ~~g &a+kg& ~ie &sI2 (36}

where e and g are the excited and ground atomic states,
respectively, are energetically shifted by +0" from
atomic resonance. The respective Auorescence rates are
y" =2y (superradiance) and y —y" =0 (subradiance).
All these differences would nearly disappear in a band tail
or a band gap.

If only atom A is excited prior to its collision with the
ground-state atom B at t=0 (as in crossed-beam col-
lisions), then the probability of atom B emerging from the
collision at time t in an excited state is

—,'e r'[cosh(y" t) —cos(Q" t}] .

In quasimolecular collisions occurring in allowed bands
or free space, i

A"
i
» y" =y. The excitation probabili-

ty of atom 8 then oscillates between 0 and 1 at the fre-
quency 0" due to photon exchange as long as yt &&1,
whereas for yt )&1 this probability becomes trapped at
the value of —,'. In contrast, within a gap, where
y=y" =0 and 0( ~0"

i &y&„„ this excitation would
oscillate indefinitely between 0 and 1, out of phase with
that of atom A, at the very slow frequency iQ" i. These
very slow oscillations would reAect the blocking of inter-

gAO

CA
Z
LLJ

z
LLI

z'
LLI
O
UJ
LLJ
CL
O
D

4+0

atomic photon exchange due to the absence of resonant
normal modes, and their replacement by nonresonant (or
virtual) modes.

The suppression of donor-acceptor energy transfer by
RDDI (the Forster-Dexter mechanism } in a band gap
would change the fluorescence spectra of donor-acceptor
complexes as shown schematically in Fig. 5. If the over-
lap between the emission band of the donor and the ab-
sorption band of the acceptor is within the gap, then a
strong decrease of the fluorescence is anticipated in the
emission band of the acceptor, solely due to RDDI
suppression, even if the latter band is outside the gap. '
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FIG. 5. The Forster-Dexter mechanism of excitation transfer
from a donor (D) to an acceptor (A) via the RDDI. The
fluorescence intensity of the donor (D) has a tail in the presence
of an acceptor (A +D), which is suppressed when the overlap
between the emission band of D and the absorption band of A is
within a gap.
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