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Spontaneous generation of phase waves and solitons in stimulated Raman scattering:
Quantum-mechanical models of stimulated Raman scattering
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We use the dressed-state representation to generate the full quantum-mechanical treatment of
stimulated Raman scattering {SRS). Equations of motion and propagation are obtained from the
Heisenberg equations of motion in the plane-wave limit and under conditions such that anti-Stokes
and higher-order Stokes processes can be neglected. Equations for a stochastic model, based upon
antinormal ordering and a quantum-classical correspondence are developed from them, suitable for
numerical ensemble calculations for the study of amplified quantum fiuctuations and spontaneously
generated phase waves and solitons. Several alternative approaches, which have more general valid-

ity but present greater diSculty in numerical implementation, are also developed by introduction of
quasiprobability functions and their associated Fokker-Planck equations from which corresponding
stochastic equations of motion and propagation are derived. The Q representation, whose moments

correspond to expectation values of products of antinormally ordered fields, and normally ordered
atomic operators yield stochastic equations identical to the equations for the stochastic model

developed directly from the Heisenberg equations for the same initial and boundary conditions, giv-

ing strong credence to the stochastic model. The Wigner representation, whose moments corre-
spond to expectation values of symmetrically ordered operators, leads to a set of equations that are
valid where the stochastic model fails, namely, where conditions are such that quantum fluctuations
and nonlinearity are simultaneously important. The stochastic model, which is shown to be, by far,
the simplest to implement in numerical calculations, is shown also to be valid for the conditions of
SRS.

I. INTRODUCTION

One usually thinks of a Raman-active molecule as pro-
viding a mechanism by which incident pump energy is
transferred to Stokes energy. As with any charged oscil-
lator, however, the absorption and emission of radiation
is conditioned by the phase relationship that exists
among the polarizability of the material medium and the
modes of the radiation field. Should this relationship be
disturbed, it is possible for the molecule to instead be-
come an absorber of Stokes energy and an emitter of
pump energy. This condition would then persist until a
dephasing process (here a collision with another mole-
cule) restored the condition of pump loss and Stokes gain.
Hence the relative phase of the pump, Stokes, and molec-
ular oscillations would exhibit a disturbance —a phase
blaue —corresponding to a local peak in the pump pulse
and a trough in the Stokes pulse.

As we have shown, ' such features can be generated
spontaneously during stimulated Raman scattering (SRS)
by large, abrupt phase shifts that arise in the Stokes vacu-
um during quantum initiation. Moreover, the nonlinear
dynamics of SRS is such that these features are preserved
we11 after the Stokes pulse has built to a macroscopic
scale. Thus it is that macroscopic peaks of temporal
width approximately equal to the mean collision time are
sporadically observed in an otherwise depleted pump
pulse. Because of the relative stability of these solitary
waves, we speak of them as spontaneously generated Ra-

man solitons.
Amplified quantum-mechanical temporal and spatial

fluctuations in nonlinear light-matter interactions have
been a subject of intense interest for many years. Interest
in superAuorescence (SF), the phenomenon that can
occur when a collection of atoms or molecules is
prepared in an initial state of complete inversion and then
allowed to undergo relaxation by collective, spontaneous
decay, has stemmed mainly from the ability to observe
and analyze large-scale fluctuations of quantum origin.
The fluctuations originate in the quantum-initiation re-
gime and are subsequently amplified in the SF pulse
buildup. Both experimental and theoretical e6'orts in
this area have been extensive. A related area of current
interest has been the statistical characterization of the SF
to amplified spontaneous emission (ASE) transition re-
gion.

A phenomenon closely related to SF, but which has re-
ceived somewhat less attention, is swept-gain
superiluorescence' (SGSF). Unlike SF, SGSF is a spa-
tially asymptotic condition that occurs when the inver-
sion of the medium is prepared from the ground state by
a constant, sharp-excitation vr pulse traveling at the ve-
locity of light in the medium. If the gain-to-loss ratio is
greater than unity, a solitary pulse is generated at a large
propagation distance, which follows the pump pulse with
peak delay and temporal width less than the dephasing
time of the medium. These solitary pulses are direct ana-
logs of SF pulses, but are distinct from them in that SF
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pulses evolve in a medium which is initially inverted.
They are, however, generated from quantum noise in the
manner that SF pulses are generated. Unlike the solitons
of SRS to be discussed in this paper, SGSF solitary pulses
do not originate from phase waves.

It was first noted by Raymer et al. that the process of
quantum initiation in SRS is identical to that for SF, and
pulse-energy fluctuations stemming from this process
have been measured and analyzed by Walmsley et al.
The formal equivalence of the three phenomena, SF,
SGSF, and SRS, in the quantum initiation and linear re-
gion of pulse buildup, as well as their distinct macroscop-
ic and statistical characteristics within the respective
nonlinear regimes of subsequent pulse amplification, has
been discussed recently by Bowden and Englund. '

The importance of phase, as well as amplitude, fluctua-
tions in SF quantum initiation was first pointed out and
discussed by Hopf, " who demonstrated that quantum
phase fluctuations are the direct cause of rarely occurring
phase waves, which are generated by macroscopic, local,
abrupt shifts of the phase of the SF pulse; the effects on
SF pulse distortion, statistical variation, and delay time
statistics were analyzed in detail. " Due to the
equivalence of SF, SGSF, and SRS in the quantum initia-
tion and linear region of pulse buildup, the phase-wave
phenomenon is intrinsic to each. The mechanisms of
phase-wave generation are fully operative in the statisti-
cal treatments and analyses of SF pulse generation and
evolution; however, the experimental data were never
analyzed to specifically identify the effects of phase
waves. Furthermore, the effects were clearly within the
experimental uncertainties, and thus phase waves in SF
have borne no clear signature.

The effects of phase waves in SGSF were thoroughly
analyzed by Hopf and Overman' using the semiclassical
Maxwell-Bloch formalism' in the plane-wave limit, in
which quantum initiation formally proceeds from radia-
tion reaction associated with the decay of the state of
complete inversion prepared by the traveling excitation.
They predict strong, episodic, spatial variations in the to-
tal pulse energy due to phase waves. Their results indi-
cate that the process is pulse degrading, and precludes
the existence of an asymptotic steady state in SGSF gen-
erated from quantum noise. Although the signature of
phase waves (episodic pulse breakup in detected pulses
from shot to shot) is quite evident in SGSF as predicted
by Hopf and Overman, ' no experiments, to our
knowledge, have been carried out to explicitly analyze
this particular manifestation of amplified quantum fluc-
tuations. These processes are also expected to be opera-
tive in the SF-to-ASE transition region, ' and phase
waves are expected to significantly affect the statistical
variation of pulse width, height, and delay time as well as
pulse breakup. A complete analysis of these effects as
well as the full treatment of effects of amplified quantum
fluctuations in this regime using a fully quantum-
mechanical approach is currently in progress, ' and will
be the subject of a future publication. '

It was shown recently by Englund and Bowden, ' us-

ing a fully quantum-mechanical development, that Ra-
man solitons can be generated from quantum noise and

depend entirely upon the amplification of quantum phase
fluctuations in a pump-field-induced, spontaneously gen-
erated Stokes field. Raman solitons appear as partial or
nearly complete repletions in the pump field depletion
zone, of temporal width comparable to the collisional de-
phasing time in the Raman medium, and are accom-
panied by corresponding dark solitons in the Stokes field.
They established a one-to-one correspondence between
the occurrence of a Raman soliton and a phase wave gen-
erated from quantum phase fluctuations. The stochastic
properties of spontaneous soliton generation in terms of
system parameters and phase wave statistics has been fur-
ther discussed by Englund and Bowden, ' ' as well as
the fundamental relationship among amp1ified quantum
fluctuations in SF, SGSF, and spontaneous Raman soli-
ton generation' ' ' (SRSG). The distinguishing feature
of SRS lies in how the phase waves affect the nonlinear
regime to induce solitons.

Spontaneously induced Raman solitons are a unique,
robust, macroscopic manifestation of quantum phase
fluctuations which are the direct result of the effect of
phase waves in the amplified nonlinear regime of SRS.
The study of the stochastic properties of these solitons
and their generation is therefore useful for analyzing
effects of amplified quantum fluctuations, and in this case,
specifically quantum phase fluctuations. Quite recently,
spontaneously generated Raman solitons have been ob-
served in hydrogen by Carlsten and MacPherson, ' and
stochastic properties have been studied experimental-
ly. Preliminary comparison has shown strong quali-
tative and encouraging quantitative agreement between
their results and our predictions. It is anticipated that
these results are the vanguard of vigorous activity in this
relatively new and important area of investigation.

Although soliton solutions to the classical equations of
SRS have been known for more than a decade, it has
been only recently that solitons have been observed in
SRS experiments, where Druhl, Wenzel, and Carlsten
used CO2 pumped parahydrogen with a Stokes "seed"
and observed occasional solitary pulses as nearly com-
plete repletions in the depletion zone of the pump pulse.
The frequency of occurrence of the solitary pulses ap-
peared to be stochastic, suggesting the origin as noise
generated. Solitary pulses were produced deterministical-
ly in subsequent experiments by inducing a m phase
change in the Stokes "seed" prior to its entry into the Ra-
man gain cell.

The experimental results were simulated numerically
using the classical SRS equations with initial and
boundary conditions of the experiments. Previous
theoretical treatments had dealt mainly with existence
and characterization of solitons in SRS, but had left
indefinite the initial and boundary conditions that cause
them. The experimental and theoretical analysis of
Driihl, Carlsten, and Wenzel demonstrated su%cient con-
ditions for the generation of Raman solitons deterministi-
cally. Later, Ackerhalt and Milonni discussed a variety
of induced soliton effects, including second Stokes and
anti-Stokes generation and the use of two-pump Raman
scattering to study solitons in four-wave mixing. Recent-
ly, Bowden and Englund have related Raman solitons to
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possible utilization in spectroscopy.
Some rather straightforward considerations can illus-

trate the effect of an independent local phase change in
the Stokes field amplitude As relative to the pump field

amplitude A z in SRS. If ground-state depletion is

neglected, the usual set of classical SRS nonlinear cou-
pled equations for As, AL, and the polarization R

25, 26

BAAL Kt sR As,

L

aP = r—R —misAs Ai

(2)

(3)

where N is the number of molecules, KLS is the complex
coupling constant, g is the coordinate in the direction of
propagation, r is retarded time, r=t —glc, and y is the
collisional dephasing rate. (The equations used in Refs. 1

and 16 may be obtained by making the substitutions
R ~—R * and KLs~KLs. ) For the condition of strong
coherence decay, R may be adiabatically eliminated.
Then Eq. (3) results in the relation

NELs
R (g, r)= — As (g, r) AL (j,r),r

(4)

which fixes the relative phase of the complex amplitudes,
and Eqs. (1) and (2) yield

xiK„i'

and

xlK„l'
r

(6)

Clearly, pump loss and Stokes gain are insensitive to
phase changes in this adiabatic limit.

To analyze the effects of phase fluctuations, it is con-
venient to impose the following transformation:

P=ALAs, Q=lALf —lAsl

When Eqs. (7) are used in Eqs. (1)—(3), the result is

a,P = —K„RQ,
BgQ =2KLsRP'+c. c. ,

Bg = —yR NKt'sP . —

(7)

(8)

(9)

(10)

Note that the form of Eqs. (8) and (9) is identical to that
for the resonant optical Bloch equations in the absence of
relaxation and dephasing, ' coupled to the linearized
Maxwell equation with linear loss, Eq. (10), but with the
roles of spacelike and timelike variables interchanged.
Here, P plays the analogous role of polarization and Q
plays the role of inversion, whereas R plays the role of
the Maxwell field. These equations can be transformed to
a sine-Gordon equation which is well known to have soli-
ton solutions in the asymptotic regime. The transforma-
tion (7) applied to Eqs. (1)—(3) has been used in connec-
tion with the introduction of the Backlund transforma-
tion for the wave-wave scattering problem to obtain one-
and two-soliton solutions. Of course, the constant of

propagation I = AL l + Asl is preserved in the trans-
formation (7) and in Eqs. (8)—(10).

Effects of relative phase change become apparent if the
variables in Eqs. (8)—(10) are written in terms of ampli-
tude and phase,

Then, in terms of the relative phase, Eq. (9) takes the
form

~(Q = —41K s I'IPIIRlcos&, (12)

where P =n+—
Pz + (5g Pp is the relative phase. For the

conditions that led to (5) and (6), / =0, and Eq. (12) again
expresses the condition of pump loss and Stokes gain.
However, if P is a stochastic variable, or if a change in P
is arbitrarily induced of sufticient magnitude, the sign can
change on the right-hand side (r.h.s.) of Eq. (12), thus
causing a reverse of the role of gain-to-loss between pump
and Stokes intensities:

0&i(tl &~n,

~/2 &
i P l

& tt,

(13a)

(13b)

where (13a) represents pump loss and Stokes gain,
whereas (13b) represents Stokes loss and pump gain.

Now, one can suppose that if a phase flip in the range
n. l2& i/i &~ occurs within the dephasing time y
(which results in a temporal and spatial instability in the
system), the response within the coherence time y

' will
be a transition, temporally and spatially, to the most
stable condition. Since soliton solutions of Eqs. (8)—(10)
are well known, ' it is expected that a solitary pulse
will result, i.e., repletion of the pump intensity in its de-
pletion zone with a corresponding dip in the Stokes inten-
sity. This is precisely what is observed in numerical ex-
periments on the classical Eqs. (1)—(3), with a sharp, in-

duced phase flip in the Stokes amplitude. The results of
Ref. 27 fit the corresponding experimental data very well,
where the phase flip was induced deterministically by
passing the Stokes "seed" through a Pockel's cell between
crossed polarizers and applying a sudden switch in the
voltage across the cell.

Such pulses were generated stochastically from quan-
tum phase fluctuations in numerical experiments of quan-
tum SRS by Englund and Bowden' and recently experi-
mentally observed. ' (We shall refer to these solitary
pulses as "solitons" in keeping with the use of this term
in the literature. ) The purpose of this report is to lay a
foundation for modeling this phenomenon; results will be
described in a companion paper.

The quantum-mechanical model is presented in Sec. II
in terms of the dressed-state representation. The Heisen-
berg equations of motion are derived and presented in
Sec. III and a stochastic model, useful for numerical cal-
culations for the dynamical evolution of the system, is de-
rived from them. In Sec. IV we present several alterna-
tive approaches by introducing quasiprobability functions
and obtaining their Fokker-Planck equations. We obtain
the associated stochastic differential equations and com-
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pare the various approaches. A summary of the results
and concluding remarks are presented in the final section.
Results calculated from the stochastic model presented in
Sec. III will be given and analyzed in a future paper. '

II. MODEL

cules, we obtain the interaction potential

H„F=—d E

g g g,,"o'„'ai +H. c. ,
A, =l n =1 i =1 j=l

(19)

Consider first a system of X identical, stationary,
noninteracting molecules each possessing an energy spec-
trum A'co, (i =1,2, . . . , Oc ) corresponding to the eigen-
states }i ). Introducing the projection operators
o „—= ~i ) (j }, where the subscript n distinguishes individu-
al molecules, we may write the Hamiltonian of the system
as

N

Hq =iri g g co;o'„' .
n=li =1

(14)

1/2
2'7TACOg

V

We quantize the free, plane-wave, electromagnetic field
within a volume V of length L in the direction of propa-
gation z. Normal modes of wave number k&=2mi, /L
( A, = 1,2, . . . , ~ ) and frequency coi =ki c we assume to be
polarized in the direction specified by the unit vector e&.
(Since angular momentum conservation enters in a trivial
way into the problem treated here, we do not label pho-
ton helicities, just as we have not included angular
momentum quantum numbers in our description of the
molecules. ) In terms of the "electric field per photon, "

where

(20)

The Hamiltonian of the coupled system is thus

H =H~ +HF+HqF (21)

A' oc

H'= ,'fico g o'„+A' g—coiaiai
n=1 A, =1

We identify the states
~

1 ) and
~
2 ) with the pumped Ra-

man transition, with the associated frequency co=~2 —co, .
Accordingly, we set d»=0. In addition, we assume that
these states possess no permanent electric dipole moment
(as in a symmetric diatomic molecule) and take

The free-molecule —free-field eigenstates
~ Ii } Ini } )

clearly do not constitute the most appropriate basis for
describing the evolution generated by (21), which couples
the pumped transition to the other levels. Because the
coupling is weak, however, it is reasonable to construct
perturbatively a unitary transformation of H to a
dressed-state Hamiltonian H' for which

~ Ii } [ni } ) are
once again eigenstates. ' Doing so, and retaining only
terms driven by the pump, we obtain (see Appendix A)

we may then expand the electric-field operator in terms of
creation (a&) and annihilation (ai ) operators, operating
on the Fock space } I n i I ), as

—~X XXe
n =1 A. = 1 p, = 1

tl Z Z
~~I ~n~ &ay

E(z, t) =E'+'(z, t)+E' '(z, t),
where

E'+'(z, t)=i g e&ai(t)e

(16)

(17)

—i (k~ —k )z„
fi g g—g (e ' " "ici„cr„a~a„+H.c. ),

n =1 A, =1 @=1

(22)

and E' '—= [E'+'(z, t)] . The free field then possesses the
Hamiltonian

where o+ =On i ~n —~n on —~n ~n, and where the
constants Kz„and ~z„are, respectively, the Raman and
self-energy transition rates

HF=& X ~iaiai .
A, =l

We now allow the molecules and field to interact, at
sites z„, in the electric dipole approximation. Introduc-
ing the molecular dipole operator d and assuming identi-
cal matrix elements d,"=(i},dj}) for individual mole-

I

and

(e„.d„)(d;z.ez )P

6);2+COg

(23)

1
oo

5
p

(ei .dz; )(d, z.e„) (e„.di; )(d;i.ei )+
CO;2 Gdg C0, 2+ COg CO, 1 COg CO, 1

+COg

(e&.d1 i )(di 1 -e„) (e„-d„)(d„-ez)"+ (24)

(The summations over i exclude values for which the
denominators vanish. }

The Hamiltonian (22) admits both Stokes and anti-
Stokes transitions. We neglect the latter. This is valid if

only a small fraction of molecules occupy level 2 (negligi-
ble ground-state depletion), or if the transition rate ice„ is
considerably larger for the Stokes transition. We assume
that the pump and Stokes wave numbers are grouped



2874 JOHN C. ENGLUND AND CHARLES M. BOUNDEN 42

closely about average values k~ and ks, respectively, with

(assuming negligible dispersion) coL
—=kL c and ebs=—ksc,

and have polarizations eL and es. Adopting a conven-
tion in which pump (Stokes) modes are labeled by

(iM, iM', . . . ), we approximate ic&„=KLsei,e„,

ic'i„&.=KLL ei,ei, and ic'„„=Ksse„e„,.where

(eL d„)(d,2'es) (es.d„)(d,2 ei, )
Kis=— , y +

Ct)i1 COL CO;2+ COL

(25)

and

oc

KLL =

j oo

Kss = Id;2 asl' ld2; esl'
2+~S~i2 —S

Idi2 &L I Id2 '&L I'

i2 ~L i2+L
+

CO
1 NL COi1+ COL

cot 1 @AS

Id;i esl' ldi; esl'

cO;1+cOS

(26)

(27)

—t (k,- —k )z„" "e&e„a&b„o„+H.c.

We replace the Stokes operators a„~b„for clarity and finally obtain
N N ") "n t zH'= ,'Ace g -c'r„+i'ta&ia& a, +iris' aib„b„&fiK—Lt. X X Xe "eiei„ai,ai. crn

n=1 A, P n =1 A. A,
'

N -(k -k )

,'ass —g—gee " " "e„e„'b„b„o'„fiKLs —g gee
n=1 p, p' n=1 A, p

(2&)

N

L (p) = g ([cr'„p,o'„]+[o'„,po'„]),
Pl =1

(29)

resulting in the Liouville equation

One element remains to be included in the model. As
mentioned in the Introduction, incoherent dephasing
plays an essential role in soliton generation. In the exper-
iments of Carlsten et al. ' ' this is provided by
molecular collisions characterized by the rate y. We
adopt the standard phenomenological model, in which
each molecule is weakly coupled to an infinite reservoir
through elastic processes. This adds a non-Hamiltonian
term

III. HEISENBERG REPRESENTATION

In this section we use the dressed-state Hamiltonian
(28) to formulate dynamical equations for SRS, and in the
process, add phenomenological terms describing col-
lisional dephasing. Our goal is to use the linear solutions
to these equations to justify the use of a stochastic model
whose mean values correspond to the quantum-
mechanical expectation values of a particular ordering of
operators. We base our argument on the assumptions
that quantum sources of noise are relevant to soliton gen-
eration only during initiation, and that, in this regime,
the dynamical equations may be linearized about initial
(boundary) values. We will examine the validity of this
procedure more closely in Sec. IV, where stochastic
differential equations are derived from Fokker-Planck
equations within the Schrodinger representation.

dp 1

dt
[H', p]+L (p—) (30) A. Equations and initial, boundary conditions

for the density operator p. Equation (30) is the starting
point for Sec. IV. In Sec. III we obtain the equivalent re-
sult by using the fluctuation-dissipation theorem.

We now obtain Heisenberg equations from the Hamil-
tonian H, adding fluctuation [g„(t)] and dissipation

[—yo „(t)] terms to o „(t) in order to model dephasing
processes. This results in the following:

i (k~, —k~ )z„ i(k —k~)z„
ai = icoiai+—,'iKLI g g—e "eiei o'„ai + KLs g g " "

i '„o„b„,
n=1 n=1 p

i(k, —k )z„ i (k~ —k )z„b„= i cu„b~+2iKss'X Xe " " "e„e„cr'„b~+iKrsXX.
n=1 p' n=1

i(k~, —k~)z i(k, —k )z„
cr „=—(@+ice)o„+iKtt g ge ' ' "ei,ei;alai;cr„+iKss g pe " " "e„e„b„b„.cr„

A,
'

P P

i(k~ —k )z y ziKts g g—e " "eie„b„aicr„+g„
p

(3 l)

(32)

(33)



42 SPONTANEOUS GENERATION OF PHASE WAVES AND. . . 2875

and

i(k —k&)ztr'„= —2iKts g pe " "e&e„azb„o„+H.c.
p

(34)

ik~z —t (kL z —co~ t)
At+'(z, t)= i g ezaz(t)e ' e

We introduce the slowly varying electric-field operators

a +—a A(+)( t)t

=(Net /c)[ ,'iK—LLR' '(z, t) AL+'(z, t)

+K R'+~(z, t) A'+'(z, t)],

a, + —a, A I "(z,t)
C

(40)

As+'(z, t) = i g e„b„(t)e " e
P

(36) =(Yes/c)[ ,'iK—ssR' '(z, t) As+'(z, t)

—Kt'sR' I(z, t) AL+'(z, t)], (41)

and their respective conjugates, At '(z, t) and As '(z, t),
and similarly define the molecular operators

R '+'(z„, t) —= io „(t)exp[ i [—(kt —ks )z„—(cot —cps )t]),
(37)

G'+ '(z„, t) =ig„(t)exp I i [(kt——ks )z„—(coL,
—cps )t]),

a, R I+'(z, t) = —yR'+'(z, t)+ G + (z, t)

+i [KtLAq '(z, t)AL '(z, t)

+Kss AsI '(z, t) As+'(z, t))R'+'(z, t)

+Kts At+ (z, t) As '(z, t)R (z, t),
and

(42)

and

R ' '(z„, t ) =o'„(t ),
with

R ' '(z„, t) = [R '+ '(z„, t ) ]

and

G' '(z„,t) —= [6 I+'(z„,t)]

(38)

(G'+'(z, t))„=(G'"'(z,t)G +'(z', t') } =0,
(G +'(z, t)G' '(z', t') }~

(44)

and

=y(L/N)[1 —R' (z, t)]5(z —z')5(t t'),— (45)

(G' (z, t)G "(z', t')),

a, R ' '(z, t) = 2K -A—' '(z, t) A' '(z, t)R'+ '(z, t)+H. c.

(43)
with reservoir averages

By setting co=(kL —ks)c, as is appropriate for spontane-
ous initiation, we show in Appendix B that these evolve,
in the continuum limit, according to

=y(L/X)[1+R'"(z, t)]5(z —z')5(t t') . (4—6)

Higher-order correlation functions obey the Gaussian
decomposition rule, e.g. ,

(G'+I(z„t, )G' (z2, tz)G'+'(z3, t3)G' '(z4, t4) )t| =(G'+'(z„t, )G' '(z2, t2) }~(GI '(z3, t3)G' '(z~, t~) )~ .

r= t —z/c, g—=z (47)

and scale parameters and variables through the following
substitutions:

Finally, we introduce a transformation to retarded-
time coordinates

a~A'+'(g, r)= ,'iK R —'(g, )Ar'+'(g, r)

+Kt sR '+ '(g, r) As+ '(g, r),
a,A,"'(g, r) =-,'iK„R'"(g, r) A,"'(g, r)

—Kt'sR' ((,~)AL+'(g, r),

(49)

(50)

g~Lg, r~(L/c)r, y~(c/L)y,
eL AL As es As(+) (+) (+) (+)

R'+'~R' '/N, G'+'~G'+'/N, R' '~R' '/N,

(4g)

ag'+'(g, r)= yR' '(g, r)+G'+—'(g, r)

+i [KLL At '(g, r) AL~+'(g, r)

+Kss As '(g, r)As'+'(g, r)]R'+'(g, r)

+Kt's AL '(g, r)As '(g, r)R' '((, r), (51)

Kt.s~(c/Let. es)KLs KLL ~(c/LeL~ )KLz

Kss (c/Les)Kss .

Then,

and

aQ' '(j, r)= —2KtsAt '(g, r)

X A,'+'(g, r)R'+'(g, ~)+H.c. (52)
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Thus, both the length of the medium and its transit tiine
are now unity, while the molecular operators, like those
for the field, are extensive, with and

(66)

( G'+'(g, r) &„=( G'+'((, r)G'+'(g', r') &ii =0,
(G'+ (g, r)G' (g', r')&a

(53) (Rp'-'(g)RI+ (g)&=0,

with

(67)

and

=y[N —R "'(g, r)]5(g—g')5(r —r'), (54) R"'(g)= N—,

(57)

and

Asp '(r) = As+'(r,—O) =i g (e„/es)b„(0)e
P

(58)

the continuum limit of

R p+ '(g„)—=R '+ '((„,0)= iNo „(0)
and

(59)

(G' '((, 7.lG'+'(g', 7') &„

=y[N+R' '(g, ~)]5(g—g')5(r —r') . (55)

Equations (49) and (50) furthermore iinply that

AI '(g, r) Ar'+'(g, r)+ As '(g, ~) As+'(g, w) =I(r), (56)

a function of ~ only, a statement of the conservation of
photon number; in fact, with the scaling (48), I(r) is the
number of photons within the medium for given r.

It is of course necessary to specify boundary and initial
conditions for the solutions of (49)—(52). These are deter-
mined by

ALp '(r)—= AL+ (r, O)=i g (ei, /eL )i2i(0)e

a c number. The higher-order correlation functions of
both Asp '(r) and Rp+'(g) obey the Gaussian decomposi-
tion rule.

B. Stochastic models

The task of solving the operator Eqs. (49)—(52) appears
formidable. In Sec. IV we shall present c-number sto-
chastic differential equations whose statistics are related
directly to expectation values of the operators satisfying
(49)—(52); the only approximation will be the Fokker-
Planck (diffusion) approximation. Here we adopt a
simpler approach, one more restricted in its valid appli-
cation, but one which is suScient to describe ongoing ex-
periments. The basis for our approach is the assumption
that quantum fluctuations become negligible in Eqs.
(49)—(52) before their nonlinearity becomes important,
i.e., the system becomes macroscopic before it becomes
nonlinear. This allows us to substitute for these equa-
tions a c-number, stochastic model tailored in such a way
that (i) when linearized about initial values, it gives aver-
ages in agreement with the results of the linearized opera-
tor equations, and (ii) it reproduces the semiclassical evo-
lution in the nonlinear regime.

To accomplish this, we start out by linearizing Eqs.
(49)—(52) about the values (61), (62), (65), and (68). The
model then reduces to two equations:

R' '(g„)=R' '((„,0) =No'„(0), (60)

and the state of the system, which is invariant in the
Heisenberg representation. %e assume that the pump is
initially in a classical state

d(As"(0 r)= —
—,'iKssNAs"'(4 r)

KLsALp(r)RI (g r) (69)

( —)
I & COA. QJL ~T

ALp (r)= ALp(r): i g (ei /eL )—aie 61)

and

(A,' ( )&=(A,' ( )A'o"( ')&=o,

( Asp (r) Asp (r') & =6(r r')

(62)

(63)

where the a& are c numbers, and that the Stokes is in the
vacuum state, so that (see Appendix B)

Bg'+'(g, v. )=- —yR'+'(g, r)+G'+ (g, r)

+iKLi II p(r)R (g r)

KLsNALp(r) A—s '(g, r),

with ILp(r) =
~ ALp(r) ~,

(G'+'(g, r)G' '(g', r') &ii =2@No(g g')o(r r'), — —

(70)

(71)

( Asp (r)Asp (r') & =0 . (64)
and

Assuming also that the molecules initially all occupy the
state

~
1 &, we find that

(G' '(g, r)G'+'(g', r') &~ =0 . (72)

(65)
Solutions are found in a straightforward manner through
a Laplace transform with respect to g; the results are
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Asi i(g, r) =exp( —,'iK—ssN$)Aso (

+ IKgsl'NA„(r) f '«'exp[ [—yr'+ ,'iK—ssN(+iKLLILO(r r')r']I

X &g/g (r, r')r'I, [2&g (r, r')gr'] A Lo(r r'—) A so'(r —r')

Kis Aco(» f d('exp[ [yr+ 'iKs—sN('+iKILIIO(r r)r]IIo[2+g (r r4'r]Ro
0

KI s A I o( r }f d 0' f d r'exp I [y—r'+ ,' iKss—N0'+iKri. ILo( r r )r'] I
0 0

XIp[2&g(r, r')g'r']G' '(g g', —r r')—

and

R' (P, r}=expI [yr+iKLLILO(r r) r]lRo '(g)

+ d~'exp —y~'+iK«IL. o ~ ~ ~' G'
0

—Kz,sN d ~'exp —~~'+
2 IKssN +iKLLIL0

(73)

XIp[2+g(r, r )kr ]ALp(r r )Asp (r r )

+ f dg exp[ [yr+ 'KssN( +'KLLILO(r r}r]]

X &g (r, r)r/g'I, [2&g (r, r)g'r]R o (g —g')

+ f dg' f dr'exp[ [yr'+ —IKSSNP'-+iKLLILO(r r }r ]l
0 0

X+g(r, r )r /( Ii[2+g(r, r )g r ]G (g—g, r —r ), (74)

where I0 and I, are modified Bessel functions,

1
IL,o(r~r ) = —, dr"ILo(r }

7 T—7'
(75)

a/ (g, r) = yR(g r—}+i[K«I, (g, r)

+KssIs(g, r)]R (g, r)
+KL'.s Ai. (g, r) As (g, r)R3(g, r),

is the average incident pump intensity from ~—~ to ~,
and

g(, r') = lK~sl'N ~p(—r, r') . (76)

Notice that As+' (and R' ') is an integral transform
of the operators A&0 ', R 0 ', and 6' ' but not their con-
jugates. This is important to the present approach, for
the following reason. We would like to replace the quan-
tum noise sources A&0 ', etc., with c-number stochastic
sources. The correlation functions of the latter will obvi-
ously be independent of ordering, unlike the situation in
Eqs. (63) and (64), (66) and (67), and (71) and (72). If,
however, we restrict our attention to a particular order-
ing prescription for A~+' and Az ', we encounter in
computations only the same ordering of the quantum
sources; this makes it possible to identify the correlations
of the stochastic sources with that particular ordering.
Averages obtained from the stochastic model will thus be
identified also with that ordering.

To clarify this, let us consider the following c-number
stochastic model:

AL(0, r)= ALp(r),

As(0, r) = Aso(r

R (0,0)=0,
R3((,0)= —N,

(81)

(82}

(83)

(84)

such that Asp(r) is a complex Gaussian process with

~ Aso(r} }= ( Aso(r}Aso(r ) ~ =0

and

(85)

( Asp(r) Asp(r') ) =5(r r')

The corresponding linearized system

8&As(g, r) = —,'iKssNAs(g, r)—

(86)

(79)

BQ (g, r)= —2K A'(g, r) A (g, r)R (g, r)+c.c. , (80)

with II (g, r)= l AL (g, r)l, Is(g, r)=
l As(g, r)l, and

boundary conditions

B(AL(g, r) =
—,'iKILR3(g, r}AL(g, r)

+KLsR (g, r) As((, r),
B(As(g, r) = ,'iKssR3(g, r)A—s(g,r)

—KLsR '(g, r) AL (g, r),

(77)

Kl's ALp(r)R *(g r)

BQ (g, r)= yR(g, r)+iK I —(r)R (g, r)

KisNAr p(r) As ((,r—)

has solutions

(87)

(88)



2878 JOHN C. ENGLUND AND CHARLES M. 80%DEN 42

(j,r) =exp( —) iK—ssN() Aso(r)

+ ~KLs~ NALo(r) f dr'expI —[yr'+ ,'iK—ssN(+'KLt.Ito(r r )r ]]

&&&(Ig(r r')r I) [2&g(r r )gr ]AL()(r r )As()(r r ) (89)

R '(g, r) = KL—sN f dr'exp [
—[y r'+ ,'iK—ssN(+iKtLILo(r, r')r']] Io[2v'g (r, r')gt'] ALo(r r' —}Aso(r r'—) . (9o)

0

It is now easy to show using (73) and (89) that

&lAs(g, r)l'&=& As" )(g, r)A,( )(g, r)&

=5(0)+g(r, 0) g+ f dr'e r'I, [2&g(r, r')g 'r]I —2 ' 2 g (r —r', 0)
0 g (r, r')r' (91)

=&~A, ~'& —&[A,',+', A,' ]&

=&/A, /'& —&fA„/ &. (92)

For these reasons, we have used the model (77)—(86) for
our reported results. "'

Let us close this section with the observation that the
self-energy terms in (77)—(80) can cause computational
difhculty. Although these are slowly varying relative to
the optical-frequency carriers, they may still undergo a
great many oscillations during the course of pump de-
pletion. Because we are interested in situations in which
the pump depletes with relatively little ground-state de-
pletion [i.e., N )&It o(r)], the oscillations in (77} and (78)
are the more serious, and it is advisable to remove them

i.e., the stochastic model yields the antinormally ordered
intensity. This agreement is clearly a result of the fact
that the quantum calculation involves only the correla-
tion functions & Aso '(r)Aso '(r') &, &Ro '(g)Ro+'(g') &,

and &
G' '(g, r)G'+'(g', r') &. It was therefore possible to

adopt stochastic sources Aso(r), satisfying (85) and (86),
and Ro(g)=G(g, r)=0 with no ambiguity in regard to
ordering.

We must therefore have in mind a particular ordering
convention when setting up a correspondence between
quantum and stochastic models. In the context of the
problem under discussion, it is clearly irrelevant just
which ordering convention is adopted, since we are ulti-
mately interested in macroscopic features —the solitons.
On the other hand, there is some computational advan-
tage in adopting the antinormal-ordering correspondence
used to formulate the model of Eqs. (77)—(86). It should
be clear that, if we choose normal ordering instead, we
need nonzero stochastic sources G(g, r) and Ro(g) in-
stead of Aso(r). The former must then be generated over
the whole range of (g, r), and must be introduced at each
step of the integration of R (g, r). In contrast, with an-
tinormal ordering, one simply adopts a noisy boundary
value Aso(r) for As(g, r) and propagates this determin-
istically via Eqs. (77)—(80). Following propagation, one
may obtain the normally ordered intensity by subtracting
the vacuum intensity (which is of course finite in numeri-
cal computations):

&A(
—)A(+)&

&
A(+)A( —

)& &[A(+) A( —
)]&

by a transformation of variables. One possibility (there is
an infinite number) is

BL(g, r) = AL (g, r)exp iKLL ——,' f dg'R3((', r)
0

dw'ILp ~'
0

Bs(g r) = As(( r}exp )Kss p f dg R 3(g r)
0

(93)

+ d ~'Iso
0

(94)

Q ((,r) =R (g, r)exp ,'i (KL—L —Kss)f dg'—R 3(g r)
0

+t dw' KLLILO ~'
0

+Kss Iso( r }] (95)

r}(BL()"„r)=KLsQ (g, r)Bs(g, r),
a,Bs(g, r) = K,*sQ*(g,r)B,—(g, r),
(},Q(g, r) = yQ(g, r)—+2i [Ktt IL(g, r)

(96)

(97)

+KssIs(( r)]Q(g r)

+KLsBL(g, r)Bs (g, r)R, (g, r), (98)

BQ 3(g, r) = 2Kt sBL (g, r }Bs(g—, r)Q (g, r)+c.c. (99)

One must of course similarly transform ALo(r) and

so(r)

IV. SCHRODINGER REPRESENTATION

In the preceding section we developed a model, based
on an antinormal-ordering correspondence for averages

which, as one can show using the identity
—,
' Bg 3

= (3tIt =8&Is, yi—elds from (77)—(80),
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of field operators, that is applicable in situations where
nonlinearity and quantum noise are not simultaneously
important. Here we derive similar models by introducing
quasiprobability functions, finding Fokker-Planck equa-
tions describing their evolution, and finally associating
them with stochastic differential equations. The resulting
models are then compared with Eqs. (77)—(86).

A. Fokker-Planck equations

[N/2]1
eln =

2.= [—N/2]

I n
e&e 7 (106)

H'= ,'A~-ga'„+Agg~». a, a, +Rgg~ .b b
m m'

,'fi—KL—L y y y e le„t at at cr'„
l l' n

and analogous expressions for co ~ and e „, we obtain
from (28)

and

[N/2]
ar=

&N Z [—N/2]

ik z
a e (100)

We begin by recasting the Hamiltonian (28) in terms of
local operators. We define pump and Stokes operators RKssggge„' e„b b o

m m' n

& Kt.s X Xg e„*&e„a,b tr „+H. c.
l m n

(107)

lk zb—= g b„e ~

p=[ —N/2]

(101)

and

(n —1)L
n

k&
—= kL +, k„—=ks+2' A, 2~@

I. '

(102)

(103)

(brackets in the summation limits indicate the "greatest
integer" operation) by discretizing phase space according
to

with all summations ranging from 1 to N.
We saw in Sec. III that the quantum sources of field

and molecular fluctuations enter into the linear evolution
with opposite orderings. For example, the expectation
values & As'+'As' '& and &R' 'R'+'&, computed from
(73) and (74), depend only on the orderings & As'0 'As'o '

&,

&Ro 'Ro+' &, and &
G' 'G'+'& (arguments omitted).

Hence, the model (77)—(86), while associated with an-
tinormally ordered field averages, clearly yields normally
ordered averages of R'+'. A quasiprobability function Q
having similar properties can be derived from the charac-
teristic function

[al ai ]=&» [b b ]=& (104)

where z„ is a molecular site (n =1,2, . . . , N). Then a, ,

b, and their conjugates obey Bose-Einstein commuta-
tion relations:

C&( uv, r, z, t) =tr[e'"'e'" ' e'" e'"

Xe" '~ e'*' e" p(t)] (108)

Defining

[N/2]1~a'= N-
A, = [ —N/2]

ik~(z( —
z( )

co&e (105)

written here in terms of the N-dimensional vectors
a=(a„a2, . . . , aN), u=(u„u2, . . . , uN), etc. , where
u, v, r, z are c numbers. Performing the inverse transfor-
mation to a "phase space" of c numbers, we define

Q(a, p, p, g, t)—: f d u f d U fd r f d z exp[ t'(u a+—u' a*+v p+v' p" +r p
1

( )7N

+r' p" +z g)]C(2(u, v, r, z, t),
in which

(109)

d u = g [Re(du&)im(dul )],
1=1

etc. It follows from this definition that, for example,

& lat I'& = &aiaI'&

while

& Ip„l'&=&~„+a„& .

(110)

For reasons that will become apparent below, we also introduce the Wigner function W, whose moments equal the
expectation values of symmetrically ordered operators, e.g.,

& Ia, I'& =
—,'(&a,'a, &+ &a,a,'&), (112)

& lp„ I'& =
—,'( & a„'a„&+& ~„a„+& ) .

It is defined as

(113)
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W(a, P,p, g, t)= f d u f d U f d r f d z exp[ —i(u a+u' a*+v P+v*.It" +r p
1

(2 )'

+r" p'+z g)]Cii (u, v, r, z, t)

using the characteristic function

Cii(u, v, r, z, t)=tr[exp[i(u* a +u a+v'. b +v b+r'. o++r.o +z o')]p(t)J .

(114)

(115)

Applying these definitions to the Liouville equation (30), we obtain kinetic equations for Q and &that contain deriva-
tives of all orders. (If ground-state depletion is ignored, with g assumed constant, then the equation for Q truncates at
third order. ) The Fokker-Planck or diffusion approximation may be justified for large N using the familiar technique of
a system-size expansion. Accordingly, we retain only second-derivative terms and obtain the following:

aQ . a . a . a
icing p„+i Qci)(( a(+i g co, P

n Pn (I' al m m' m

+TIKLL g enlenl '

a
ai'kn +2 a( al p„+2 a( p„

1

ap. aa(ap.

+—'Kss
m, m', n

a2

~m apn a&m aPri

+iKLs g e„*(e„
l, m, n ap.' "

ap„'

a2 a2 a' * . a'
, P g„+2 P p„+ a(P p„' —2 a("13 p„

a 1 a+y g p„+—,(I+(„)
ap ap

+C.C. Q (116)

and

am . a . a . a, . „a a
p +I ge2n

a
a, +i g ~

a p +-,'iKLL g e„*,en( a(gn+2, a(a(pri

+ ,'iKss —g e„' e„,
m, m', n

P g. +2 „O'P p.*
c} a

m aPn

+iKLs g e„"Ie„
l, m, n

a a
P p„+ al'p„— a(P 0 +2 a(I3 paa( ap ap„

a l a'+f +— +c.c. W . (117)

The initial values of Q and W, which for brevity we do
not write down, can be obtained from the initial density
operator by applying the definitions (108) and (109) and
(114) and (115).

B. Stochastic dift'erential equations

Let us attempt to associate the results (116) and (117)
with stochastic differential equations. The rules of Ito's
calculus yield for the former the system

+iKLs g e„(e„* a((t)p„*(t)+I tt (t),
I, n

p„(t)= (y+ico)p„(t)

+i KLL g e„,e„'( a, (t)a,",(t).
I, I'

+Kss y enme, 13 (t)P (t) p,

(119)

(t)= i y N —,P (t) + ,'iK y e„* e„—P (tg „(t)'
m' m', n

a((t)= —i g ~((a((t)+ ,'iKLL g e (e„(a(.(t)g—„(t)
I', n

+iKLs g e„*(e„p (t)p„(t)+ I (t),
m, n

(118)
and

m, m'

iKLs g e„(e„* a—((t)13* (t)g„(t)+I (t), (120)
I, m
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g„(t)= —2iKLs g e„'(e„a('(t)13 (t)p„(t)+c c.
I, m

(121)

F~ (z„,t}:—i 1 ( t)exp (
—i [(kt —ks )z„(coL c—os )t]],

(134)

(135)

'KLs X enlenm~

X 5(t t '),— (122)

(I (t)I
&

(t')) =2iK~s g e„'Ie„P (t)p„(t)5(t t'), —

where the noise sources I (t), 1 & (t), etc. , are Gaussian
I m

with zero mean and

(I (t)I,(t')) = iKtt pe„*&e„Iat (t)p„*(t)
I pn FL ~(eL, /L)FL, Fs ~(es/L)Fs,

Ftt ~(c/LN)F&, F3~(c/LN)F3

and obtain in the continuum limit

d&AL(g, r) = ,'iKtL—R3(g V)At (g 7)

(136}

Similarly, we transform to retarded-time coordinates and
adopt the scaling (48), supplemented by

(123)

(I& (t}I .(t'))=iKss ge„' e„.P .(t}p„'(t)5(t t'), —
m p„ m'

+KLSR (0 r)AS(( 1 )+FL(0 r)

r)gAs(4 r) ' tKssR—3(g r) As(g r)

KLsR —'((,r) AL (g, r)+Fs(g, ~),

(137)

(138)

(124) Bg (g, r) = —yR (g, r)+i [K I (g, ~)

( I, (t)I', (t') ) = 2iK—ts g e„,e„" a, (t)P' (t)
I, m

Xp„(t)5„„,5(t t'), (1—25)

(126)

+KssIs(g, r)]R (g, r)

+KLs AL((, r) As ((,r)R3((, r)+F~(g, r),
(139)

(I c (t)I c (t')) = 4iKts g e—„'(e„a('(t}P (t}p„(t)
l, m

d+3(g, r) =[—2KLs At (g, r) As(f, r)R (g, r)

+c.c. ]+F3(g,~),
with

(140)

5(t t )+ (127) (FL(g, r)F&(g', r') ) =[tKLL AL (g, r)R '(g, r)
nn'

As(z, t)= i g e„P„(t)e " e
P

(129)

R(z„,t)—= tp„(t)exp[ i[(kt —ks}zn (~t. ~s)t])

All other second-order correlation functions, other than
conjugates of the above, must vanish.

To facilitate a comparison with the stochastic model,
we introduce the definitions, analogous to (35)—(39),

AL(z, t)= i pe&a&(t)e ' e, (128)

KLs As(g, r—)R3(g, r)]

X5(g—g')5(r —r'),
(Ft (g, r)F3(g', '7 ) ) =2KLs As((, T)R (g, r)5(g —g')

X5(r—r'),
(Fs(g, r)Ftt (g', r') ) =iKss As(k, r)R *(g,&)5(g—g')

X5(r—r'),
(Fq (g, r)Fq (g', r') ) =2KLs AL(g, r) As (g, r)R (g, r)

X 5(g —(')5(r —r'),

(141)

(142)

(143)

(144)

(130)(FR(g,r)F&(g', r'))=y[N+R3(g, r)]5(g—g')5(r r')—
and

R, (z„,t}:g„(t}, — (131)
and

(145)

(F3((,r)F3((', w') ) =[ 4KLs AL(g, r) As—(g, r)R (g, r)

FL(z, t)= —Q I (t) g eze ' ' e +c.c. ]5(g—g')5lr —r') . (146)

Fs(z, t)= g 1 tt (t) g e„e

Xe
—i(k z —co I)

{132)

(133)

Adopting the state vector of Sec. IIIB, with a classical
pump ALO(r), an unpolarized, unexcited medium, and
vacuum-state Stokes, we apply the correspondences (110)
and (111)to find precisely the initial and boundary condi-
tions (81)—(86).

Let us examine the resulting tnodel (137)—(146). No-
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and

(147b)

Hence, applying the definitions (128)—(131) and (134), as-
suming the continuum limit, and scaling variables and
parameters as above, we obtain in the Wigner representa-
tions the model

r)rAr (g, r) = ~iKt~R3(g, r) At (g, r)

+K~sR (g, r) A~(g, r),
"d~A~(g, ~) = ,'iKssR3(j, r)—A~(g,~)

—K~sR *((,r) A~(g, r),
BP (g, r) = —yR (g, r)+i [K~~I~(g, r)

+KssIs(g &)]

(148)

(149)

and

+K~s A~(g, ~) As (g, r)R3(g, r)+F„(g,r),
(150)

BQ (g, r)= —2K A *(g,r) A (g, r)R (g, r)+c.c. (151)

tice first that, when linearized about initial values, all
Langevin sources disappear, since the correlation func-
tions (141)—(146) vanish. Thus, quantum initiation is
effected by the Stokes vacuum alone, as in the stochastic
model of Sec. III. Moreover, we see by comparing
(137)—(140) with (77)—(80) that the difference between the
two systems lies solely in the Langevin sources of the
former. Here, we have further evidence of the validity of
the model (77)—(80) for situations in which quantum fluc-
tuations and nonlinearity are not of simultaneous impor-
tance.

For other situations, one might adopt the model
(137)—(146). As written, however, these equations are
problematic. In particular, we cannot in general have
(143) hold while (Fs(g, r)FS(g', r')) =0. A way out of
this dilemma is achieved by adopting a representation in
which P and P*, and hence As(g, r) and As(g, r), are
not complex conjugates, but independent complex vari-
ables. (Such an approach is associated with the positive-
P representation ' when the normal-ordering
correspondence is used. ) Because these quantities are cou-
pled to the other variables A J (g, r), At'(g, r), etc., it then
becomes necessary to likewise consider these as indepen-
dent rather than conjugate. The effect is then to double
the "phase space" over which averages are to be per-
formed and the number of equations that must be solved.

One finds similar complications arising in all represen-
tations in which normal (antinormal)-ordering correspon-
dences are adopted (see Appendix C). As one may al-
ready infer by comparing the Fokker-Planck equations
[(116) and (117)], the Wigner representation affords a
significantly simpler model. Indeed, there is only one
Langevin source; in the notation of Eqs. (118)—(121),
I (t) =1

p (t) = I'( (t) =0 while
I m n

(147a)

with Fz ( g, w ) a zero-mean complex Gaussian process for
which

(F~ (g, r)F~ (g', r') ) =@N6(g g—')5(w r—') . (152)

Because of the symmetric-ordering correspondence (112)
and (113), the state vector of Sec. III B now implies the
initial and boundary values

At (O, r)= Agp(r),

As(0 r)=Aso(r)

R ((,0)=Ra((),

R3((,0)= N, —

(153)

(154)

(155)

(156)

where the quantum-noise sources Asa(r) and RQ(g) are
Gaussian with

( A, (r) ) = (R,(g) ) = ( A (r) A (~ ) )

= (RD(g)R0(g') ) =0 (157)

and

( Asp(r) As(cr) ) = &5('7 1 )

(R0 (g)RD(g')) = ,'N5(g g-') . —
(158)

(159)

Examining (148)—(152), we see that the Wigner repre-
sentation yields a system of stochastic differential equa-
tions that, but for the single, additive noise source
F„(g, )r, would be identical to the plane-wave semiclassi-
cal model of SRS. Quantum noise due to collisional de-
phasing enters through this source, while vacuum fluc-
tuations and radiation reaction enter through noisy initial
and boundary conditions on As(g, r) and R (g, r) via Eqs.
(158) and (159). While this model is a bit more elaborate
than the stochastic model constructed in Sec. III B, it can
be expected to maintain its validity in cases for which the
latter is expected to fail —when nonlinearity arises while
the system is still being influenced by quantum noise. In
such cases, this model is clearly superior to those based
upon normal or antinormal orderings, at least from a
computational point of view.

V. CONCLUSIONS

We have used the dressed-state representation to
present a quantum-mechanical model suitable for disuss-
ing the quantum-mechanical aspects of stimulated Ra-
man scattering. The Heisenberg equations of motion
were derived and presented in Sec. III, and the equations
for the stochastic model, based upon an antinormal-
ordering correspondence for averages of field operations,
and a quantum-classical correspondence, were developed
from them [Eqs. (77)—(86)]. This model is particularly
useful for numerical calculations for the dynamical evolu-
tion of the system in cases where quantum fluctuations
and nonlinear evolution are not simultaneously impor-
tant. We use this model in a future paper, ' to generate
ensembles to characterize the statistics of amplified, mac-
roscopic realizations of quantum fluctuations, particular-
ly in the form of effects due to phase waves and spontane-
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ously generated solitons.
In addition to the stochastic model developed in Sec.

III, we have presented several alternative approaches in
Sec. IV by introducing quasiprobability functions, Eqs.
(109) and (114), and their associated Fokker-Planck equa-
tions, Eqs. (116) and (117), respectively, from which we
obtained the corresponding dynamical stochastic equa-
tions of motion and propagation, which are presented in
the continuum limit by Eqs. (137)—(146), and Eqs.
(148)—(152). The Q representation, whose moments are
equivalent to expectation values of products of antinor-
mally ordered field operators and normally ordered atom-
ic operators, yields stochastic differential equations which
are identical to the equations for the stochastic model
developed in Sec. III, for the same initial and boundary
conditions and the condition that quantum fluctuations
and nonlinearity are not simultaneously important. This
result gives further credence to the validity of the model
developed in Sec. III. For more general cases, one may
be required to adopt a representation in which the Stokes
amplitudes, As(g, r) and As(g, r) are not complex conju-
gates, which automatically requires the same condition
for the other variables of the system, leading to the
positive-P representation, ' when the normal-ordering
correspondence is used.

The Wigner representation, where moments corre-
spond to expectation values of symmetrically ordered
operators, was also developed in Sec. IV and leads to a
considerably simpler set of equations as compared to the
Q representation, there being only one Langevin source.
The state vector of Sec. III implies boundary conditions,
for this case, which determine the quantum noise sources
commensurate with the symmetric-ordering correspon-
dence. For the general case, the Wigner representation is
valid where the stochastic model fails, and is evidently
the least complicated to implement numerically with
respect to other alternatives.

For the stochastic characterization of SRS, the sto-
chastic model developed in Sec. III is valid and is by far
superior to the alternatives with regard to ease of numeri-
cal implementation. We therefore use this method to
generate numerical algorithms to characterize the macro-
scopic stochastic effects of quantum initiation, particular-
ly in regard to spontaneous phase-wave and soliton gen-
eration. The results will be presented and discussed in re-
lation to reported experimental results in a future pa-
per 3 1
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APPENDIX A: DRESSED-STATE HAMILTONIAN

We fol1ow Coulter's procedure, using a unitary
operator e' to determine, to second order in the interac-
tion energy, the dressed-state Hamiltonian H' =e' He
for H given by (21). The first- and second-order contribu-
tions to J( we call, respectively, E, and Ez. As shown by
Coulter, these Hermitian operators generate energy terms
H, and H2 satisfying

and

H~ =i [K„Ho]+H„F (Al)

H2=i [K2,Ho] —
—,'[K, , [K),Ho]]+i[K„H„F]

under the assumption that

[H Ho& ]= [Ho H2]=0

(A2)

(A3)

where Hp =H g +HF is the free-molecule —free-field
Hamiltonian.

An operator H, satisfying (A3) can be constructed
from the terms in H„~ that commute with Hp. Accord-
ingly,

H) = fi g g g g 5 —„g,,"o'Ja~+ H. c. ,
n A, i j

(A4)

where co; =co; —co, . (Note that the Kronecker delta en-

sures the rotating-wave approximation through energy
conservation for the dressed states. ) Then

—
—,'[K, , [K„Ho]]+i[K„H„F] (A6)

that commute with Hp. This procedure yields the gen-
eral result

K, = i g g—g g '
g;,"o'„'a~+H. c. , (A5)

J ~ &J

where 5; =1—5;, is the complement to the Kronecker
delta, satisfies (Al).

To satisfy (A3), we construct Hz from those terms in

the combination

6„„
H, = —

—,'A'g g g g g g 5 + „g,","g,"k"cr'„"a„a~+
6

6)iJ +COg

+H. c. (A7)

(Note again the explicit energy conservation, as well as
the exclusion of the resonances coq=co;k, etc.) The gen-
erator K2, which we do not write, can now be derived
from (A2).

We now delete from H'=Hp+H, +H2 those terms

not involving the Raman-connected states ~l) and ~2).
Thus we ignore H, entirely. The operator Hz retains
terms of three distinct types, reflecting self-energy, Ra-
man, and direct two-photon contributions. The latter
transitions are not pumped, and we therefore delete them
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also. Finally, we introduce the operators o „+—= cr „',
cr„—=0.„', and 0'„—:cr„—0.„"and normally order H2 with
respect to the photon operators. Assuming that the fre-
quency shifts incurred by this process are negligible, we
obtain the result (22).

APPENDIX B: HEISENBERG EQUATIONS

Forrnal integration of the Heisenberg equations (31)
and (32), followed by the application of definitions
(35)—(39), yields

At+'(z, t) =i g ei a~(0)expIi [(ki —k~ )z —(coi —co~ )t]I

and

N
2+ ,'iKL—L g g f dt'eiR' '(z„,t') At'+'(z„, t')exp ti[(ki —kL)(z —z„) (~~—~~)(t —t')]I

n
—-1 ~

N

+KLAN g g f dt'eiR'+'(z„, t')As+'(z„, t')exp[i[(ki kL)(z——z„) (co& —cot )(—t t')]—)
n=1

(Bl)

As'+'(z, t) =i g e„b„(0)e xp Ii [(k„ks)z ——(co„cps)t—] I

N
2+2iKss g g f dt'e„R' '(z„,t')As+'(z„, t')expIi[(k„ks)(z ——z„) (co„—cats)(—t t')]I—

n=1 p
N

2
KLs g—g f dt'e„R' '(z„, t')ALI+'(z„, t')expti [(k„ks)(z ——z„) (co„—&os)(—t t')]j . —

n=1 p,

(B2)

The free-field contributions are clearly present in the first term on the right-hand side of each of these expressions. Ap-
plying the operator 8, +(1/c)B„we obtain

and

i3, +—8, A 't'(z, t)= ,'i(Ktt—/c) g R' '(z„,t)At+'(z„, t) geie
n=1

N

+(K /c) g R'+'(z„, t)A +'(z„,t) pe e
n=1

(B3)

N

8, + —8, As+'(z, t)= ,'i(Kss/c) g—R''(z„,t)As+'(z„, t) pe„e
C n=1 P

N—(K' /c) g R' '(z„,t) A'+ I(z„,t) g e„e
n=1

(B4)

Adopting the continuum limit, we let

e&e
ill

L, 27rAk'C i(k' —kL)(z —z )L n

2n V

=LeL [5(z —z„) ikL '5'(—z —z„)]

(B5)
if the integration limits are taken to infinity. The second
term in this expression, when used in integrals, will pro-
duce spatial derivatives of the slowly varying terms divid-
ed by kL. In the spirit of the slowly-varying-envelope ap-
proximation, it is therefore reasonable to drop this term,
letting

N L~(X/L) f dz',
n=1 0

with z„~z, we then obtain (40). Equation (41) is simi-

larly derived.
The molecular equations (42) and (43) are the simple

consequence of applying the definitions (37)—(39) to the
Heisenberg equations (33) and (34), then letting z„~z.
Deriving the correlation functions G'+'(z, t) requires in
addition the use of the quantum fluctuation-dissipation
theorem. This implies that, under the Markov approxi-
mation, with (33j and its conjugate written as

d „(t)=f„(tl+ g„(t)

2 i (k) —kL )(z —z„) 2g eie ' " =LeL5(z —z„) .

Also taking

(B6)
and

o „(t)=f+(t)+g„+(t)

that



42 SPONTANEOUS GENERATION OF PHASE WAVES AND. . . 2885

and

&g„+(t)g„(t')&
= —

& o„+o„& —
& o„+f„&

dt

—
& f+cr„&„5(t t—')

=) [1+o'„(t)]5„„5(t t—')

&g„(t)g„+(t')&ii
= —&o„o„+&it

—&o„ f„+ &,dt

—
& f„o„+&„5(t t')—

(89)

&b„(o)b„(o)b„' (0)b„' (o) &

=
& b„(0)b„(0)& & b„(0)b„(0)&

+ &b„(o)b'„(o)&&b„(o)b'„(o)& . (812)

Similarly, using the definition (59), we find

&Ro+'(g„)RO '(g„.) & =N &o„(0)o„+(0)&=N 5„„

(813)

Because 5„„~(1/N)5(g g') —in the continuum limit
when scaled variables are used, Eq. (66) follows directly.
In higher-order products, e.g. ,

r

p p es

I (QJ QJ )r
p S

Xe " &b„(0)b„(0)&

—2 2 t (co cps )[r—r')=e, ee '
~

P

(811)

Arguments similar to those leading to (86), taking into
account the scaling (48) that has been adopted, lead
directly to (63). The Gaussian decomposition rule is
found from the factorization of products such as

=y[1 o'„(t—)]5„„5(t t'—) . (810)

The definitions (38) and (39), and the replacement
5„„~(L/N)5(z —z') in the continuum limit then give
(45) and (46).

The properties of As'v+ (r) defined by (58) are easily de-
rived. Assuming that the Stokes occupies the vacuum
state, then

„,(0) „(0) „',(0) „'(0)&

~n n ~n n +~n n ~n n ~n n n n
1 3 2 4 1 4 2 3 1 2 3 4

(814)

non-Gaussian contributions, like the last term in (814),
become negligible for large N.

APPENDIX C: NORMAL AND ANTINORMAL
REPRESENTATIONS OF SRS

%e list here the Fokker-Planck and stochastic
diferential equations for plane-wave SRS. For the form-
er we adopt the following notation: we designate the
quasiperiodicity function as P or Q, depending upon
whether /kid averages yield, respectively, normally (P) or
antinormally (Q) ordered expectation values, and attach
a subscript N (normal) or A (antinormal) to indicate the
ordering correspondence of molecular averages. Thus,
the function Q defined by Eqs. (108) and (109) would be
written as QN. The three other possibilities are as fol-
lows:

z
(u „r Z t) tr[e«a eiu ae~v b 'e'vbeir '& eiz'& e''r u p(t)]N

(Cla)

piv(app g t)= f d u f d v f d r f d zexp[ i (u a+u' a'—+v p+v' p*1

(2~)'~

+r p+r* p*+z g)]Cp (il v i' z t); (Clb)

C (u, V, r, Z t)=tr[eiu a eiu aeiv b eiv bei r eiz a eir a p(t)] (C2a)

pq(a, p, p, g, t)= .f d u f—d v f d r f d zexp[ i(u a+—u' a'+v p+v* p*1

+r.p+r'.p'+z g)]Cp (u, v, r, z, t);

z + +
(u V r Z t) tr[eiu aeru .a eiv beiv .b eir a e&z rr eir e p(t)]

A
(C3a)

Q„(a,p, p, g, t)= f d2 u f d v f d r f d zexp[ i (u.a+u*-a* v.p+v* p*—
(2~)'"

+r p+r' p'+z g)]C& (u, v, r, z, t) . (C3b)

The Fokker-Planck equations associated with these functions are
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a . 8 . a
P, +( X ~II a(+' X ~m

ap ((, aa(

+ 'jK—gg
I, I', n

+ XKSS X nm nm'
I

m, m, n

+'KLs g e (e
l, m, n

a( g„—2 a(*a(p„+2 a('p
a~,

' " ap„' " a~, ap„

a a ~
a'

P .g„—2 P*/3 p„+2 P p„

a a * aj3mpn+, a(pn „a(~m0n+2 a
al ~mpn

aa( " ap' "
ap„*

" a „

a, a a „a
aalu n I ~n a~a + I Pn

a n2 I mPn &~2 I mPn
I mpn ~~m bn Pn Ubn

a i a2
+1' g a P„+— „(1+(„)~p„2 Qp„gp„*

+C.C. P~ (C4)

a . a . a
p. +( y ~II a, , +( g ~

Bt
n Pn I, l' al m, m' m

+ —,jKL,L
1, I', n

+ ,'iKSS—g e„' e„
I

m, m, n

+ jKLs y e„(e„
I, m, n

2

a( gn +2 a('a( p„' —2 a( p„'

a2

( m aPn ~pm ~pn

a a
((3 p„+ a(*p„— a(P g„+2 a(*P p.aa( " ap* "

ap„*

+ P g„—2 P p„— 2a('P p„'+2
2

a(*13 p„
a a' a' . , a'

a 1 a+y g p„+— (1—g„)ap„2 ap„apn
+C.C. Pg (C5)

and

aQ~ . a . a . a
p. +(y~(I a, +( y ~, p .

n Pn II I 'mm' m

a a * a'+ ,'iK&z g e„*(e„( —— .a(.g„—2 a(*a(.p„—2 a( p„
pn ~&i pn

+ ,'iKss g —e„*e„
m, m', n

+jKI.S g e„'(e„
I, m, n

ap
j m'6 n a

I m~m'Pn
ap a

I pnm
m Pn m Pn

a a * a
& P.+, a(*p. — „a(*&.&. +2 a. a(*& p.

a' * a' * ~
a'

a(33' ap„*
" ap* ag„a * ag

a*~ +2 a a +2 a

a i a'
+y g p„+— (1—g„)Bp„2 ()p Qp*

+c.c. Q„. (C6)
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The stochastic differential equations derived from these
results are all of the form given by Eqs. (137)—(140),
differing only in the correlation functions associated with
the noise sources FI (g, r), Fs(g, r), FR(g, r), and F3(g r).
The set of nonzero second-order correlation functions
are, from (C4) (normal field and normal molecules),

(Fs((,r)F3(g', r') ) =2KIs AL (g, r)R *(g,r)

X5(g—g')5(r —r'), (C21)

X5(g—( )5(r—r ), (C22)

(F~(g, r)F~ (g', r') ) = 2—KLs AL(g, r) As (g, r)R (g, r)

(FL ((&r)F~(g'&r') ) =iKLi AL((, r)R (g, r}

X 5(g g')5—(r r')—,

(Fs(g, r)F„(g', r') ) =[iKss As(g r)R (g r)

+KL'sAL(g, )R3(g, )]

(C7)

(F (g, )F*(g', ')) =y[N —R, (g, )]5(g—g')5( —'),
(C23}

(F3((,r)F3((,r ) ) = [4Kis AL (g, r) As(g&r)R (g&r)

+c.c. ]5(g—g')5(r r') .— (C24)

X 5( g g')5—l r r')—,

(Fg(g, r)F3(g', r')) = 2K—Ls AL(g, r)R'(g, r)

X5(g —(')5lr —r'),

(Fg (g, r)Fg (g, r ) ) =2Kis AL( 0 r}As( k, r)R (g, r)

X5(g—g')5(r —r'),

(C8)

(C9)

(C10)

(Fz(g, r)F+(g', r') ) =y[N+R3(g, r)]5(g g')5lr —r'), —

Aso(r) =0

Rp(g)=0;

for (C13)—(C18),

(C25)

(C26)

[We emphasize that (C7)—(C24) reflect the scaling trans-
formations (48) and (136}.] Finally, the initial and bound-

ary conditions rejecting the associated ordering prescrip-
tion of each case are, respectively, for (C7)—(C12),

(C11)

(F3(g&r)F3(g', r') ) =[ 4KIs AL"—(g, r}As(g, r)R(g, r)
Asp(r) =0 (C27)

(C28)

+c.c. ]5(g g')5(r —r');—(C12)
and for (C19)—(C24),

from (C5) (normal field and antinormal molecules),

(FL (g, r)Fz(g', r') ) =[ iKLL AL (g—r)R *(g r)

+KLs As(g, r)R3(g, r)]

X 5(g—g')5(r —r'),

(FI (g&r)F3(g'&r')) = 2KLs As(g—&r)R (g&r)

X 5(g —g')5(r r'), —

(Fs(g, r)F~ (g', r') ) = iKss As(g—, r)R '(g, r)

X 5(g —g')5(r —r'),

(C13)

(C14)

(C15)

(F~(g, r)F~(g', r') ) = 2Kis AL(g, r)—As (g, r)R (g, r)

X 5(g —(' )5(r—r ), (C16)

+c.c. ]5(g—g')5(r —r'); (C18)

and from (C6) (antinormal field and antinormal mole-

cules),

(Fq ( g, r)Fq (g', r') ) =y [N —
R 3(g, r)]5(g—g')5(r —r'),

(C17)

(F3(g, r)F3(g', r')) =[4KIs AI*(g, r) As((, r)R (g, r)

( Asp(r) Aso(r') ) =5(r r )

(Rp(g)R p (g') ) =N5(g g'), —
(C29)

(C30)

with in each case R3((,0)= Nand ALo—(r) given by the
incident pump-pulse profile.

It is thus evident that quantum initiation proceeds
from different sources in each case. As remarked follow-
ing (146), the Stokes vacuum exclusively triggers ini-
tiation with the antinor mal-field —normal-molecules
prescription, with no contribution from the Langevin
noise sources, On the other hand, radiation reaction and
collisions are both sources of quantum initiation when
the normal-field-antinormal-molecules ordering pre-
scription is adopted, according to (C17) and (C28). The
other cases are more difficult to interpret. In the case of
the normal-field-normal-molecules ordering, neither the
Stokes vacuum, radiation reaction, nor collision play an
explicit role [cf. Eqs. (Cl1), (C25), and (C26)]. While
(C7)—(C9) are also initially nonzero, only (C8) enters into
computations of the Stokes buildup in the linear regime,
so it can be identified as the source of initiation. Howev-
er, Fs(g, r) and F„(g,r) must also satisfy the conditions

(Fs(g, r)Fs (g', r') ) = (Fz(g, r)Fg (j', r') }=0,
(Fl (g, r)F„(g', r') ) = iKLL AL(g, r)R (g, r)—

X 5(g —g')5(r —r'),

(Fs(g, r)F„(g', r') ) =[ iKss As(g, r)R (g, r—)

KLs Ai (g, r)R3(g, r—)]

X5(g—(')5(r r'), —

(C19)

(C20)

which requires that one double the "phase-space" dimen-
sion, interpreting As(g, r) and As (g, r) as independent
complex variables [see discussion preceding Eq. (147)].
This poses no problem in analytical calculations within
the linear regime, but introduces considerable complica-
tions into numerical computations of the nonlinear dy-
namics as well as the interpretation of the initiation pro-
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cess. One can say the same regarding the antinormal-
Aeld —antinormal molecules prescription.

There is thus a considerable disparity in utility among
the four normal or antinormal representations. Let us
emphasize in closing that they are equivalent dynamical-

ly, to the extent that the Fokker-Planck approximation is
valid. The multiplicity of equally valid interpretations of
quantum initiation that may be derived from these repre-
sentations is similar to what is found in studies of spon-
taneous emission.

*Permanent address: Center for Applied Optics, P.O. Box
830688, University of Texas at Dallas, Richardson, TX
75083-0688.
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