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Switching dynamics of finite periodic nonlinear media: A numerical study
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Using a coupled-mode approach we numerically investigate the time-dependent properties of
nonlinear periodic media of finite length. Based on time-independent considerations such media
have been shown previously to exhibit bistable behavior and to support gap soliton excitations. Our
calculations show that for low intensities the transition from a low-transmission to a high-
transmission state occurs as expected, leading to an easy excitation of gap solitons. At higher inten-

sities, however, periodic self-oscillations take place, which eventually turn chaotic.

I. INTRODUCTION

Gap solitons were first observed a few years ago by
Chen and Mills in numerical simulations of optical non-
linear periodic media. ' Their work showed that radiation
with a frequency falling within the stop gap of such struc-
tures can, for certain values of the intensity, be perfectly
transmitted; recall that a linear periodic structure strong-
ly reflects such radiation. Chen and Mills conjectured
that this behavior was due to the excitation of a
resonance —a "gap soliton" —in the nonlinear periodic
medium, a view that was subsequently confirmed by de
Sterke and Sipe in a theoretical study. Continued in-
terest in gap solitons and related phenomena is driven by
both practical as well as fundamental considerations. Ex-
amples of the former are possibilities for bistability and
low-energy switching, for low-velocity energy transport,
and for modal-dispersion cancellation in fibers. More
fundamental interests focus on the nonlinear dynamics of
gap solitons, ' and on the possibility for the existence of
higher-order solitary-wave solutions.

The physical mechanism behind the properties of gap
solitons in nonlinear periodic media can be easily ex-
plained. The incoming radiation is chosen to have a fre-
quency falling within one of the stop gaps, but through
the nonlinearity the electric field may shift the photonic
band structure such that the center frequency corre-
sponds to an allowed band. Locally, therefore, the sys-
tem now allows traveling-wave solutions, which, as dis-
cussed in detail previously, can lead to the perfectly
transmitting state of the medium. Obviously, when the
center frequency is close to one of the edges of the gap
and the nonlinearity has the appropriate sign, the neces-
sary field strength to accomplish this is minimized. The
low-intensity limit can thus be obtained by tuning close
to the appropriate edge of the stop gap.

The reported research in this area has thus far been of
a theoretical nature only. These efforts can be roughly
divided into four categories. In the first of these, one
makes use of a nonlinear analog of the techniques used in
the design of linear thin-film stacks. These methods,
which give exact' or approximate time-independent
solutions to the full nonlinear wave equation, have the

disadvantage that it can be hard to extract general infor-
mation from the numerical results. For example, in nu-
merical experiments one can only indirectly demonstrate
if a gap soliton has been excited. ' In the second ap-
proach one replaces the periodic nonlinear medium by a
model structure in which the nonlinear dielectric is as-
sumed to be concentrated on equidistant 5-function-like
sheets surrounded by vacuum. ' This rather artificial
model has the advantage that the dynamics is described
by difference equations rather than differential equations,
thus considerably reducing the computational require-
ments. It demonstrates numerically the possibility for
the propagation and interaction of solitonlike objects.
The problem with this approach is that it is not clear a
priori which features are genuine and which are artifacts
of the model. For example, this model has the property
that positive and negative nonlinearities lead to qualita-
tively different behavior, in contrast to the nature of con-
tinuous systems as found by both analytic and numerical
analyses. The third class of methods is based on tech-
niques from solid-state physics. In this method one
writes the electric field as the product of a suitably
chosen Bloch function of the linear structure and a slowly
varying envelope. ' ' This envelope function has been
shown to satisfy the nonlinear Schrodinger equation.
The separation between the rapidly varying Bloch func-
tion and the slowly varying envelope is an important ad-
vantage of this method: It is the envelope function that is
physically most important, and it can be studied in isola-
tion using the nonlinear Schrodinger equation with ap-
propriate boundary conditions. It should be noted that
this method gives solutions to the full wave equation in
the low-intensity limit, which, as mentioned above, can
be selected by tuning the incoming radiation close to the
edge of the stop gap. The fourth class of methods is
based upon a set of coupled-mode equations, rather than
on the wave equation itself, and attempts to find exact
solutions to these equations. ' "" Using this approach,
one is not restricted to solutions at the edge of the stop
gap, thus allowing solutions at any level of intensity. The
coupled-mode equations, however, treat the periodicity to
first order only, ' "" and can thus only be used for
structures with a small modulation depth. However, this
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is often a good approximation in geometries like optical
waveguides and fibers, which typically have modulation
depths of only about 10 and 10, respectively. Thus
far the work based on the coupled-mode equations has
been restricted to systems of infinite extent only. It has
made use of a similarity between the coupled-mode equa-
tions and those of the Thirring model from field theory,
of which the latter are known to be integrable. ' In this
way it has been shown that the coupled-mode equations
allow solitary-wave solutions, which, at least on an
infinite interval, appear to be stable. The coupled-mode
approach shares the advantage of the third class of
methods in that one only deals with envelope func-
tions ' ' rather than with the electric field itself, thus
again substantially facilitating the analysis. In the
coupled-mode approach, however, the envelope functions
modulate the forward- and backward-traveling waves,
rather than Bloch functions. '

In the present paper we extend the analysis based upon
the coupled-mode equations by investigating its solutions
on a finite interval using numerical techniques. We use
the coupled-mode approach because of its ability to de-
scribe the system's response at both high- and low-
intensity levels, while avoiding the difficulties involved in
solving the full wave equation. In the low-intensity limit
we find agreement with our previous work based upon
the nonlinear Schrodinger equation. This regime, in
which gap solitons can easily be excited, is characteristic
of integrable systems. However, at higher field strengths
we find solutions with a chaotic behavior, a property
commonly associated with nonintegrable systems. This
chaotic behavior is related to a strange attractor that is
characterized by a fractal dimension and by a positive
Lyapunov exponent. This demonstrates the extremely
varied dynamics of finite systems, a richness that would
have to be understood before considering any potential
application. The emphasis in the present paper, however,
is on the numerical results. A detailed analysis of dynam-
ics has proven to be very involved and is still in progress.
We therefore discuss our results on a qualitative level
here, deferring an in-depth analysis to a future publica-
tion.

Our investigations follow earlier work by Winful and
Cooperman. ' These authors consider a similar problem,
but with a slightly more complicated optical nonlinearity.
However, they investigate a very small part of the avail-
able phase space and only find solutions in the high-
intensity limit, thus completely missing the regime in
which the soliton properties dominate. A very important
difference is that Winful and Cooperman switch on the
driving fields instantaneously, whereas we do so gradual-
ly, thus ensuring information on the system's differential
response. In this way we can also best compare our re-
sults with the well-known time-independent solutions.

This paper is structured as follows. In Sec. II we dis-
cuss the coupled-mode equations and their time-
independent solutions. In Sec. III we first briefly describe
our integration procedure and then we give a detailed
presentation of our numerical results. In Sec. IV, finally,
we discuss these results qualitatively, identifying some of
the probable elements of a more comprehensive analysis.

II. COUPLED-MODE EQUATIONS
AND TIME-INDEPENDENT SOLUTIONS

where E is the electric-field amplitude. Further, the z
coordinate defines the grating direction, whereas x
denotes some transverse coordinate(s). Note that the as-
sumption of a Kerr nonlinearity implies an instantaneous,
nondiffuse nonlinear response. The use of the coupled-
mode formalism now requires that the linear modulation
is weak, ' or

n, «no. (2)

It is not necessary to specify our structure in more detail,
and the formalism therefore applies to a variety of
geometries. These include thin-film stacks, as well as op-
tical waveguides' and fibers. ' For the latter two
geometries, however, Eqs. (I) and (2) describe the distri-
bution of an effective, or mode index, ' ' rather than
"the" index of refraction. The use of the coup1ed-mode
formalism requires further that the wave-number distri-
bution of the electric field inside the structure is narrow'
and peaks around a value k, such that the detuning 5,
defined through

5=k —m/d,

satisfies'

(4)

Inequality (4) assures that the field and the grating are
(almost) phase matched, so that forward- and backward-
traveling modes interact strongly through Bragg
reAection.

In using the coupled-mode approach one seeks solu-
tions for the electric field as the sum of suitably modulat-
ed forward- and backward-traveling modes:

E(x z t)=[8 (z t)e '"' "'+8 (z t)e '"'+"']
X f(x;~)+c.c. ,

where c.c. denotes complex conjugate, and 4+ are en-
velope functions of the forward- and backward-traveling
modes, which are assumed to be slowly varying in space
and time. Further, co is an optical frequency to be dis-
cussed below, and f is a suitably defined mode of the
geometry, which reduces to a constant for a thin-film
stack. If we now define

6+(z, t ) =9+(z, t )e

it can be shown that the envelope functions 7+ satisfy the
set of coupled-mode equations ' ' ' '

We consider the interaction of a nonlinear, weakly
periodic structure and an (almost) Bragg matched optical
field which travels in the directions perpendicular to the
grating planes. Taking the nonlinearity of the simple
Kerr type, we can write the index of refraction as

n(x, z)=n
0( x)+n, ( x)c os(2nz/d )+n&(x)~E(x,z)~
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which is a very good approximation for mode propaga-
tion in waveguides and fibers. ' Note that one could ab-
sorb the third terms in Eqs. (7) in the general time
dependence of the fields by rewriting the coupled-mode
equations in terms of the envelope functions
7+=9'+exp(ic5t/g), but we have found it more con-
venient to work with Eqs. (7).

To elucidate further the significance of inequality (4)
and of the various parameters we refer to Fig. 1, which
shows the dispersion relation of the linear periodic struc-
ture as following from the coupled-mode equations. The
dashed lines give the dispersion relations in the limit of a

co= too+ C5/r} ///

/:X//
/

where c /g is the group velocity of the unperturbed
modes, and ~ is a coupling coefficient which may be ex-
tracted from experiments or from a detailed calculation
of the interaction between field and grating. The parame-
ters I, and I „areoverlap integrals of the field and the
nonlinearity, and denote the self- and cross-phase modu-
lation of the modes, respectively. All coefficients in the
coupled-mode equations are assumed to be real, implying
the absence of linear as well as nonlinear losses. In the
present paper we further restrict ourselves to

(8)

vanishing grating (~~0), whereas the solid line gives the
dispersion relation when the modulation depth attains a
finite value. Note that the former are assumed to be
straight (with slopes of +c/g), which is not quite true in
general. As we saw before, the use of the coupled-mode
formalism not only requires the gap to be small, but also
the frequency and wave-number content of the field to be
concentrated in and around the gap. In the light of this
restriction we are only interested in a small part of the to-
tal dispersion curves, and in this region the neglect of the
curvature is a good approximation in general. We define
coo to fall in the middle of the stop gap (Fig. l), and, since
the unperturbed dispersion curves are assumed to be
straight, an angular frequency of co=~0+(c/g)5, gives
rise to a detuning 6. It should be mentioned that if

K & 5 & z, the radiation falls inside the gap, whereas
otherwise it corresponds to an allowed band.

The system of coupled-mode equations has been shown
to have solitary-wave solutions which can propagate at
any given speed between zero and c/g. In the present
paper we consider solutions to the coupled-mode equa-
tions on

aconite

interval of length L, where these solitary
waves are no longer solutions. Specifically, we consider a
geometry as in Fig. 2, and take the incoming radiation as
coming from the left with amplitude A. The boundary
conditions then attain the well-known form'

The second of these equations expresses the notion that
there is no reAected wave at the back surface of the struc-
ture. The amplitude T of the transmitted wave now
equals 7+(L,t), whereas the amplitude of the refiected
wave R is equal to 7 (O, t). The solution of the non-
linear coupled-mode equations in conjunction with the
boundary conditions appears to require numerical tech-
niques.

The coupled-mode equations have important scaling
properties that reduce the available phase space consider-
ably. These become apparent when we make the substi-
tutions 5=a5, z=ak, I =P I, 7 =VaF /P, z=z/a,
t =t/a, 3

=&ad�

/p, and L =L/a, where a and p are
arbitrary numbers, and the coupled-mode equation and
boundary conditions are seen to be unchanged. This
means that we may fix I, as well as any one of the three
parameters ~, 6,L without loss of generality. In the
present work we choose L = 1 and I =0. 1 throughout. A

FIG. 1. Dispersion relations following from the coupled-
mode equations at the edge of the Brillouin zone. The dashed
lines, which have a slope of c/q, show the limit in which the
grating vanishes (x~O), whereas the solid lines refer to a finite
grating. The size of the stop gap is 2ac/g. FIG. 2. Schematic of our geometry.
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positive value for 1 implies a positive nonlinearity, and
thus an increase of the index of refraction with field
strength [Eq. (1)], causing the dispersion curves (Fig. 1) to
shift down. The low-intensity limit can now thus be in-
vestigated by tuning close to the upper edge of the stop
gap.

After these general comments regarding the coupled-
mode equations we now briefly turn to the time-
independent solutions. These solutions, which involve
Jacobi elliptic functions, can be found by using, for exam-
ple, the generalized Stokes parameters introduced by
Daino, Gregori, and Wabnitz for the analysis of non-
linear directional couplers. The results of such an exer-
cise have previously been given explicitly by Winful,
Marburger, and Garmire, ' and will not be repeated here.
We just point out that these solutions imply a bistable be-
havior for nonlinear periodic media with sufficient feed-
back. This is illustrated in Fig. 3. The lines in this figure
give the transmissivity T

~
/A (Fig. 2) as a function of

the incoming amplitude for a system with parameters
a = 5 and 5 =4.75 (and L = 1 and I =0.1). The frequency
is thus chosen to be close to the upper edge of the stop
gap (Fig. 1), so that we are in the low-intensity limit. Al-
though a full time-dependent calculation is required to
determine the stability of the various branches in the
figure, an elementary analysis shows that the dashed
part is unstable against amplitude fluctuations. Such an
analysis further shows that the solid parts are stable
against such fluctuations, but our numerical work in Sec.
III demonstrates that other instabilities render this pic-
ture incomplete.

On the lower stable branch the transmissivity is very
low, and the system essentially behaves as if it were
linear. As previously illustrated by Chen and Mills, the

III. NUMERICAL RESULTS

In this section we describe some of the numerical solu-
tions to the coupled-mode equation [Eqs. (7)], with the re-
striction on the nonlinear coefficients as in Eq. (8), and
boundary conditions given in Eqs. (9). Apart from the
boundary conditions we of course need initial conditions
as well. Throughout this work we use

V+(z, 0)=0, (10)

so that the nonlinear structure initially contains no ener-

gy.
The detailed numerical procedure to integrate the re-

sulting initial-value problem will be described in detail
elsewhere, but can be roughly explained. The coupled-
mode equations have the important property that the
characteristics are straight lines. By the coordinate
transformation

energy density in this regime is indeed very similar to the
negative exponential profile expected for linear systems.
If the system is prepared so as to be on this lower branch,
and the incoming amplitude is increased to about 1.60
(where the lower branch folds back), one would naively
expect the system to jump from a low-transmission to a
high-transmission state. The time-independent calcula-
tions of Chen and Mills show that energy densities for
states on this upper branch peak around the middle of
the structure and are thus distinctly nonexponential.
Similarly, if the system is initially on the upper branch,
and the incoming amplitude is lowered below about 1.05,
the system is expected to jump back to the lower branch.
In Sec. III we demonstrate that this view is often too
simplistic. Note that in following the upper branch, the
system passes a point where the transmissivity equals uni-
ty. At this incoming amplitude (about 1.11 in Fig. 3) a
gap soliton is excited. In Sec. III we study this simple
picture in more detail by analyzing the results of numeri-
cal solutions to the coupled-mode equations.

0.8 Z T

0.2

I I I & I I I

0.0 0 5 1.0
incoming amplitude

FIG. 3. Time-independent solutions of the coupled-mode
equations for K=5.00, 6=4.75, 1.=1, and I =0.1. Solid lines:
solutions stable to amplitude Auctuations. Dashed line: unsta-
ble solutions. The crosses (X) indicate the results of time-
dependent calculations. The size of the bistable region, which
depends on the feedback provided by structure, grows with in-

creasing L and s, and with decreasing ~5~.

C i=g+—r,
7l

we can make the integration directions coincide with the
characteristics. We then use standard finite-difference
methods for solving ordinary differential equations to in-
tegrate the resulting equations. With the introduction of
a finite-difference scheme, the characteristics form a two-
dimensional regular grid. We now integrate each of the
two equations over one of the set of characteristics, while
combining the results at the grid points. The disadvan-
tage of this method is that step sizes in the space and
time directions cannot be chosen independently: A dou-
bling, say, of the number of grid points inside the struc-
ture results in a doubling of the number of grid points in
the time direction as well, thus quadrupling the total
number of required integrations. In spite of this we have
found the resulting procedure satisfactory for our pur-
poses, typically using between 25 and 100 grid points in-
side the structure. The method is quite versatile and can



2862 C. MARTIJN de STERKE AND J. E. SIPE

be used in other situations where a coupled-mode
description can be used, for example, for the study of
transverse instabilities in nonlinear slabs. Moreover,
the numerical method lends itself very well to vectoriza-
tion.

In all our calculation we first let the system settle in a
state on the lower branch (Fig. 3) with a certain value of
the amplitude of the incoming radiation A. Such a dy-
namic equilibrium is characterized by a constant energy
fiux 9'+

~

—
~
V

~
inside the structure. After the system

settles we raise the incoming amplitude slightly (typically
by 0.01, see Fig. 3), and again we let the system come to a
dynamic equilibrium. We refer to this procedure as fol-
lowing the branch "adiabatically. " In fact, the small in-
crement is not even applied instantaneously, but rather is
smeared out over a time interval equal to half the round-
trip time of the system T„,where

T„=2rIL/c . (12)

As discussed at the end of Sec. II, for a certain value of
the incoming amplitude the system will "jump" off the
lower branch, which for a system with parameters as in
Fig. 3 occurs where this branch folds back at A =1.60.
If the system then does settle at the higher branch, the in-
coming intensity is slowly decreased, so that the system
adiabatically follows the upper branch back, until it
jumps back to the lower branch ( A =1.05 in Fig. 3). A
result of the described procedure is included in Fig. 3
represented by the crosses ( X ). These indicate at which
value of the transmissivity the system settles for a given
incoming amplitude. For clarity, only one in five of the
total number of calculated points have been shown in
Fig. 3. In this situation the time-independent solutions
are obviously a very good indicator of the full time-
dependent behavior of the system. The time-independent
solutions, however, give no indication as to how the sys-
tem jumps, or how long it takes to settle. In order to
answer these questions we refer to Fig. 4, which shows
the transmitted amplitude while the systems jumps from
the lower to the upper branch [Fig. 4(a)], and vice versa
[Fig. 4(b)], for the system with the parameters as in Fig.
3. As the unit of time we take the round-trip time in the
linear system T„[Eq.(12)].

From Fig. 4(a) we see that it takes the system about 50
round-trip times to come to settle after jumping off the
lower branch. This interval is seen to divide naturally
into two parts, each lasting about 25 T„.We denote these
by "injection phase, " and "oscillation phase, " respective-
ly. In the injection phase the system is essentially still in
a (nonequilibrium) low-transmission state. This is illus-
trated by the dashed line in Fig. 5, which shows the ener-

gy density
~ V+ ~

+ ~9'
~

inside the structure after 15 T„
in Fig. 4(a). We see that although the energy distribution
is definitely not a negative exponential (it peaks just
behind the front surface), the decay near the back surface
is qualitatively of this form. This field profile is typical
for the injection phase, during which the energy density
grows slowly, while the position of its maximum slowly
moves backwards. The duration of the injection period
depends on the details of the adiabatic following: Refer-
ring to Fig. 3, it varies with the amplitudes associated
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with the rightmost crosses on the lower and higher
branches. If the latter is only just "over the edge" of the
lower branch, the injection phase can take very long.

The oscillation phase in Fig. 4(a) is characterized by a
damped oscillatory output at a level which is much
higher than during the injection, while the state of the
system finally settles on the higher branch in Fig. 3. Both

10

o

0 I I I i I ~~ i I I I I i I I ) I I

0.0 0.4 06 0.8
Z

FIG. 5. Energy density inside the structure during transitions
between branches. Dashed line: at t =15 T„in Fig. 4(a). Solid
line: at t =30 T„in Fig. 4(a).

FIG. 4. (a) Time dependence of the transmitted amplitude

~ T~ (Fig. 2) during the transition from the low-transmission to
the high-transmission state in Fig. 3 ( A =1.592). The origin of
time coincides with the application of the change in amplitude
of the incoming radiation which leads the system to jump. (b)
Same as (a), but for the transition from the high-transmission to
the low-transmission state in Fig. 3 (A =1.050). The origin of
time is defined similarly as above.
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the period of the oscillation and its damping rate, which
appear to be insensitive to the details of the adiabatic fol-
lowing, are caused by a "sloshing*' of the energy inside
the structure, of which the solid line in Fig. 5 gives a
snapshot at t =30 T„.We consider this phenomenon in
more detail in Sec. IV. However, it is clear that the field
indicated by the solid line in Fig. 5 qualitatively differs
from that in the injection phase (dashed line). It peaks
roughly in the middle at a much higher value, and misses
the near-exponential decay near the back surface. It
should finally be mentioned that Fig. 5 is quite similar to
energy profiles found from time-independent calculations,
such as presented before by Chen and Mills.

We conclude that during the injection phase the energy
content of the structure increases sharply and that by the
end the field profile has changed qualitatively. Since the
frequency of the radiation lies within the stop gap of the
linear structure, no traveling waves are allowed in most
of the structure, resulting in an injection phase lasting
tens of round-trip times. During the oscillation phase the
system evidently properly distributes its newly gained en-
ergy. We have found that the described behavior is by no
means general. Below we discuss situations in which the
system never settles at all on the upper branch.

As mentioned, Fig. 4(b) shows the transmitted ampli-
tude while the state of the system jumps from the upper
branch back to the lower one. Again we see the
equivalent of the injection phase, which lasts about 25 T„
and an oscillatory phase which lasts only a few (about 5

T„)round-trip times. It is our experience that this pro-
cess altuays takes place in such a way. Because of this
predictability of the jump down to the lower branch, we
henceforth concentrate on the reverse transition.

We next show some results for two systems with the
parameters 5=4.5 and 4.0, while Ir=5. 0 in both cases
(and, as always, L = I and I =0. I). The time-
independent solutions for these sets of parameters trace a
curve very similar to that in Fig. 3, and are therefore not
presented here. For both values of 5 we follow the
branch adiabatically until it folds back just as in Fig. 3.
However, for neither value of 5 does the system now set-
tle on the higher branch. Although we cannot prove this
statement rigorously, we have integrated the system with
5=4.5 for well over 20000 T„without observing a ten-
dency to relax. We illustrate this behavior again by
showing the transmitted amplitude as a function of time.
This amplitude can again be separated into an injection
and an oscillation phase. The injection phase looks very
similar to the one before (Fig. 5) and is not shown here.
However, Fig. 6 shows the transmitted signals as they ap-
pear well into the oscillation phase, after possible tran-
sients have died out. The output is seen to be periodic in
both cases, with a period of about 2.8 T„for 5=4.5 [Fig.
6(a)], and about 5.2 T„for 5=4.0 [Fig. 6(b)]. Apart from
this, an important ditference is that Fig. 6(b), in which we
are tuned farther from the edge of the gap, appears much
"spikier" than Fig. 6(a). As will be discussed in Sec. IV,
this is a reQection of the mechanism that is ultimately re-
sponsible for these oscillations. A transmitted signal
similar to Fig. 6(a) has been observed earlier by Winful
and Cooperman' (for a =2.0, 5=0.0). However, these

1.5

1.0

0.5
C

O 0

T

I

/ 1 f 'I

l

/

time (units of T )r

15

10
time (units o f I )

Z

I

I

J
20

FIG. 6. (a) Transmitted amplitude T~ well after jumping off
the low-transmission branch for a system with parameters:
a=5.0, 5=4.5, L=1, and I =0.1. The incoming has ampli-
tude A =1.97 (Fig. 2). (b) Same as (a), but for system with pa-
rameters ~=5.0, 5=4.0, L =1, and I =0.1. The incoming ra-
diation has amplitude A =2.625.

authors apply their incoming amplitude instantaneously,
thus creating large transients which may complicate the
dynamics.

The transition between the regimes where the system
eventually settles [as in Figs. 3 and 4(a)] and where it does
not (as in Fig. 6) is estimated to be 5, =4.53 for Ir=5.0.
For 5)5, the system eventually settles; otherwise, it ex-
hibits self-pulsations. The precise transition point is hard
to determine since as 5~5„it takes an increasingly long
integration time to determine the final state of the system.
We have observed such a transition for several values of ~
(see Sec. IV, especially Table I) and therefore believe it to
be a general property of nonlinear periodic media. With
increasing IrL, the ratio 5, /a increases as well, so that in-
creasing linear feedback moves the transition point closer
to the stop-gap edge. We return to this matter in Sec. IV.

Comparing a series of different runs, as 5 is decreased
more and more at constant a, the transmitted signal
grows spikier, until, at 5=3.5, a period doubling appears
to take place. The differences between the first and
second halves of this new period are rather subtle and we
therefore do not show the transmitted amplitude for this
case. For 5 & 3.5 the nature of the transmitted amplitude
turns much richer. Our calculations, which extend down
to 5=0 (the middle of the gap) with step sizes of 0.25,
and then down to 5= —4.0 with step sizes 1.0, show a
wide variety of transmitted signals, which include simple
periodic signals, period-n signals, where n =2, 5, 6, 7 have
been observed, as well as chaotic signals. However, no
constant signals were observed for 5 (5,. A systematic
study of this complex behavior is rather difficult, as the
observed signal appears to be very sensitive to the last
stable position on the lower branch and the subsequent
step size. For this reason we cannot give general rules re-
garding what kind of output to expect in a given situa-
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tion. It should be mentioned that we have not observed
the "classic" period-doubling route to chaos, but this
may be due to the extreme sensitivity to the details of the
choice of parameters. Further, the observed behavior is
not due to our numerical procedure. If the integration
steps are chosen to be small enough, the resulting
transmitted signal is independent of the grid size.

As examples we now show the transmitted amplitudes
well in the oscillation phase for 5=2.25 [Fig. 7(a)] and
5=1.75 [Fig. 7(b)], both with a =5.0. We see that, com-
pared to the signal in Fig. 6(b), for 5=2.25 a period dou-
bling has taken place, whereas for 5= l.75 the transmit-
ted amplitude does not seem to repeat itself at all. This is
consistent with the power spectrum of the signal, which
shows little structure except for two peaks at frequencies
of 2n IT, and 4n /T„where T, is the average "period"
of the signal. Again, a transmitted signal similar to that
in Fig. 7(b) has previously been observed by Winful and
Cooperman, ' but only after an instantaneously switched
on incoming signal. In Sec. IV we analyze the results
presented thus far. We now close the present section
with the characterization of the chaotic signal of Fig.
7(b).

As mentioned in Sec. II, the coefFicients in the
coupled-mode equations are taken to be real so that local
energy dissipation is not allowed. In fact, it has been
shown that under this restriction the coupled-mode
equations can be derived from a Hamiltonian function.
However, the reflected and transmitted energy introduce
losses on a global scale, so that, in effect, the global dy-
namics is not Hamiltonian in nature, but is dissipative.
While not explicitly mentioned, the transmitted ampli-
tudes in Figs. 6 and 7(a) can of course be associated with
a fixed-point and limit-cycle at tractors, respectively.
Similarly, since the global dynamics of the system is dissi-
pative, and the transmitted amplitude in Fig. 7(b) is

chaotic, it must be associated with a strange attractor.
We obtained the clearest view of this attractor by plot-
ting the imaginary part of the transmitted signal versus
the real part, with time as the parameter. This results in
the D-shaped object shown in Fig. 8, with the loop of the
D corresponding to the spikes in Fig. 7(b). Actually, Fig.
8 shows the calculated points, which are separated by
T„/128,connected by straight lines to aid the eye.

We now turn to the dependence on the initial condi-
tions of the trajectories on the attractor. To do so we
compare two runs which we start well in the oscillation
phase with initial conditions differing by 10 ' at a single
grid point. The transmitted intensities in these two runs
diverge exponentially fast until, at t = 150 T„the
difference is of the order of magnitude of the signal itself,
and saturation sets in. We thus see an extreme depen-
dence on initial conditions, indicating that the strange at-
tractor is characterized by a positive (largest) Lyapunov
exponent, which we estimate to be about 0.2/T„.

Another way to characterize a strange attractor is by
its fractal dimension. A commonly used procedure is
due to Grassberger and Procaccia and is based on the
correlation integral of points on the attractor. This
method leads to the so-called correlation exponent.
However, this method fails to converge for our attractor.
We believe this is due to its shape: With the large empty
region in the middle, it is understandable that distant
parts of the attractor appear to have the dimension of a
simple line. We therefore think that the correlation in-

tegral is sensitive to both this appearance as well as to the
intrinsic dimension of the attractor, resulting in the
failure of the method. Instead we have used a method
proposed by Badii and Politi, which is based on
nearest-neighbor distances of points on the attractor.
This method leads to the so-called information dimension
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FIG. 7. (a) Same as Fig. 6. The parameters are ~=5.0,
5=2.25, L =1, and I =0.1. The incoming amplitude A =4.29.
(b) Same as Fig. 6. The parameters are a=5.0, 5=1.75, I.=1,
and I =0.1. The incoming amplitude is A =4.66.

FIG. 8. Real part of the transmitted amplitude (horizontal
axis) vs imaginary part (vertical axis) with time as parameter for
the chaotic signal in Fig. 7(b). The actual data points, which are
intervals of T„/128apart, are connected by straight lines to aid
the eye.
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DI of the attractor, which is a lower bound to the Haus-
dorff dimension. Following the procedure recently de-
s ribed by Broggi, we find that DI =2.3+0.05. Details
of this calculation can be found in the Appendix. Since
the dimension of a set corresponds roughly to the amount
of information needed to accurately specify points in it,
we can interpret our finding as an indication that for the
description of the chaotic signal in Fig. 7(b) only a few
parameters are relevant. Alternatively, one should be
able to describe the dynamics by only a few coupled equa-
tions.

IV. DISCUSSION AND CONCLUSIONS

In this section we give a qualitative explanation of the
behavior observed in Sec. III. In particular we would like
to understand why, after jumping off the lower branch,
the system eventually settles when we tune close enough
to the edge of the stop gap [Figs. 3 and 4(a)], while other-
wise it remains in a self-oscillating state (Figs. 6 and 7).
We have not yet been able to devise a quantitative theory,
but we think we have identified the probable causes of the
instability. As a preliminary step let us consider the field
profiles in Fig. 5 again. The dashed line in this figure
shows a typical low-transmitting state (albeit a nonequili-
brium one). The energy liow is of course small because
the energy density is genera1ly too low to tune the radia-
tion out of the gap and, consequently, any possible
transmitted radiation has to tunnel through a large frac-
tion of the structure. It is especially the near-exponential
tail at the back of the structure that limits the tunneling
rate. The solid line in Fig. 5 shows a typical (nonequili-
brium) high-transmitting state. The energy density in the
middle section is now high enough to allow traveling
waves. Transmitted radiation thus has to tunnel only
through two thin regions at the edges only, thus allowing
a substantial energy flux. However, another scenario
seems just as likely: Once the light has tunneled from the
left into the middle section it is surrounded by two high-
reflectivity regions. The situation then is very similar to
that of light trapped in a Fabry-Perot interferometer, ex-
cept that here the interferometer ensues from the dynam-
ical interaction of the light and the medium. This "trans-
parent region" can thus travel through the structure,
creating a second way in which energy can be transport-
ed.

We can quantify the intuitive notion developed above
by estimating the required energy to create locally a
transparent region. To do so we borrow some of the re-
sults of our earlier work on gap solitons, which makes use
of the Bloch function at the edges of the stop gap of the
linear structure. Using our present notation, the en-
velope functions multiplying these Bloch functions are
found to be proportional to 9++7 . Rewriting our pre-
vious results in this way shows that when

and is strictly speaking only valid in the low-intensity lim-
it. Further, it is based on a time-independent analysis
and thus does not take the dynamics of the transparent
region into account. We have developed a more general
criterion which does include propagation effects, but in
light of our restriction to low intensity, and because we
only require a rough idea of the extent of the transparent
region, we have found the criterion in Eq. (13) sufficient
for our purposes. We now first apply this criterion to in-
dicate where the radiation has tuned itself out of the stop
gap for a=5.0 and 5=4.75 (Fig. 9). This allows for a
direct comparison with Figs. 3—5 and with the discussion
in the first paragraph of this section. The shaded region
in Fig. 9 indicates the transparent region, whereas the
remainder only allows energy transport through tunnel-
ing. Notice that the front of the structure in this figure
appears at the bottom. The figure indeed shows the
transparent region moving from the front of the structure
to the middle. This movement, as well as the subsequent
relaxation oscillations, are well correlated with the
transmitted amplitude shown in Fig. 4(a). Notice also the
small transparent region forming at about 28 T„atthe
front of the structure. It is created while the edge of the
large transparent region is farthest removed from the
front of the structure (by about 0.4). Presumably the tun-
neling rate has dropped so much at this point that the en-

ergy is trapped and cannot enter the larger transparent
region at a sufficient rate. However, about a single
round-trip time later the edge is much closer by and the
resulting increase in the tunneling rate allows the energy
to flow to the transparent region in the middle of the
structure.

We next investigate in a similar way a situation in
which the system exhibits self-oscillations. We now take
v=5.0 and 5=4.0 so that, according to Fig. 6(b), the
transmitted signal is periodic. The result, which is shown
in Fig. 10, has the same time origin as Fig. 6(b). Figure
10 differs quite dramatically from Fig. 9 since the large
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the field is sufficient to tune the system locally out of the
gap. Some remarks concerning this result should be
made: Eq. (13) only holds if the nonlinearity is positive,

FIG. 9. Position of the transparent region (shaded) as a func-
tion of time. The parameters and the origin of time are the
same as in Fig. 3.
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FIG. 10. Position of the transparent region {shaded) as a
function of time. The parameters and the origin of time are the
same as in Fig. 6(b).
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transparent region in the middle does not exist at all
times. A comparison with Fig. 6(b) shows that the spikes
in the transmission occur when the transparent region is
closest to the back surface of the structure. This region
ceases to exist almost immediately after that, implying
that the spikes in the transmitted signal carry a large
fraction of the energy content of the transparent region.
A smaller fraction of this energy is reflected back into the
structure. The dynamics of this large transparent region
is clarified by a study of the energy density in the struc-
ture. This quantity is shown in Fig. 11 for t=T„and
t = 1.25 T„.These profiles remind one of a soliton propa-
gating to the right through the structure. However, upon
collision with the back surface the soliton is destroyed,
and, as discussed, most of its energy leaves the structure.

We believe that the formation and subsequent destruction
of a large transparent region (soliton) dominates the dy-
namics inside the structure in the interval between t =3
T, and 6.5 T„in Fig. 10. More puzzling is the creation
and particularly the disappearance of the small pocket of
transparency at the front surface around t =2 T„(cf.Fig.
9 and the discussion in the preceding paragraph). Just as
in Fig. 9, it appears when the large transparent region is
about z=0.4 away, again, presumably because the tunnel-
ing rate to the rest of the structure has dropped too
much. However, as opposed to the situation above, it
now vanishes well before the next transparent region is
created. A study of the reflected amplitude, in conjunc-
tion with that of the time-dependent energy density inside
the structure (which are not shown here) reveals that the
sma11 transparent pocket vanishes after interaction with
the reflected waves from the collision of the soliton with
the back surface, about T, /2 earlier. Thus although a
large fraction of the energy in the large transparent re-
gion leaves the system, a smaller fraction is reflected to
the front of the structure. After a time delay, therefore,
this energy returns to the front surface, influencing (in
this case, hindering) the buildup of a new transparent re-
gion.

As mentioned, while the large transparent region
moves to the back (Fig. 11), the energy density inside the
structure reminds one very much of a traveling soliton or
solitary wave. Since it is known that the coupled-mode
equations have stable solitary-wave solutions on an
infinite interval, we conjecture that the energy is indeed
transported to the back of the structure by such a solitary
wave, hence the nomenclature already used above. Of
course, the solitary wave is destroyed upon interaction
with the rear surface. If one identifies energy transport
through tunneling as a kind of conduction process, one
can think of the solitonic energy transport as a kind of
convection. We mention in passing that our previous
work has shown that when the field is tuned close
enough to the edge of the stop gap, the solitary wave is in
fact a soliton of the nonlinear Schrodinger equation.

We are now ready to discuss a few of the general obser-
vations we made in Sec. III. The first of these is the ten-
dency of the transmitted signal to get spikier when the ra-
diation is tuned farther away from the edge of the stop
gap. We think that the width of the transmitted pulses is
a reflection of the width of the solitary wave which car-
ries the energy through the structure. Previous work of
ourselves and others have shown that these solitary
waves get sharper when the field is tuned farther away
from the edge of the stop gap. If dynamic effects are ig-
nored (i.e., when the solitary wave is at rest), and we are
tuned close to the stop-gap edge, the width Fof the soli-
tary wave is given by

00 0.4 0.6
Z

0.8 10 W= 1

&2a(x —5)

FIG. 11. Energy density at t = T„and 1.25 T„in Fig. 13 while
the structure self-oscillates. Note that the shape hardly changes
in this time interval, suggesting that these 6eld profiles are asso-
ciated with a soliton or solitary wave of the system.

Given its restricted validity, as well as the uncertainty re-
garding the interaction of the solitary wave and the back
surface, this expression should not be taken too seriously.
Still it predicts the right trend and we believe that it does
contain the essential physics.
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Our observations lead immediately to two more con-
clusions. The first of these is that because of the convec-
tive energy transport from the front to the back of the
structure, and the back reflection of a small portion of
this energy, the parameters of the self-oscillation, like the
period, are hard to predict. For example, the interaction
of the reflected energy with the buildup of a new trans-
parent region at the front surface is a rather subtle effect,
and an estimation of the various time intervals involved
requires a thorough understanding of the dynamics. The
second conclusion we can draw refers to the onset of
chaotic oscillations, which occurs if we are tuned
sufficiently far from the stop-gap edge. This onset of in-
stability reminds one of that first described by Ikeda,
Daido, and Akimoto ' for a ring cavity. The similarity is
actually quite close since the role of a delay time, which
is crucial in their argument, is here played by the time in-
terval required for the reflected fraction of the convec-
tively transported energy to return to the front surface.
Unfortunately we have no direct control over this time
interval, so that comparison with the predictions of the
model in Ref. 31 cannot be made. However, for a fixed
delay time that model leads to chaotic behavior ' ' when
the intensity is raised sufficiently. This agrees very well
with our observations in Sec. III.

The last matter to be discussed is the transition from a
constant to a periodic transmitted amplitude, which, for
jr=5.0 takes place at 5, =4.53. We saw earlier that at
this point the conductive type of energy transport is re-
placed by a convective type. Presumably the former is
more efficient close to the edge of the stop gap, whereas
the latter takes over when deeper inside. It is intuitively
clear why such a transition should exist: If the soliton is
about as wide as the total structure the energy can propa-
gate freely throughout. As a consequence energy hardly
has to tunnel (if at all) in order to reach the back side.
Close to the edge of the gap, therefore, this is the most
efficient type of energy transport. From Eq. (14) we see
that the soliton gets narrower when we are tuned deeper
into the gap. Consequently, the transparent region gets
narrower as well, and therefore the tunneling rate drops,
decreasing the efficiency of the conductive type of energy
transport. This can be expected to be quite a dramatic
effect as the tunneling rate is an exponential function of
the parameters. The efficiency of the convective type of
energy transport depends in a far less critical way on the
position in the gap. One may argue that at most it de-
pends linearly on the soliton width, but certainly not ex-
ponentially. It is thus to be expected that when we tune
deeper into the gap and the soliton narrows, the convec-
tive type of energy transport must eventually be more
efficient. Of course this necessitates a 6, where the two
processes are equally efficient. Quantifying this argument
is again hard because the soliton width is a dynamic vari-
able. To lowest order, however, one might argue that the
transition occurs at a fixed ratio p of the static soliton
width W [Eq. (14)], and the system's length L. This as-
sumption immediately leads to an expression for the on-
set of self-oscillation:

—=1— (15)
2(pirL )

TABLE I. The onset of self-oscillation 5, as following from
our numerical work, for various values of ~. We can use these
in Eq. (15) to solve for p, which is the ratio of the soliton width
and the system's length.

4.0
5.0
6.0
7.0
8.0
9.0

3.48+0.01
4.53+0.01
5.59+0.01
6.67+0.01
7.77+0.01
8.80+0.01

0.490+0.005
0.461+0.005
0.451+0.006
0.480+0.008
0.510+0.011
0.541+0.015

This simple expression exhibits the proper trend: For in-

creasing ~ the onset of self-oscillation occurs closer and
closer to the edge of the stop gap. Equation (15) can be
tested qualitatively by using known values of 6, at vari-
ous values for x and solving for p to see if it is indeed a
constant. The results of such an exercise are given in
Table I. This table shows that p is not constant, but
varies slightly with ~, and has a value of about 0.50. Still,
in spite of the various approximations leading to Eq. (15)
there is good qualitative agreement between the predic-
tions of this equation and our numerical results: p does
not vary by much and, in addition, its value of about 0.50
not only agrees very well with Fig. 9, but also with our
expectations. Based upon the argument earlier in this
paragraph, on the one hand one expects the soliton to fit
well in the structure, while on the other hand it should
not be too narrow because of the resulting low tunneling
probability. The fact that our simple argument, which
was only based upon the expectation that p be constant,
leads to a value which agrees well with our intuition
makes us believe that the discussion leading to Eq. (15) is
based upon the correct physical arguments.

As a final remark we mention that Coste and Peyraud,
in their investigations, observe behavior that is similar to
that described here. Using the 5-function model men-
tioned in the Introduction, they consider a semi-infinite
medium with energy coming from one side and find the
following behavior: Below a certain value of the incom-
ing intensity the field settles into a low-transmission state,
in qualitative agreement with our observations. Howev-
er, above this threshold they find that solitary waves are
intermittently generated at the front surface, whereupon
these waves travel inside the structure. Although this be-
havior is reminiscent of Fig. 7(b), there are some consid-
erable differences: they do not observe their semi-infinite
system settling on the high-transmission branch as in Fig.
3, or the periodic behavior as in Fig. 6. The observation
of the intermittently generated solitary waves in a semi-
infinite system seems to contradict our discussion earlier
in this section where we concluded that the chaotic be-
havior was related to the back-reflected energy initially
carried by the solitary waves. We should, however, keep
in mind that Coste and Peyraud's model is known to in-
troduce artifacts (see the discussion in Sec. I) and it is not
clear whether their observed behavior belongs to this
category too. Moreover, it is curious that they have not
observed their system to settle on the high-transmission
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branch for any choice of parameters. One would expect
any reasonable model to exhibit such behavior in some
appropriate part of phase space. Finally, it should be
pointed out that a model in which the dielectric is con-
centrated in 5-function-like planes is very much unlike
ours since inequality (2) is not satisfied. To the contrary,
in fact, no ((n, . The contradicting conclusions of Coste
and Peyraud on the one hand, and ours on the other, may
thus well be due to the rather significant differences in the
models.

In conclusion, we have numerically investigated the
time-dependent properties of nonlinear periodic media.
The driving fields were adjusted adiabatically so that a
meaningful comparison with the well-known time-
independent solutions of the coupled-mode equations is
possible. We find very rich dynamics, exhibiting gap soli-
tons, as well as periodic and chaotic self-oscillation.
These two regimes are characterized by a different type of
energy transport through the structure: In the gap soli-
ton regime energy is transported by a tunneling process,
whereas the oscillatory regime is characterized by a con-
vective type of transport, in which the energy is carried
by solitary waves. We further believe that these periodic
oscillations turn chaotic when a sufficient amount of the
energy carried by the solitons is back-reAected towards
the front of the structure, where it interferes with the for-
mation of the next soliton. This process is similar to the
instability described by Ikeda, Daido, and Akimoto in
ring lasers. We are currently working on a more quanti-
tative description, and we expect to report on this work
in a future publication.
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and similarly for y. However, to ensure the lasting in-
dependence of x and y we define the "data points"
x,. =x(to+(i —1)r), where i=1,2, . . . , 1V, whereas for
the "reference points" y, =—y(t, +(j—1)Er), where

j=1,2, . . . , m. These definitions ensure that all but the
last E —1 samples x; are elements in exactly E vectors x,
whereas each sample y is used as element in a single vec-
tor y only. Following Broggi we now define b, k s(n) as
the Euclidean norm, computed in the E-dimensional
embedding space, between a reference point y, and its
kth nearest neighbor chosen among n data points x.
Making use of these quantities, Badii and Politi have
shown that Di can be estimated from the asymptotic rela-
tion

D ——I
log b ( n /k )

m—g logbbl I, E(n)
j=1

n ~ (x) (A2)

where any base b for the logarithm may be used. Follow-
ing Broggi again, we take b =2 so that a factor of 2
corresponds to four units.

The onset of the scaling regime in which Eq. (17) is val-
id was shown by Broggi to depend critically on the
selected value of k. This author comes to the conclusion
that onset of scaling can be shifted to lower n by taking k
small enough. However, doing so results in more noise,
leading to a large uncertainty in estimating DI. For a
given number N of data points x, therefore, one must
choose k to be the largest value for which the onset of
scaling can clearly be established.

In our implementation of this procedure we take
r=T„I4,E=8, while m =1700 and %=19136 .0We
show in Fig. 12 the running estimate for Di as a function
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APPENDIX

x(t) = Ix(t ),x(t+r), . . . , x(t+(E —1)rj, (A 1)

In this appendix we describe briefiy our procedure to
obtain the information dimension DI of the attractor in
Fig. 8. As mentioned in Sec. III, our method makes use
of the nearest-neighbor distance distribution of points on
the attractor. While this class of methods was proposed
by Badii and Politi, in the implementation we follow re-
cent work by Broggi.

The method calls for two independent scalar time
series consisting of equidistant samples of the chaotic sig-
nal x, —:x{to+(i—1)r) and y—:y{t&+(j—1)r). Recall
from Sec. II that independence of the time series can be
assured by starting with different initial conditions and
integrating over about 150 T„.Each of these time series
is used to construct a representation of the attractor in an
E-dimensional embedding space by introducing the vec-
tors
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FIG. 12. Running estimate of the information dimension DI
as a function of the number of used data points n. Scaling is
seen to set in at logbn =65. The constant b equals 2 ", so that
an octave corresponds to four units. Based on this figure DI is
estimated to be about 2.3.
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of n, where X/64«n «X, and k=4, 10, and 40. The
choice k =4 leads to a strongly fluctuating result,
whereas for k =40 scaling has not yet set in, in agreement
with the discussion of Broggi. The value k=10 has

been chosen such that the onset of the scaling regime is
easily recognized to be around logbn =65 (n =80000).
From Fig. 12 we conclude that DI =2.30+0.05, as stated
in Sec. III.
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