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A detailed account of a formal mathematical description of the interaction of relativistic charged
particle beams with electromagnetic waves, within the frame of classical electrodynamics, is

presented. The standard system of eight equations (Maxwell and Lorentz gauge conditions and fluid

dynamics) in the four-vector potential A„and the four-vector current density j„ is reduced, after
linearization, to a canonical system of four coupled partial differential equations in the electromag-
netic field perturbation 5A„. Both electromagnetic and dynamical quantities are treated as fields,

according to the Eulerian formalism. This new system is very general, and different beam-wave in-

teractions are characterized by different fluid equilibria and boundary conditions for 5A„and its

derivatives. Finally, the equations are used, as an example, to study the dispersive characteristics of
space-charge waves propagating in a cylindrical waveguide, along a relativistic electron beam

confined by an axial magnetic field. The problem is treated in a fully relativistic way, for arbitrary
values of the axial guide field and any degree of azimuthal symmetry.

I. INTRODUCTION

One of the central problems of relativistic electro-
dynamics' is the interaction of charged particles beams
with electromagnetic waves. The physics of such interac-
tions is very rich and a wide variety of complex phenome-
na arise, ranging from synchrotron and Cerenkov radia-
tion to free-electron laser, cyclotron maser, and other
instabilities involving nonneutral plasmas, as discussed
extensively by Davidson. A large class of beam-wave in-
teraction problems involve electromagnetic energies that
are small compared to the particles' kinetic energy, and
perturbation theory is appropriate to describe such linear
beam-wave interactions. This category of problem will
be the focus of our attention in this paper. Different for-
mal mathematical descriptions of this type of interaction
are possible, such as the Maxwell-Vlasov kinetic theory,
or the Maxwell-Euler fluid model. In this work, we con-
sider the latter theory, which involves the manipulation
of fields for both electromagnetic and dynamical quanti-
ties, and of operators as the electromagnetic wave propa-
gator (d'Alembertian operator) or the fluid convective
derivation, providing a compact and elegant mathemati-
cal framework to study these interactions.

One of the main objects of this work is to show that
starting from the standard set of eight equations in the
four-vector potential A„and the four-vector current den-

sity j„,we can obtain a canonical system of four coupled
partial diff'erential equations (PDE s) describing the evo-
lution of the electromagnetic field perturbation 5A„by
linearizing the interaction equations. The compact set of
PDE's derived in this manner involves the perturbed
electromagnetic four-vector potential and the equilibrium
fluid field components. Different specific problems are
characterized by different fluid equilibria and boundary
conditions for 6A„and its derivatives. The initial set of
eight equations consists of the four Maxwell equations

with sources describing the evolution of the four-vector
potential, the Lorentz gauge condition, which is
equivalent to the conservation of charge or to the con-
tinuity equation, and three fluid equations of motion.

At this level, two main formal approaches can be used
to solve this linear system of PDE's. On the one hand,
one can expand 5A„ into known eigenmodes satisfying
the appropriate boundary conditions, and study the cou-
pling of these modes through the coupled PDE's. The
other approach consists in solving directly these equa-
tions, then using the boundary conditions to determine
the actual eigenvalues and eigenfunctions of the prob-
lern '

This paper is organized as follows. In Sec. II, we
linearize the standard system of eight interaction equa-
tions in A„and j„,and reduce it to a canonical system in

the four-vector potential perturbation 5A p Section III is
focused on the study of space-charge waves supported by
an electron beam confined to an axial guide magnetic
field, and is intended as an example of the use of the
equations derived in Sec. II. Finally, conclusions are
drawn in Sec. IV.

II. GENERAL FORMALISM

The purpose of this section is to give a detailed account
of a formal mathematical description of the interaction of
a relativistic electron beam with electromagnetic fields,
within the frame of classical electrodynamics. A very
large number of methods have been described in the
literature, and there is, sometimes, some confusion about
which equations and which variables should be used. For
example, it is well known that the gauge condition, the
conservation of charge, and the continuity equation are
equivalent. Here, our objective is to reduce the linearized
equations of interaction to the canonical system of four
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42 EULERIAN FORMALISM OF LINEAR BEAM-WAVE INTERACTIONS

equations in the four-vector potential perturbation

5A„(x,).
We first briefly review the equations relevant to the

problem. The interaction of charged particles with elec-
tromagnetic fields can be described, in the classical limit,

by two sets of equations. On the one hand, there are
Maxwell's two groups of equations, ' '" governing the
fields,

first group of equations [(I) and (2)] suggests the intro-
duction of the four-vector potential A „=(P/c, A),
defined' '" such that

E= —VP —8, A,

B=VX A.

VXE+a,B=O,
V.B=0,

As a result, Eqs. (1) and (2) are automatically satisfied. If,
in addition, we impose that the four-vector potential
satisfies the Lorentz gauge condition

and the group with sources 1
B,/+V A=O, (9)

1VE=- p,
Eo

(3)

we see that the second group of equations is equivalent to

VXB—,B,E=p,,j .
1

c
(4) V' — ', a', y+ ' p=o,

C ~o
(1O)

On the other hand, there are the equations governing the
particles dynamics, which are given by the expression of
the Lorentz force V — 8, A+p, ,j=O .2 1 2

c

d, p= —e(E+v XB),

and the continuity equation (charge or particles conserva-
tion)

It should also be noted that the gauge condition (9) is
equivalent to the continuity equation (6).

The equation of momentum transfer (5) implicitly
satisfies energy conservation, as can be seen by taking the
dot product of (5) by p, to obtain

B,p+V j=O . (6)

Here, j„=(cp,j)= en(c,—v) is the four-vector current
density, with n the particle density and v=cP their veloc-
ities. The particles' momentum is given by p=ym, v,
and their energy by y =1—I3 .

At this point, it is important to note that Maxwell's

eEv
l V

Pl C
(12)

Finally, using the definitions, Eq. (5) can be transformed
to read, within the framework of a relativistic fluid mod-
el,

(8, +v V)v=—
' 1/2

e U

m, C
2 VP r), A+—v X V—X A+ (VP+ 8, A ) v

c
(13)

1 A=p env,
C

(14)

V2 — B~t P = en,1 2 1

~o

1
B,/+V A=O,

{15)

(16}

We thus obtain a closed system of eight equations with

eight unknowns A„, n, and v:
together with Eq. (13).

We now focus on the linear analysis of the beam-field
interaction. Any fluid field component f (x„) is written
f =f0+of The quantity fo refers . to the beam self-
consistent equilibrium in the external fields, while 5f cor-
responds to the electromagnetic perturbation. We as-
sume that for all fluid field components, we have
~if ~

&&
~fo ~. We can then linearize the equations

presented above, with the result that
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V — 8, 5 A= @,e(n p5v+ vp5n ),2 1 2

C
(17)

V — 8, 5$= e5n,1 2 1

C Eo

1
8 5/+V 5A=O,

C2

(18)

(8 +vp V)5v+(5v. V)vp=—
ypm

—V5$ —B,5 A+ 5v X Bp+ vp X V X 5 A

[Ep 5v —(V5$+8,5A) vp] — (Ep vp)
C C

7p Vp
(vp 5v) Ep+vpXBp — (Ep vp)

C C
(20)

Here the equilibrium electric and magnetic fields are Ep(x„) and Bp(x„), respectively. We shall now reduce this system

by considering

~here

p, e
C35A —P Clp (21)

1—v
C

is the d'Alembertian operator (electromagnetic wave propagator). We have, on the other hand,

(8, +vp V)(np5v)=np(d, +vp V)5v+5v(B, +vp V)np,

and, after (21),

(22)

(23)

(8, +vp V)(np5v. )= (8, +vp V) 5A —PpCI
1

p, e C
(24)

The first term on the right-hand side of Eq. (23) is given by (20):

—V5$ —8, 5 A+5v XBp+vp X V X 5 Ae
np(B, + vp V )5v+ [(n p5v ) V]v p

= np-
ppm

z [Ep 5v —
( V5$+ B,5 A) vp] — (Ep vp)

C C

2
7p Up

(vp'5v) Ep+vpXBp 2
(Ep'vp)

C C

(25)

while the second term can be derived from the equilibrium continuity equation

B,np+V-(npvp)=0 (8, +vp. V)np= —np(V-vp) . (26)

We thus have

(8, +vp. V+ V.vp) U5 A —Pp&
6

C
=ppenp(B, +vp V)5v . (27)

We now use Eq. (25) to obtain
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(8, +vo V+V vo) 05A —PoU +5
5 A —PoO .V vo

5p

e
poeno

rpm,

Vp—V5$ —B,5A+5vXB +v XVX5A — [E 5v —(V5$+B,5A) v ]
C

At this point, we define the following parameters:

2
rp Vp

(Eo vo) — (vo 5v) Eo+voXBo — (Eo vo)
C C C

(28)

eBo(x, )
Qp=

yo(x. )mo
'

co& no(x„)e vo{x ) eEo(x
Po ~o= &o='

yo(x )m,
' c '

yo(x„)m, c ' (29)

which are, respectively, the relativistic cyclotron frequencies in the equilibrium magnetic field, the relativistic beam
plasma frequency, the normalized fluid equilibrium velocity field, and the normalized equilibrium electric field, govern-
ing the energy time scale. The formalism described here includes the most general case, where the dynamical quantities
describing the fluid equilibrium state are functions of both space and time.

Upon replacement of every quantity n, 5v appearing on the right-hand side of Eq. (28) by the value defined in (21), we
end up with the sought-after canonical system of four equations in the four-potential vector perturbation
5 2„:—( 5$/c, 5 A):

[B$+vo'V+V'vo Ao'po poAo' QoX yo[Ao po(Ao'po)+poXgo]po' I C]5 A po
C

2

5A —P 0 V v + [ —V5$ —8,5A+v XVXSA+P (V5$+B,5A) P ]=0,
C C

1
8,5/+V 5A=O .

(30)

(31)

Note that we can easily identify the different terms in Eq.
(30) as a beam-mode type operator coupled to an elec-
tromagnetic wave propagator, and a beam coupling term
proportional to the beam density co (x,) and containing
the ponderomotive force. ' Equation (30) is written in
terms of operators acting on the electromagnetic field;
the dot and vectorial product symbols appearing there
apply either explicitly to a vector (e.g., Ao Po), or impli-
citly to the four-wave vector (e.g., PoAo ) as do the
space-time derivatives.

At this point, different beam-wave interactions are
characterized by different fluid equilibria and different
boundary conditions for 5A„. Two main formal ap-
proaches can be used to solve the canonical system de-
rived above. On the one hand, one can expand 5 3„ into
known eigenmodes satisfying the appropriate boundary
conditions, and study the coupling of these modes
through the coupled PDE's describing the evolution of
the four-vector potential perturbation. The other ap-
proach consists in solving directly these equations, then
using the boundary conditions to determine the actual ei-
genvalues and eigenfunctions of the problem.

The reduction in the number of unknown field com-
ponents to a minimum of four clearly warrants the termi-
nology "canonical system. " However, it should also be
noted that the degree of the system derived above (third-
order PDE's) is higher than that of the system described
by Eqs. (13)—(16) (second-order PDE's). In addition, we
wish to remark that the mathematical formalism exposed

here generalizes a procedure which is virtually of univer-
sal use for the study of any particular beam-wave interac-
tion, within the framework of a linear relativistic fluid
model. The equations presented above form a compact
system of PDE's describing the evolution of the four-
vector potential perturbation. Starting the electromag-
netic stability analysis of a given beam-wave interaction
from this system allows one to avoid the lengthy algebra-
ic manipulations generally involved in the conventional
mathematical procedure, therefore reducing the risk of
errors to a minimum; the mathematical consistency of
the perturbation formalism is also guaranteed by these
equations. In Sec. III which is intended as an example of
the use of these equations, we study the propagation of
space-charge waves supported by an electron beam
confined by an axial guide magnetic field.

III. BEAM MODES WITH FINITE GUIDE FIELD

Here, we study waves supported by an electron beam,
confined by an axial guide magnetic field zB}~. %'e start
from the master system of equations governing the evolu-
tion of the four-vector potential perturbation 5A„(30)
and (31). Since this section is intended as an example of
the use of the equations derived in Sec. II, the fluid equi-
librium studied here is the simplest possible in this case;
in particular, we neglect the equilibrium self-fields pro-
duced by the beam space charge. The field-fluid equilibri-
um assumptions are then
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80=zB~~,

which corresponds to the externally applied guide mag-
netic field, and

(33)

which describes the axial drift velocity of the electron
beam. In addition, there is no externally applied electric
field, therefore Ep 0. The radial beam density profile is

Jt(Xr )
5A„(r, 8,z, t}= A Jt, (Xr)+g

gP

Xexp[i (cot —kz+18)],

J!(Xr)
5As(r, 8,z, t)=i AJt, (Xr)+S

(39)

no fOr r +~b
n, (r)= .

0 for a &r )rb, (34}

(a, +U~, a, ) o5A„——,(5A„+2a,5A, )
1

T

+ Q~~ 5 A g 2
(5 A e

—2ae5 A, )
1

I'

where rb is the beam radius. Note that because the equi-
librium fluid velocity field is purely axial, the continuity
equation is satisfied everywhere, including at the edge of
the beam. The equations of evolution of the four-vector
potential are, in cylindrical coordinates, for the radial
component,

Xexp[i (cot —kz +18)], (40)

5 A, (r, 8,z, t) = CJt(Xr)exp[i (cot kz+—18)],

5$(r, 8,z, t) =c2)JI(Xr)exp[i (cot —kz +18)] .

(41)

(42)

Note that the terms in 8 are similar to the usual vacuum
transverse electric (TE) modes, while 5A, and 5$ are
similar to usual vacuum transverse magnetic (TM)
modes. In the first case, the boundary conditions at the
waveguide wall (r =a} would yield X=XI„/a, and in the
second case y =

y&„ /a, where yI„and yI„are the nth
zeros of J&' and JI, respectively. The axial magnetic field
creates hybrid modes resulting from the mixing of vacu-
um TE and TM modes. We start with the gauge equation
(38); using Eqs. (39)—(42), we have

COp+ ', [ —(a, +.„a,)5A„+a„(.„5A,—5y)]=0;
C

(35)

T

leo 1 J,(Xr)
2)Jt(Xr)+ —d„r AJI, (Xr)+8

C r gf
for the azimuthal component,

(a, + 1

T

Jt (Xr)
AJI,(xr ) +.8

T
ik CJI (xr )

—=0 . (43)

—~„o5A„——,(5A„+2a,5A, )
1

T

The terms in 8 cancel out, and (43) reduces to

i —2)—k C J&(Xr)+ [d,(r) —1]Jt,(Xr ) =0 . (44)

2+, —(a, +U„a, )5A, + —a,[U„5A, —5y] =o;
C

At this point, we use the following formula

for the axial component,

(a, +.„a, )
5p

(36)

COp

(a,5/+ a, 5A, )=0;
p)(c

(37)

JI(xr)
J, ,(xr ) =J,'(xr ) 1—

r

which yields

i —Q —kC J (Xr)I

and finally, for the Lorentz gauge condition,

1 1
a, 5$+ a„(r5A„)+—a—5A +a, 5A, =0 . (38)

1

1, 1+A d„[rJ/'(Xr)] ———J&(Xr ) =0 . (45)
7 X r

The terms in A correspond to the usual Bessel
differential equation, and we end up with

We shall demonstrate that this system of four coupled
differential equations in the four-potential vector 5A„ad-
mits solutions of the following form:

i —2)—k C —xA JI (xr ) =0 .
C

(46)
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Equation (46) must hold for any value of r, which finally
yields

2

M
i —2)—kC —yA =0 .

C
(47) 2

~pO CO—C' —kS =0. (4g)

We now examine the z component of the equation of the
four-vector potential (37). Remembering the definition
of the d'Alembertian operator, or electromagnetic wave
propagator, in cylindrical coordinates

At this point, we need to evaluate the quantities

2, =CIBA„——(5A„+2ag5Ag)
1

r
(49)

= —'a„(.a„)+—', a', +a,' — ', a',
and

g=Cl5Ag ——(5Ag —2ag5A„) .
1

r
and using the conventional Bessel differential equation, '

we easily obtain We have, by definition,

1 I +1d„(rd„—)+r r
Jt(yr )

A J, , (yr)+8
g»

J/ (Xr)+—AJi,(yr )+8
»

exp[i (tat —kz +18)] . (51)

We group the terms in A and 8 together to obtain

1
2 j'

Cl„=exp[i(tat kz —18)]—A d„(rd„)+ z
——k —

2 Ji, (gr)
2 r

We now use the identity'

Ji(yr )+8 —d„rd„
r " " gr

2
2 12+1 JI (Xr) 2+ —k'— + Jt'(7t'r )—

z ~»

1 1 JI(gr) 1 J&(gr)
JI'(yr ) =——d„ +—

» r " gr r

to obtain

(53)

&„=exp[i (a)t —kz+18)]
2

2
—k —X AJi, (Xr )

c

Jt(7ir )+8 d„+—d„
gr r

+ —k +
gr c r

J((yr )
(54)

Finally, we make use of the following Bessel differential equation

y"+ y'+ P + y=0,1 —2', , a' —p'
X

(55)

for y (x)=x Z (Px). In our case, 1 =p, P=y, a = —1, and Z —=J. We then end up with

2 Z
J,(yr)—k —y A J, ,(yr)+S exp[i (an't —kz+18)] .

c gr

After similar algebraic manipulations, we also obtain

exp[i (tat —kz+18)] .
6) Jt'(yr )—k —y i AJi, (yr)+8 (57)
c

We can now proceed with the r and 8 components of the wave equation, (35) and (36). Making use of (56) and (57), the
r-component equation now reads
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J,(yr)
i (a) —vllk) k y +JI —~(yr )+

2
CO p+ (Uii C c—l))yJ/ (yr )=0,

while the 6I component is given by

2

(U~)C cz)) JI(yr) 0
pp /l

(59)

In the r-component equation, we use the identity'

J((yr ) =
i

(JAN

i(X'&) J/'(X—&)l

to obtain two equations:

(60)

(co —
U~~

k )
—k —y— CO

2

A+ —+n —k —y A=O, (61)

2 2

(co —
U k) —k —g- COpp

2

2 —k —y
CO

z

2
Capp%+i (U~~C

—cS)lg=0, (62)

2 —kz
C2

2
k2 ~2

—k
C2Npp

CO kU + COpp
co —k

2
2 ~2

corresponding to terms in Jt &(yr) and J,'(yr), respectively. The second equation (62) is of particular interest since it
couples the quasi-TE modes (A, S) to the quasi-TM modes (C,2)) through the beam plasma frequency co 0. Proceeding
in the same manner with the 8-component equation (59), and using the identity (60) to express J/'(yr) as a function of
JI ~(yr) and J&(yr) Iyr, we obtain two equations that are identical to (61) and (62).

The dispersion relation D(co, k,g) =0 for waves propagating inside the electron beam is obtained by taking the deter-
minant of the system of four equations [(47), (48), (61), and (62)] in the four unknowns A, S, C, and 2). We obtain

' 1/2
2

1/2

X co —kU
II

+QII

2
CO —k —y
C2

2 2
2 2 PO—k —y-

C2 C2

CO kU
II II

2N —k —y
C

2
CO p (co —ku „)

2
Q) —k —X
C2

=0, (63)

where the four di6'erent types of space-charge waves ap-
pear clearly: the fast and slow ordinary modes couple to
the fast and slow extraordinary (cyclotron) modes
through the term proportional to g co o. In the limiting
case BII ~~, this result is similar to that derived by Trot-
rnan. ' We now outline the mathematical procedure fol-
lowed to obtain the complete solution to this problem.
Note that at this point y remains unknown. To deter-
rnine g, we must solve the vacuum wave equation and

U5A, ——(5A„+2Bs5A g ) =0, (64)

5A ~
—(5A s

——2Bs5A„)=0,1

r
(65)

match the solutions at the beam edge (r =rb). Qutside
the beam (a ) r ) rb), the plasma frequency is zero, and
we have
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05A, =0,
CI5$ =0,

together with the gauge condition

(66) to avoid infinite field components. In addition, because
the cylindrical distribution of surface charges and
currents cannot contribute to the discontinuity of the fol-
lowing field components, we have

1 1

, a, 5y+ a—,(r5A„)+ a—,5A, +n, 5A, =0 .
1

The general solution is

(68)
b,5Ee(r =rb)=0,

b5E, (r =rb)=0,

55B,(r =rb)=0 .

(78)

(79)

(80)
5 A„(r, 8,z, t) = 5 A„(r)exp[i (tot —kz+18)],

with

5A„(r)= [%'JI(gr )+XYt(yr )],1

Xr

5A e(r) =—['N J&'(yr) +XY/(gr)],

(69)

(71)

which are similar to vacuum TE modes, and

5A, (r)= [O'Jt(yr )+VYi(yr )],
ck

5$(r) =c [SJ&(yr )+V Y&(yr )], (73)

which correspond to vacuum TM modes. Note that in
this region of space, the modified Bessel functions of the
first kind, Y&(7t'r), tnust be included in the general solution
because r ) rb+0. In addition, cv, k, and y are con-
strained by the vacuum dispersion relation

We note, however, that conditions (78) and (79) are au-
toinatically satisfied by (75)—(77). Finally, at the
waveguide wall (r =a), the following field components
must be zero:

5E&(r =a) =0,
5E,(r =a ) =0,
5B„(r=a)=0.

(81)

(82)

(83)

Again, we note that condition (83) is automatically
satisfied by (81) and (82). At this point, we have two
series of independent boundary conditions: four at the
beam edge and two at the waveguide wall, and eight field
amplitudes (A, 8, C, and S inside the beam, 'M, V, 'lV,
and X outside the beam). The remaining two boundary
conditions are obtained by considering the surface charge
and current densities at the beam edge' that generate
discontinuities of 5E„and 5B&. We have

CO —k —y =O.2 2

c2
(74) b5E, (r =rb)=— (84)

At this point, we have found general solution to the 4-D
wave equation in two distinct regions of space: region 1,
outside the electron beam (a ) r ) rb), and region 2, in-
side the electron beam (rb ) r). The corresponding solu-
tions are

55B&(r =rb)= p, eno—v~~5r, (85)

where 5r(8, z, t) is the beam edge perturbation induced by
the electromagnetic waves. This quantity can be evalu-
ated by considering

5 A„i (r, 8,z, t)=5 A„i (r)exp[i (toit —k iz + 1 i 8)],
where the radial dependence of 5A„& is described by Eqs.
(70)—(73) for y:—y„and cv„k„and y, must satisfy the
vacuum dispersion relation

2

—k, —y, =o,
c

and, inside the beam,

5 A „2(r, 8,z, t) =5 A „2(r)exp[i(cv2t —k~z +128)],
where the 5A„2 are given by Eqs. (39)—(42) for y=y2, to-
gether with the beam dispersion relation (63)

D(co~, k2, y2) =0 .

= 1
n, SU„——

Poe
5A„——(5 A„+2Be5A e)

1

T

We have, by definition,

5v„(r=rb)=(8, +vo V)5r,

which yields

2

E
—k —

yq
C

5r(8, z, t) =-
p, eno(tv kv

~~

)—
Jt(x2rb )

X AJ, , (y,rb)+X
X2~b

(86)

(87)

The boundary conditions are the following. At the beam
edge (r =rb), all the components of the four-vector po-
tential must be continuous, except the radial component,

x exp[i (tot —kz +18)] .

Here, note that the continuity of 5A e, 5A„and 5$ at the
beam edge [(75)—(77)] iminediately yields the following
relations:

b5Ae(r =rb)=0,

b5A, (r =rb)=0,

b,5$(r =rb)=0,

(75)

(76)

(77)

k, =k =k,

CO
~

—602 —CcP,

(89)

(90)

(91)
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which correspond to the fact that continuity must hold
any z, 0, and t, respectively. We can then eliminate the
amplitudes and obtain a relation between co, k, y, , and y2,
of the form

8 (co, k,g„y2)=0, (92)

which includes the geometrical factors of the problem
such as the beam radius rb and the waveguide radius a.
Equation (92) and the two dispersion relations in vacuum
(74) and inside the beam (63) form a system of three non-
linear equations in k, y&, and yz. For a given value of the
frequency co, we can determine the wave number k and
the radial intensity profile of the electromagnetic waves
propagating along the electron beam. Note that in the
case where the beain fills the waveguide (rb=a), only
discrete values of co and k are allowed. ' We also point
out that the respective amplitudes of the other vacuum
modes propagating outside the electron beam can be
determined by an additional set of boundary conditions
at the beam edge and at the waveguide wall.

From the form of the beam dispersion relation (63), we
also notice that generally two different values of g2 are al-

lowed, reflecting the birefringence of the magnetized elec-
tron beam.

Finally, the exact form of the boundary equation (92)
can be obtained by writing down the eight independent
boundary conditions and eliminating the eight field am-
plitudes.

within the frame of classical electrodynamics. This
description of beam-wave interactions is quite general
and can be used as a new canonical system of third-order
PDE's describing the self-consistent evolution of the elec-
tromagnetic perturbation described in terms of four-
vector potential in the linear regime. The formalism is
Eulerian in the sense that the (now implicit) Auid dynami-
cal quantities are treated as continuous space-time fields,
on an equal footing with their electromagnetic counter-
parts. The limitations of this model are the following.
On the one hand, only small (linear) electromagnetic per-
turbations can be considered, as is customary in the
analysis of the dispersive and stability properties of
beam-wave systems; on the other hand, these studies are
limited to macroscopic fluid instabilities, as opposed to
the microinstabilities studied within the framework of ki-
netic theory.

These equations are then used, as an example, to study
the dispersive characteristics of space-charge waves prop-
agating in a cylindrical waveguide along a relativistic
electron beam confined by an axial magnetic field. The
problem is studied in a fully relativistic way for arbitrary
values of the axial guide field and any degree of azimuthal
symmetry. In the limiting case of an infinite guide field,
we recover the result derived by Trotman. ' Finally, we
plan to expand on this theory in a forthcoming paper, by
treating the problem of optical guiding in a free-electron
laser (Ref. 16) within the framework of the formalism ex-
posed in this paper.
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