PHYSICAL REVIEW A

VOLUME 42, NUMBER 5

1 SEPTEMBER 1990

Population trapping in the Jaynes-Cummings model via phase coupling

J. 1. Cirac and L. L. Sanchez-Soto
Departamento de Optica, Facultad de Ciencias Fisicas, Universidad Complutense, 28040 Madrid, Spain
(Received 17 January 1990)

An expression for the population inversion in the Jaynes-Cummings model and the most general
initial state of the atom-field system is presented. States that maintain the same level of population
inversion when the atom and the field are initially decoupled are found. When the atom is prepared
in a coherent superposition of its states and the field is in an eigenstate of the Susskind-Glogower
phase operator, for a certain choice of the relative phase between the atomic dipole and the field,
coherent trapping occurs. The evolution of the squeezing of the field for these states is given, and
the dependence on the phase and on the mean photon number of the field is studied.

I. INTRODUCTION

The Jaynes-Cummings model' (JCM) of a single two-
level atom interacting with a single mode of the quan-
tized radiation field in a lossless cavity is one of the most
thoroughly examined models in quantum optics. In the
framework of this model many nonclassical effects, such
as vacuum-field Rabi oscillations,? antibunching,3 and
squeezing* of the radiation field, or collapse-revival phe-
nomena,” have been predicted. This last phenomenon
provides unquestionable evidence for the discreteness of
the radiation field, and has been studied in detail when
the field is initially in one of the following states:
coherent,® chaotic,” squeezed,® binomial’ thermo-
coherent,'®  logarithmic,!!  multiphoton  Holstein-
Primakoff SU(2) group,'? and also for the superposition
of coherent and chaotic fields.!> The effects of cavity
damping have also been discussed.'*

In spite of their extreme difficulty, recent experiments
with Rydberg atoms in high-Q microwave cavities have
allowed experimental observations of the dynamical
properties of the model.'>

The phenomenon of collapses and revivals of the atom-
ic inversion depends on the statistics of the photon-
number distribution, but not on the phase of the field if
the atom is initially in one of its two states. However, if
the atom is prepared in a coherent superposition of the
excited and ground levels, the excitation probability de-
pends on the relative phase between the atomic coherence
and the exciting field.'® This phenomenon of phase sensi-
tivity in the atom-field interaction has attracted a lot of
attention since it provides a useful means of testing the
predictions of the quantum theory of radiation against
those of semiclassical and neoclassical theories, as well as
having applications to noise quenching by correlated
spontaneous emission,!” quantum beats,'® and noise-free
amplification.!®

The spontaneous decay®® and the fluorescence spec-
trum?! of an atom in a broadband squeezed vacuum are
two additional examples where the phase dependence
plays a predominant role, and novel effects appear when
the phase is changed.

Agarwal and Puri?? have demonstrated that the effects
due to the quantum nature of the field in the cavity can
be isolated by setting the initial phase of the atomic di-
pole moment. Recently, Zaheer and Zubairy?’ have
shown that in the interaction of a two-level atom, initially
prepared in a coherent superposition of its two states,
with a coherent field, it is possible to obtain coherent
trapping for a particular choice of the phase and in the
semiclassical limit. This can be interpreted as a result of
a destructive interference between the atomic dipole and
the cavity eigenmode. Slosser, Meystre, and Braunstein®*
have studied the evolution of a single mode of the field
driven by a current of two-level atoms, each interacting
with the mode for a time 7, a problem widely studied in
the context of micromaser theory,25 showing that under
certain trapping condition it evolves towards a new class
of pure states which remain unchanged after each in-
teraction time 7.

In the present work we focus our attention on the
phenomenon of trapping. We show that, for a set of ini-
tial conditions of the atom-field system, the atomic inver-
sion, far from exhibiting revivals, remains constant.
Some of those initial states were well known, but we find
pure and decoupled states for which exact coherent trap-
ping occurs, i.e., the population of each atomic level and
of the field does not evolve. This is in sharp contrast with
the belief that a pure two-level system cannot exhibit
coherent trapping.” Note that, although other observ-
ables like dipole moment or squeezing are more phase
sensitive, it is the atomic inversion that is best suited for
experimental investigations.

The paper is organized as follows. In Sec. II we
present the expression for the evolution of population in-
version for the most general initial state of the global
atom-field system. In Sec. III we study trapping
phenomenon, and we obtain pure and decoupled states of
the atom and the field which exhibit coherent trapping.
These states can be identified as the eigenstates of the
well-known Susskind-Glogower phase operator.?® In Sec.
IV we show that, for a certain choice of their parameters,
these states present squeezing. We also investigate how
the degree of squeezing of the field in the cavity evolves
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with time, and we find nearly the same results obtained
when the initial state of the field is a squeezed vacuum:?’
Only for low values of the mean photon number the field
is squeezed at any times beyond the first few instants.
This is in contrast with the results of Ref. 4, where the in-
itial state was taken to be a coherent state and where
some small amount of squeezing appeared and disap-
peared when the population inversion was in the revival
or in the collapse region, respectively. Our conclusions
are summarized in Sec. V.

II. POPULATION INVERSION
FOR AN ARBITRARY INITIAL STATE

The Hamiltonian of the exactly soluble JCM in the
rotating-wave approximation (RWA) reads

H=%ﬁa)003+ﬁa)al{a+f1)»(afa_+cr+a) R (1
where the o’s are the usual pseudospin operators acting
J
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where the detuning parameter is A=w,—w and

A, =AVn+1, (5a)

1/2
] (5b)

pa= 24147

In the following we shall assume, as usual, that at time

t=0 the density operator factors into its atomic and field
parts

A
5—[cos(2u,t)—1]Re[P(g,e,n +1,n)]
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in the space of atomic states, a and a’ are the annihila-
tion and creation operators for the field mode, and A is a
coupling constant containing the transition dipole mo-
ment. The natural transition frequency w, of the atom
need not to coincide with the mode frequency w, al-
though the RWA is reliable only if |0y— | << 0y, o.

We first consider the most general initial state for the
system,

S S Pagmmina)mpl. @

n,m=0 a,f=g

pl0)=

Here |n,a) denotes a state with n photons and the atom
in the ground (@=g) or in the excited state (@ =e), and
P(a,B,n,m) are ¢ numbers constrained by the conditions

Trp(0)=1, [p(0)]'=p(0)>0 . (3)

For the initial state given in (2), the population inversion
is given by

24,
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where 2> pg(lmpg)iq2 (the second equality is satisfied

p(0)=p 4(0)®pr(0), (6)  only for a pure state). In this case the atomic inversion
with can be expressed as
p40)=p,lg)(gl+(1—p,)le) el (os(0)) =ho+h (1) +hy (1), (8)
+q(e g)le|+etle)(gl), (7a)  where
]
) 1A2
ho==pgP(0)+ 3 |=5-[(1=py)P(n)=p P(n+1)]=—7—qP(n,n +1)cos[$(n +1,n)—-1/)]) , (9a)
n=0 n n
_a M A
h(t)= 20 ;—z—cos(2/,t,,t) (1=pg)P(n)—p,P(n +1)+Kn—qP(n,n+1)cos[¢(n+1,n)—1/}] , (9b)
hy(n=3 " sin(2u,t)gP (n,n + 1)sin[¢(n +1,n)—9¢] . (9¢)
n=0 n

Note that h,(#) is an interference term that depends on
both the relative phase between the atomic dipole and the
field, and the purity of the initial state. Contrary, h,(t)
has two parts: the last term is similar to 4,(¢) but is due

—
to the existence of a detuning A between the atomic tran-
sition and the frequency of the cavity mode; the first and
second term on the right-hand side of (9b) express noth-
ing but the possibility of exchange of a photon between
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the atom and the field, and hence they are phase indepen-
dent. When h,(t) and h,(¢) vanish, the atomic inversion
remains constant, the atom will be trapped by the field,
and there will be not any transition between its levels, as
occurs when it is isolated.

III. COHERENT AND INCOHERENT TRAPPING

In this section we discuss the steady-state behavior of
the atomic populations in the excited and ground levels.
We consider (6) as the initial state of the system, i.e., we
do not study some coupled states of the atom and the
field, such as the dressed states,?? that exhibit trapping.
We shall use this term to refer to a persistent probability
for occupying a given level in spite of the existence of
both the radiation field and transitions to the other level.’
Under such conditions, level population takes on a
steady value.

Equation (8) shows that the atomic inversion remains
constant only when both 4 ,(¢) and h,(t) vanish. We con-
sider trapping phenomenon resulting from two different
sets of initial conditions that cancel h,(t) out. In the
first, there is not any phase coupling between the atom
and the field, i.e., g or P(n,n +1) are zero. In the second,
the atomic dipole and the field are coupled through their
phases in such a way that h,(¢) vanishes. In this last case
we shall only consider pure states since mixed states are
intermediate situations between pure and chaotic states
and add nothing new to the JCM.

A. Incoherent pumping

For g or P(n,n +1) vanishing, 4,(¢)=0 only when

Pm=1=2< || 2| | (10)
Pg | | Pg
with
Pe=1—p,, +<p,<l. (1

Thus, in this case, at least either p ,(0) or p(0) must
be a mixed state. Trapping does not depend on the
phases and coherences, and so there is incoherent trap-
ping. Note that for squeezed vacuum h,(t) is zero and
there is no interference term in the atomic inversion be-
cause of a lack of coherent coupling between the one-
photon transition of the atom and the two-photon
squeezed state. This is the reason why the model con-
sidered in Ref. 27 of an atom in a coherent superposition
of its two states interacting with a squeezed vacuum does
not exhibit phase sensitivity, and the results are very
similar to those for a thermal field. For a chaotic state

P

Dg

P

80 s (12)
pe | "

P(n,m)=

Eq. (10) holds and the atomic inversion is constant. In
addition, when g is zero, any observable of the system
does not evolve. In this case, the light and the atom does
not interact because [H,p(0)]=0, and hence p(0) is a
constant of motion. This is not the only state that is a
constant of motion, but it is the one that can be expressed
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in the form (6).
form

plO)= f(C),

that commute with the JC Hamiltonian, C=303+aTa
being the excitation number, which is a constant of
motion for the JCM. Note that these results hold for ar-
bitrary values of the detuning A, in the range in which
the RWA is valid.

There is an infinite set of states of the

B. Coherent pumping

We now assume that the initial state is pure and the
phase of the atomic dipole and the field are identical. For
a pure state, we have in (6)

g=[p,(1—p,)]'"*

P(n,m)=V'P(n)VP(m), (13)

d(m,n)=¢(m)—d(n) .

b

It is easily shown that (o3(¢)) remains constant when
the photon-number distribution is given by
2

e n"*l iA+‘lL1
P(n)c f— n ZT , n=12,... (l4a)
g | ' i
and
d(n)=ny . (14b)

With this last condition, the mean electric field is
(E(1)) «<sin(lwt —¢) ,

and so we can identify the angle ¥ with the phase of the
classical field.

For this coherent pumping situation we shall consider
only the case A =0 since it keeps the expressions simpler
and retains all the relevant physical features. Now the
condition (14a) is transformed in (10). As a consequence,
we have that for the initial state given by

[W(0))=|¥(0)) ,®|¥(0))f, (15)
where
-1/2
w(0)) ,= |1+|z|2 [|e>+z*|g)] , (16a)
172 o«
W(0)) = |1—|zr2 S z"n), (16b)
n=0
and
z=|zle’d, |z] <1, (17)

coherent trapping occurs. Here the condition |z| <1
means that, as in the case of incoherent pumping, the
upper state population must be less than the lower state
population. It can be shown that all the diagonal ele-
ments of the density operator expressed in the basis
|n,a) remain unchanged. A possible explanation for
such behavior can be as follows. Whereas in an N-level
atom (N >2) coherent trapping occurs due to the
coherent interference between two or more transition
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channels, in the case of a two-level atom the atomic di-
pole interferes destructively with the cavity eigenmode,
inhibiting the transition between the two levels?® and
forcing h,(t) to vanish. When the atom and the field are
in thermal equilibrium, Eq. (10) holds and A ,(¢) is zero.
These two conditions are fulfilled only for the state (15).
Other states which satisfy (14), and for a certain choice of
the mean photon number of the field, can make h,(¢) ex-
tremely small, and hence the amplitude of the oscillations
of the population inversion becomes nearly zero. This is
the coherent state case studied in Ref. 23. Note that the
density operator of the state (15) does not commute with
the Hamiltonian (1) and so it is not a constant of motion.
In fact, the atomic dipole and the off-diagonal elements of
the density operator of the field oscillate. In this context
we should mention the tangent and cotangent states in-
troduced by Slosser, Meystre, and Braunstein,’* which
not only leave the atomic inversion unchanged but also
the field itself, even if the upper state population is larger
than the lower state population, but this trapping is
achieved only for some fixed interaction times.

The states of the electromagnetic field defined in (16b)
are eigenstates  of the Susskind-Glogower phase
operator®®(N +1)~1/2a. When we substitute z =|z|e‘¢ in
(16b) they are very reminiscent of the coherent states. In
fact, it has been recently pointed out that they may be
v1ewed as generalized coherent states of the SU (1,1)
group.?® We also note that the properties of the diagonal
elements of its density operator are the same as those for
the chaotic field. For these states we have

__lz?
(n) e (18a)
(n?)={(n)(1+2(n)) (18b)

For (n)>0, (An)>>{(n ) and so they exhibit a super-
Poissonian photon-number distribution. The degree of
rth order coherence is

atat raa )

(a'a)”

In the semiclassic limit ({n)— o) these states ap-
proach the phase states,*® which have been extensively
used in quantum optics and have been shown to have the
properties expected of a state of well-defined phase. They
are most conveniently written in terms of the limit

g'0)= =r!. (18c)

|6) = lim (s +1

s
)—]/2 2 ein@ln) . (19)
§—> 0 —_
This limit has to be taken, as pointed out by Barnett and
Pegg,?® when expected values are calculated. We have
plotted in Fig. 1 the evolution of the atomic inversion for
different values of s, the maximum number of photons of
the state (19). Note that the atomic inversion oscillates
with Rabi frequency 2A; and the amplitude approaches
zero when s— . So these phase states can exhibit
coherent trapping when the atom is prepared in a state
with infinite temperature (p, =p, =3). Recently, Barnett
and Pegg have constructed a well-behaved Hermitian op-
tical phase operator through these phase states.?’
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FIG. 1. Evolution of the atomic inversion for an atom

prepared in a coherent superposition of its states (p, =pe=%)
and the phase state defined in (19) before taking the limit. The
values of the maximum photon-number Fock state for this state
are (a) 1, (b) 10, and (c) 50.

C. Semiclassical limit

Finally, to conclude this section, we investigate the
similarities between the quantum and the semiclassical
regimes in the study of the trapping phenomenon in the
JCM. Coherent trapping can be explained semiclassically
in a three-level atom.”> We might ask if in a two-level
atom the semiclassical steady state for the atomic inver-
sion coincides with that obtained in (15). The response of
a two-level system driven by a nearly resonant field is de-
scribed by the Bloch equations,®® which may be written
(neglecting relaxation) as

dB

— = XB, 20
i Q; XB (20
where Qp=(—§,0,A) is the driving field vector and
B=(B,B,,B;) is the Bloch vector. The quantity

§=Ed /% is the Rabi frequency associated with a driving
field of the form E sin(w? —6) and has been chosen to be
real; A is the detuning parameter; d is the atomic dipole-
moment-matrix element; and B,, B,, and B, are related
to the atomic density-matrix elements by

B =p,e " Ptcec., (21a)
B,=i(pg e "' V—c.c.), (21b)
B3:pg _pe . (21C)

When initially B and Qp are parallel, B remains sta-
tionary. It has been pointed out that these configurations
correspond to atoms in particular dressed states of the
atom-field system.’!

For A=0, trapping occurs when
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Pe(0)=ge ", (22a)

(22b)

Here, even when the atom is prepared in a mixed state
(g <), the first equation expresses the same condition
obtained in (14b): The atomic dipole and the field must
have identical phases at t=0. Equation (22b) is obtained
for the quantum case when in (10) the average photon
number tends to infinite (semiclassical limit), i.e., for a
phase state.

When A0 it is easily shown that {o4(¢)) is constant
if the initial state of the atom is such that either g=0 and
Pg=1% or (1—=2p,)6=2qA and p,,(0)=ge ~i The first
conditions are the same studied in the beginning of this
|

section when (n ) — o, and the second ones are the same
for a coherent state in the semiclassical limit too.

IV. TIME EVOLUTION OF THE SQUEEZING

We have found in Sec. III that all the diagonal ele-
ments of the eigenstates of the Susskind-Glogower phase
operator remain constant for a certain initial state of the
atom, when the atom and the field are on resonance. In
this section we discuss the magnitude and evolution of
the possible squeezing, given the appropriate parameters
for these states. The quadratures of the field are defined
as

(23a)
a,=ila—a’). (23b)

+
a,=a+ta ,

For the state given by Eq. (16b) we have for the vari-
ances in @, and a,,

2 © © _ 2
((Aal)2)—-1=1—2|z|—|F+2|z|2(1—|zI2)cos(2¢) S 1z2I*"V'n +1Vn +2— |2]zl(1—|z[*)cos($) 3 |z|*"V'n +1] ,
iz n=0 n=0
(24a)
2 o _ * —)?
<(A02)2>‘1=121—Z|||2~2|z]2(1—|z|2)cos(2¢) S 2PV +1Vn+2— 2]zl(1—=lz/Psing 3 21>V +1| ,  (24b)
—\|Z n=0 n=0

Note that ((Aa;)¢))=((Aa,)(¢+m/2)) and the
dependence on ¢ is through cos(2¢). So we may restrict
ourselves to study ((Aa,)*(¢)) in the first quadrant. For
¢=1/2 we get

((Aa)X(7/2))—1

1

=2|z|? _l-—|—z‘2—(l-(2|2)

X 3 lzZ*"n+1vn+2|,

n=0
(25a)
and it may be written as
((Aa)(7m/2))—1
=—2[z[((1—]z[%)
X 3 VA FIVAFa—(n+1)]<0.  (25b)

n=0

Thus there is squeezing in the field. We see that for
o=m/4

((Aa)m/4)) —1=((Aa,)Xm/4))—1
=21zI([A(VaTa+ D) >0,  (26)

and there is not any quadrature of the field squeezed. For
#=0, ((Aa,)*0))-1 is given by (25b), and provided
((Aa;)*){(Aa,)*) =1, a, cannot exhibit squeezing. In

the Fig. 2 we have plotted ((Aa,)?) —1 as a function of ¢
and |z|>. Note that the squeezing in a, increases (de-
creases) when |z|? increases for ¢~7/2 (¢~0). In fact,
for a phase state with ¢ = /2, the quadrature a, is com-
pletely squeezed.

Now we investigate how the properties of squeezing
evolve when the field in the state defined in (16b) interacts
with an atom in the state given by (16a). We consider
only the quadrature a, because the squeezing in a, is ob-
tained from the same expressions that for a, by changing

((8a2)") -1

FIG. 2. Squeezing in the quadrature a, for a state defined in
(16b) as a function of the mean photon number and the phase of
the field. Note that squeezing increases (decreases) with the
mean photon number and for 6~0 (0~ 7/2).
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0 by 6+ /2. In terms of the photon operators we get for
the squeezing in a, the expression

([Aa,(D]?) —1=2(a’a)+2Re(aX(1))

—[2Re{a(t))]?, 27)
and, after some lengthy algebra, we find
2
+ z
(a'a)= ——H——; , (28a)
1—|z
6 . . . . . . A
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FIG. 3. Evolution of the squeezing in @, as a function of the
interaction time for the state defined in (16b). The values of |z|?
are (1) 0.1, (2) 0.3, (3) 0.5, (4) 0.7. The phase of the field is O for
(a) and 7/2 for (b).
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— |z

Re(a)— e leElzlz"\/n+1+\/n)
Xcos[(A, _;—A,)t+¢], (28b)
Re(az)zl_—w| 12
1+1z|?
X 3 |2(Vin ¥ D0 FD+Vn F D
n=0
Xcos[(A, _;—A, )t +24], (28¢)
with A, is defined in (5b). In Figs. 3(a) and 3(b) we have

plotted the evolution of the squeezing in the cavity for
different values of |z| and ¢=0 (¢=7/2). We see that
when |z| is small, i.e., for low values of {n ), the field is
periodically squeezed, with the same period for all values
of ¢. For large values of {(n)(|z|~1), after the initial
squeezing diappears, the oscillations of ((Aa,)?) have
the same period and are far from the value of squeezing
independently of the initial phase of the field. This coin-
cides with the results obtained in Ref. 27, where the ini-
tial state of the field was taken to be a squeezed vacuum,
and differ with those obtained for a coherent state in Ref.
4. When the mean photon number is small, the atom and
the field are almost decoupled; the atomic dipole and the
coherences of the field oscillates with the Rabi frequency,
the amplitude of the oscillations becomes small, and,
after each oscillation, the initial situation is reached. For
a large mean photon number in the initial field, the atom-
ic dipole and the coherences of the field are strongly cou-
pled through their phases and the first modifies the
second, destroying the squeezing of the field.

V. CONCLUSIONS

The atomic inversion in the semiclassical JCM does
not evolve when the system is prepared in a dressed state.
In the case of a two-level atom, initially in a coherent su-
perposition of the ground and excited states, interacting
with a coherent state of the field, the atomic inversion al-
most remains constant for a certain choice of the relative
phase between the atomic dipole and the cavity field, and
hence coherent trapping occurs. We have shown that,
when the initial state of the field is an eigenstate of the
Susskind-Glogower phase operator and the phases of the
field and the dipole moment are identical, not only the
atomic inversion remains constant, but so does every di-
agonal element of the density matrix of the atom-field
system expressed in the basis |n,a), and hence exactly
coherent trapping occurs. This can be interpreted as the
result of the existence of thermodynamic equilibrium be-
tween the atom and the field and a destructive interfer-
ence between the atomic dipole and the electric field.
Other states of the atom-field system can maintain the
atomic inversion constant, but they are mixed or they
are not decoupled.

The degree of squeezing strongly depends on the initial
phase of the atomic dipole for short times, but it does not
for long times, when the initial state for the field is that
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given in (16b) and for the atom an appropriate coherent
superposition of its states. Given the well-known behav-
ior of the squeezed vacuum, only for low values of the
average photon-number the field is squeezed at any times
beyond the first few instants. This is in contrast to the
squeezing obtained for the evolution of a coherent state
in the JCM.
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