
PHYSICAL REVIEW A VOLUME 42, NUMBER 5 1 SEPTEMBER 1990
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II. Density-matrix treatment of extra resonances
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A nonperturbative density-matrix formalism is used for the analysis of strong-field four-wave

mixing, allowing the treatment of relaxation processes, including lifetime as well as dephasing. The
combined role of proper dephasing and level saturation in the generation of extra resonances is

studied. It is shown that, whereas in the absence of proper dephasing there is no pressure-induced

resonance, there is always a nonzero contribution to the field-induced resonance. For increasing
field intensity, a characteristic double saturation is predicted as a function of the field strength. The
dependence on the various parameters is investigated, and the conditions under which these effects

should be observable are identified.

I. INTRODUCTION

The interaction of strong fields and absorbing mole-
cules manifests itself in many nonlinear optical experi-
ments. Wave mixing is a common example of such in-
teraction, but many others have been investigated since
the introduction of strong lasers. The standard theoreti-
cal approach to the treatment of problems in nonlinear
optics has been the perturbative handling of the strong
fields, resulting in a power series expansion of the in-
duced polarization. ' In this treatment, for a molecular
system with a center of inversion (like a free atom or mol-
ecule), the loweset-order nonlinear term is of third order.
Indeed, the formulation by Bloembergen of nonlinear op-
tics in terms of these susceptibilities has been extremely
successful, and most observations may be explained by
this "simple" approach. Like any perturbative method,
the theory breaks down when the smallness parameter is
no longer small, and this occurs when the fields are sa-
turating.

Many situations involving the interaction of strong
fields with absorbing molecular level systems have been
treated ' . We will not try to provide a full review of
the literature, but a partial list of relevant papers was
given in our previous paper on the same subject (paper
I).' The most fundamental problem, a two-level system
(TLS) with one strong field, may be handled analytically
to all orders in the field, and in essence had been solved
by Bloch, who treated material relaxation by including
phenomenological rates. ' When more than two levels
are involved, the situation becomes more complicated. A
three-level system with two fields may still be treated
analytically under certain conditions. However, in prac-
tically all treatments of four levels and three input fields,
not all fields are allowed to be strong. By far the most
common approach is to assume that one of the fields is
strong, to solve this problem to all orders, and to treat

the other fields as perturbations. Early papers dealing
with strong-field interactions were published by Wilcox
and Lamb, Bloembergen and Shen, and Freed. More
recently Dick and Hochstrasser (DH) published a
thorough investigation of strong-field four-wave mixing
(FWM). This paper is discussed below. Two very recent
papers treating strong-field effects are DeTemple et al. '

who concentrated on resonant frequency tripling, and
Oliveira et al 'who d.iscussed two photon coherences
and analyzed destructive interferences between different
contributions to the optical polarization.

The observation of the pressure-induced extra reso-
nances' (PIER 4) focused attention on the role of relaxa-
tion in FWM processes. In these resonances the dephas-
ing process itself, by removing destructive interferences,
is responsible for the appearance of additional reso-
nances, and several such resonances had been predicted
and observed. ' ' The perturbation theory description
of these resonances is quite adequate for the region where
the theory is expected to be valid, namely for weak fields.
For stronger fields, as was pointed out by Friedmann and
Wilson-Gordon' and by Agarwal, the inclusion of or-
ders higher than third will also remove the destructive in-
terference, resulting in an extra resonance. A full review
of the dephasing-induced extra resonances has been re-
cently published by Rothberg.

In paper I, ' we have introduced a strong-field theory
of four-wave mixing, based on a wave-function forrnula-
tion. A transformation to a generalized rotating frame
has been used for removal of the fast time dependencies,
followed by numerical diagonalization of the time in-
dependent Hamiltonian. The paper gives the procedure
for identifying the correct Hamiltonian for each of the
field permutations, which enabled the study of the partic-
ular diagrams giving rise to the PIER 4 extra resonance.
In that paper material relaxation processes were not in-
cluded, the Doppler effect due to molecular velocities was
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not included in the calculation, pump depletion was not
considered, and each field was assumed to interact with
only one pair of levels. Field induced extra resonances
were considered in detail, and it was shown that for
strong fields, the resonance frequencies are shifted and
lines are split.

The paper by Dick and Hochstrasser introduced a
density matrix formalism covering both material relaxa-
tions and strong fields. DH treated relaxations by includ-
ing the standard phenomenological rates 1, and T2, and
in addition, they included incoherent feeding terms as
well. In order for the treatment to be self-consistent, they
considered a closed system, where the incoherent feeding
terms assured that the total population remained con-
stant, and did not decay to zero. The exact solution to
the transformed time-independent density-matrix equa-
tion was obtained by inverting a 16X16matrix. To illus-
trate the formalism, DH considered in detail coherent
anti-Stokes and Stokes Raman scattering (CARS and
CSRS), but did not include a discussion of the diagrams
giving rise to the extra resonances.

In the present paper the formalism developed in DH is
used to investigate FWM in general and extra resonances
in particular in all regions. The assumptions introduced
in paper I are used here as well, with the exception of the
inclusion of material relaxation, longitudinal as well as
transverse. At low fields, the dominant effect is of the
material relaxation, while at high fields it is the fields
themselves that give rise to the extra resonances. The in-
termediate region, where many of the experiments are
done, has not been studied previously in any of the
above-mentioned papers, and will be treated here.

In addition to FWM, the theory presented here is ap-
plicable to any process where several laser beams interact
with a few-level system (FLS). Experiments of this kind
include multiphoton excitation of atoms and molecules,
higher harmonic generation, or the interaction of laser
beams with very strong absorbers like semiconductor
samples. More generally, the advances in short pulse
generation, which have reached pulse lengths of a few
femtoseconds, facilitate reasonable experiments with laser
intensities hitherto unheard of, and it is expected that
perturbation theory approaches will not be valid.

The organization of the paper is as follows. In Sec. II
the general formalism is developed, and is applied in Sec.
III to a specific group of diagrams of the FWM interac-
tion. In order to avoid confusion due to the level struc-
ture of real atoms like Na, we invented a new hypotheti-
cal atom, the OLS atom, which has the optimal level
structure (OLS) needed to separate the various eff'ects.
The OLS atom is defined below, and will be used in this
paper. In Secs. IV and V we present results for this atom,
and discuss conditions where the effects discussed in this
paper may be observed experimentally. The paper con-
cludes with a discussion of the limitations and the direc-
tion for further extension of the present theory.

energy-level diagram showing a typical interaction is de-
picted in Fig. 1. Here three input fields of frequencies ~„
cub, and co, interact with the four-level molecular system
(g, t, k,j) to generate the fourth coherent beam at co

(=co, +cob —co, ). The standard assumptions of the di-

pole interaction are made, and the semiclassical treat-
ment is adopted throughout this paper. The system is al-
lowed to undergo material relaxation, which is included
in the form of longitudinal and transverse phenomenolog-
ical rates. The density matrix of the four-level system
evolves according to the equation

[p,H]—+ (p) (2.1)

The Hamiltonian in Eq. (2.1) is the usual dipole ap-
proximation Hamiltonian of interaction of light and
matter and the relaxations given by

4

(p)~ = —I p + g yp ppp, a=1,2, 3,4
P=l

(p)a&= —1 &p &, a,P=1,2, 3,4, aWP .

(2.2)

(2.3)

4

I =g y p, a=1,2, 3,4.
P= 1

(2.4)

For an actual atomic (molecular) system Eq. (2.4)
means that there is neither relaxation away from the
four-level system nor feeding from the outside world. In
a more general treatment this strong condition could be
relaxed somewhat, but the condition of Tr(p)=1 should
be maintained.

In order to remove the fast time dependence of the in-

Ql & QJp tdb QJc

In Eqs. (2.2) and (2.3) I represents longitudinal decay,
I & ( =1

& ) represents transverse decay, and the y &
are

feeding parameters. Since the present theory deals with
strong fields, one may not make the assumption that the
population in the ground state remains constant, as is
usually done in the conventional perturbation theory of
the third-order susceptibility y' '. Instead, the assump-
tion is made that the system is closed, with feeding terms
chosen accordingly. The requirement that the system be
closed means that Tr(p) =1, or Tr(p) =0. The condition
on the connection between the relaxation rates and the
feeding terms is

II. GENERAL THEORY

Consider three input laser fields interacting with a
four-level system to generate a coherent output field. An

FIG. l. An energy level diagram describing the interaction of
three strong fields with a four-level system.
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put fields, and in a way completely analogous to the
transformation to a rotating frame of the two-level sys-
tem, one may use the same unitary diagonal transforma-
tion matrix T(t) which was defined in paper I, and apply
it to the Liouville equation (2.1}. For illustrative pur-
poses the two-level problem is treated in Appendix A,
where the connection between the density-matrix and the
wave-function approaches is made.

Thus, from the transformation

Xp"=0 . (2.15)

By construction, since the first four equations in Eq.
(2.15) are linearly dependent, the matrix X is singular. In
order to remove this singularity, replace the first of these
equations by requiring

p" upon letting t~ ~.
From Eq. (2.11), the steady-state solution p" satisfies

the condition

p —TpT (2.5} Trp"=1 . (2.16)

the resulting equation is
I

[p', H—']+T (p ) T
t

(2.6)

The result of using this constraint is a set of 16 equations
which may be written in matrix form, in the same way as
in paper I:

H'=THT +I',ATT (2.7)

The transformed time-independent Hamiltonian H' is
the same as that of our wave-function treatment in paper
I. In component form, Eq. (2.6) will look like

Bp;; 4 ~ 4= ——g H, '„p'„, + —g H„';p,'„—I;p,';
r=l r= 1

4

+ g y~;p~~ for i =1,2, 3,4
q=1

(2.8)

ap,'. l
4

r=1

4—g H„' p,'„
r=l

—I; p,' for i m =12 34, imam . (29)

where in Eq. (2.6) the transformed Hamiltonian is given
by

Zp"=R, (2. 17)

0
H'=A

h 13

hi4

0 h 13 h 14

h22 h23 h24

h23 h33 0

h24 0 h44

(2.18)

The expectation value of any operator 0 is given by

(O }=Tr[op(t)]

where the matrix Z (given in Appendix B) is obtained
from the matrix X by replacement of the first row with
1's at the first four positions and zeros at the other posi-
tions. The matrix R is a column vector of 16 rows whose
only nonzero element is a 1 in the first row, R, =5, , for
i =1, . . . , 16. For the selection rules implied by Fig. 1

the structure of the transformed Harniltonian H' is

The elements of the transformation matrix T(t) are of
the form

4 4

g 0;kpl„(t)T, , (t)Tkl, (t) .
i =1 k=1

(2.19)

T~(t)=e '5,J, i,j =1,2, 3,4 (2.10)

Bp
at

= —iXP', (2.1 1)

where the matrix X is a time-independent supermatrix
which has the dimensionality 16X16. The matrix p' is a
column vector of dimension 16 whose elements are 16 p,

' .
The choice of the order of the elements is somewhat arbi-
trary within each calculation, and here we choose the fol-
lowing convention:

I I I
P 1 1 P22 P33 P

I I I I I I

P12 P13 P14 P23 P24 P34
I I I I I I

p2 1 p3 1 p41 p32 p42 p43 for rows 1 1 —16

(2.12)

(2.13)

{2.14)

Note that since p,'"=p'-, , rows 11—16 are the complex
conjugate of rows 5 —10, respectively. Equation (2.11}
can be solved by the Laplace transform method subject to
the initial values p (0), yielding the steady-state solution

where p; is a linear combination of the three incident fre-
quencies. Thus p;; =p,';, and p; =p,

'
T;; T for

(i, m =1,2, 3,4). Equations (2.8) and (2.9) can be ex-
pressed in a matrix form

P= (2.20)

p14 p24 0

From Eq. (2.19), the steady-state expectation value of the
polarization is

4 4

(P, ) = g g P, kpk', T;;(t)TkI, (t) .
i =1 k=1

(2.21)

It is important to remember that the interaction of four
fields with a four-level system involves many permuta-
tions of the order of the interacting fields, as represented
by the 48 terms in the full expression for the third-order
susceptibility g' ', or as may be seen from a diagrammatic
description of the interaction. These terms separate into
12 parametric diagrams, and 12 sets of three non-
parametric diagrams. Each parametric diagram, and
each set of three nonparametric diagrams correspond to a

Commensurate with the selection rules implied by Fig. 1,
one may represent the polarization operator:

0 0 p13 p14

P23 P24
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fk) &tl
lcob t
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Vbe
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(3.1)

l g& gg l l g+ cgl lg~ cgl

FIG. 2. A set of three nonparametric diagrams describing (to
lowest order) the interaction calculated in this paper. These di-
agrams are known to give rise to PIER 4.

where ru/~ =(E/ E—)lfi for I m =g t k j, and V,
(s =a, b, c) is the strength of the atom-field interaction,
which includes the field strength and the dipole moment
of the appropriate transition.

Referring to Eq. (2.7), the transformation matrix

e ' 0 0 0
separate Hamiltonian, as detailed in paper I. The use of
these diagrams does not imply a perturbation calculation,
as they are used only for bookkeeping purposes. In the
present paper one such triplet is treated in detail, and the
extension to all others is straightforward. Figure 2 gives
the diagrams treated in this paper, which correspond to
diagrams 31, 32, and 33 in the notation of Prior.

From Eq. (2.21), one may extract the Fourier com-
ponent of the polarization at the frequency co

( =co, +cob —co, ) where co„cob,co, are the frequencies of
the three incident fields, respectively. This can be done
by choosing i and k such that

0 0 ia4t
e

0
H'=R

Vb

V,

0 Vb V,

Dq 0 V,

0 D3 0

V, 0 D4

when applied to the Hamiltonian in Eq. (3.1) yields
r

(3.2)

(3.3)

T;, (&)Tk/, (&)=e (2.22) where the linear combinations of frequencies for the
transformation are

which implies the following choice for the various dia-
grams (as designated in paper I): i =1, k =4 for the first
set of parametric diagrams (1 —6); i =3, k =1 for the
second set of parametric diagrams (7—12); i =4, k =2 for
the first set of nonparametric diagrams (13—30); i =2,
k =3 for the second set of nonparameteric diagrams
(31—48). From Eq. (2.21) the respective polarization
components at co are

p&4p4', for diagrams 1-6,

a i
=

—,
'

( CO,
—

COb
—

CO, ),
ai = —

—,'(CO, +~b —~, ),
a&= —,'(CO +nb

a4 ~~(ru Cub+CO, ),
and in Eq. (3.3) the following quantities are defined:

D = —a
1

(3.4)

p&3p&'3 for diagrams 7—12,
t

pp4p4p for diagrams 13-30,

pp3p3p for diagrams 31-48 .

(2.23) Dp =6)tg ap

D3 =a)k —a, ,

D4=e
g
—a4 .

(3.5)

The solution for p" is found from Eq. (2.17). From Eq.
(2.23) the component of the polarization at co is

III. APPLICATION OF THE THEORY

The formulation of the problem in Sec. II was in gen-
eral terms, and is applicable to any interaction. In order
to illustrate the results obtained from the theory, we ap-
ply it to the nonparametric diagrams 31—33, see Fig. 2.
These diagrams had been treated in the past, and are
known to give rise to PIER 4. In the general forrnalisrn,
all four fields may be strong. In most experimental situa-
tions, however, the generated field may be assumed to be
weak, and therefore we make this assumption at this
point. As a result, there are only three nonzero fields in-
cluded in the Hamiltonian:

IS
~cop I tkpkt

Explicit results for the OLS atom are presented in Sec.
IV.

IV. NUMERICAL RESULTS

The formulation described in Sec. III allows for a wide
range of parameters, including three arbitrary field
strengths, three arbitrary detuning, and arbitrary
pressure-induced dephasing. This wealth of generality is
also a curse; it makes it very dificult to anticipate all of
the physically interesting regimes that one may wish to
study. To unravel this detail, and separate the various
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effects, the OLS atom is used. Thus, in all of the numeri-
cal work presented co, =500 cm ', cok =10000 cm
and ~ =11000cm

In paper I, both the OLS atom and sodium were stud-
ied, with no fundamental difference observed in the phys-
ical explanations. In the figures that follow the polariza-
tion is plotted in units of the dipole moment of the transi-
tion coupled to the generated wave co&.

In the current paper both spontaneous decay (Ti ) and
(pressure-induced) proper dephasing ( T2 ) are included.
The spontaneous decay is described by a phenomenologi-
cal rate I sE to represent the spontaneous emission decay
from the upper atomic levels (k and j}to the ground state
g. The off-diagonal dephasing has been taken to be

r, =-,'(r, +r )+&p,
where e is a constant of proportionality and P is the pres-
sure.

The logical first case to examine is an ordinary reso-
nance. For the diagrams given in Fig. 2, the two ordi-
nary resonances occur at cu =co +co and at co =

c tg b Ct)c —
COjg ~

In Fig. 3, the real and imaginary parts of the co com-
ponent of the induced polarization are shown as a func-
tion of co, as it sweeps through the ordinary resonance
near co g, for a fixed detuning of the V, field
(b,co, =co, —

coi,g ). The pressure used in calculating these
expressions was chosen such that 1 = I (namelyname y,
aP=I sE/2), but varying the pressure produced similar
results.

The "weak" V, field case (V, /I sE=0. 1), shown in

Fig. 3(a},has a resonance shape similar to traditional per-
turbation theory. The peak-to-peak variation of the real
part is equal to the peak of the imaginary part, and the
half-width of the resonance is I g. Raising the pressure
to increase the proper dephasing increased the width of
the resonance in this "weak-field" case, as predicted by
perturbation theory. The shift observed in the resonance
frequency is due to the strong V, field. This Stark shift is
given in the limit of I sE«V, «~b, co, ~ by V, /hen, . It
may be described in the "dressed-atom" picture, as the
shift of the dressed levels away from the "bare-atom" en-

ergy levels.
Increasing the strength of the field V„whose frequency

is swept through the resonance, suppresses the relative
magnitude of the imaginary part, as shown in Fig. 3(b).
The strong-field case ( V, /I sE=10) is shown in Fig. 3(c),
where the resonance has only a small imaginary part and
the width is determined only by the power broadening.
In a manner analogous to the two-level system, a saturat-
ing field will equalize the populations, will reduce the on-
resonance imaginary part of the induced polarization to
zero, and will cause the peak-to-peak amplitude of the
real part to be field independent. In what follows, a reso-
nance line where the real and imaginary parts are of
equal amplitudes will be referred to as having a "pertur-
bativelike" line shape, while the case of a suppressed
imaginary part will be described as having a "strong-
field" line shape. For the rest of the paper, the real am-
plitude is defined as the peak-to-peak variation of the real
part of the polarization and the imaginary amplitude is
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FIG. 3. The real (solid line) and imaginary (dashed line) parts
of the Fourier component of the induced polarization at cop as a
function of Aced, (=~, —co,g ). In this and all subsequent figures
rsE=0.0001 cm '. Here bee, = —0. 1cm ', V, =0.01 cm
The frequency axis is normalized to the linewidth I" ( = I fjs sE
this pressure). (a) A weak V, field (V, /I sE=0. 1). The reso-
nance is Stark shifted by the strong V, field ( V, /I sE= 100); (b)
An intermediate V, field ( V, /I sE=1.0); (c) A strong V, field

( V, /r„= 10.0).

defined as the peak to background variation of the imagi-
nary part of the polarization. It is understood that if the
resonance occurs at a shifted position, the amplitudes are
found at the new position of the resonance.

The variation of the real and imaginary amplitudes of
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the resonance as a function of the logarithm of V, (for a
given fixed V, ) is depicted in Fig. 4(a). For V, « I sE,
perturbation theory holds and the amplitudes are equal
and proportional to V, . The usual saturation sets in at
V, = I sE leaving a real part whose peak amplitude is con-
stant with increasing V„and causing the imaginary part
to fall off as 1/V, consistent with the analysis of the two-
level system.

The dependence of the four-wave mixing signal on V,
for strong and weak V, is shown in Figs. 4(b) and 4(c). In
the case of a weak V, field [Fig. 4(b)] perturbation theory
holds as long as V, &b,ui, where the FWM signal be-
comes V, independent. The line shapes remain perturba-
tivelike in the entire range of V, (i.e., the imaginary and
real amplitudes are equal). For V, strong enough to satu-
rate the jg transition, the V, dependence is shown in Fig.
4(c). Both the real and imaginary amplitudes become V,
independent when V, &Ace„but the imaginary part is
smaller than the real part, exhibiting "strong-field-like"
line shapes. Since the V, field is interacting only with the

jg transition it is not surprising that this interaction is de-
scribed by the two-level theory. The line shape is deter-
mined only by V„regardless of the size of V, .

Extra resonances had been discussed previously in the
context of perturbation theory, ' ' and their behavior
may be described in those terms. The predicted feature
of these resonances is a linear dependence of the reso-
nance amplitude on the pressure, and an inverse quadra-
tic dependence on the detuning hco, . As is inherent in

perturbation theory, there is a linear dependence on each
of the fields V„Vb, and V, .

In paper I, the ordinary resonance at co, =co
g

was
shown to be part of a Rabi pair with the "extra reso-
nance" at co, =co, +cojk. For low fields, the amplitude of
the extra resonance is much smaller than that of the ordi-
nary resonance, so only the latter is observed. As V, is
increased (for a fixed nonzero bc@,) the "extra" field-
induced resonance (FIRE) may be observed. At very
high fields ( V, ))b,co, ) the two peaks are of equal ampli-
tude, are separated by twice the Rabi frequency, and
there is no distinction between them. Note that in the
absence of proper dephasing, there is no pressure-induced
extra resonance, whereas there is always a field-induced
resonance. In what follows, the combined e6ect of the
field (FIRE) and pressure induced (PIER) extra reso-
nances is studied.

The transition between PIER and FIRE is established
in Fig. 5. The dependence of the real amplitude on the
pressure is displayed on a log-log plot for small V, at
different values of V, . For small V, (V, « I sE) the
linear dependence on pressure is clearly seen. The actual
curve including the saturation at high pressure is identi-
cal to the standard perturbation theory description of
PIER 4. As V, is increased one observes regions where

the amplitude is pressure independent. Changing V,
from 10I'sE to 1001 sE increases the amplitude by three
orders of magnitude, showing a marked nonlinear depen-
dence on V, . In this region, the resonance can be
identified as the field-induced resonance which had been
discussed in paper I. For any given input field intensity,

I

(
I

t

I

V /Dw = 01

log, (V/I )

(b)

—9

Q
& —11

bQ0 —13

Vc/I ~E = O. 1

—15
—T —6 —5 —4 —3 —2 —1 0

100

FIG. 4. The real {solid line) and imaginary (dashed line) parts
of the amplitude as a function of field strength for an ordinary
resonance. The conditions are Ace, /I sE

= —1000 and

I,g
= I sE. In this, and in all subsequent figures, a log-log plot is

used. (a) Amplitude vs V, /1 sE, with V, /~b, co, ~=0. 1; (b) Am-

plitude vs V, /~hem, ~, with V, /I"sE=0. 1; (c) Amplitude vs

V, /~bc@, ~, with V, /I ss=100.
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g-» — 100

~20—
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bQ0

—25
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-9 -8 -7 -6 —5 -4 -3 -2 -1 0 1 2

&« io( ~p/rsE~

FIG. 5. The pressure dependence of the real amplitude of the
extra resonance. The conditions are V, /I &E=0.01 and
hco, /I sE= —1000. The four curves shown are for different
values of V, /I sE, as indicated.

there exists a pressure low enough so that the region of
FIRE may be reached.

Choosing a value of V, where the transition between
PIER and FIRE is readily apparent (V, =10I sE), the
dependence of amplitude on V, and its detuning Aco, can
be studied. Figure 6(a), computed for a pressure where
the proper dephasing is equal to I sE/2, shows a linear
dependence of the real amplitude on V, for low values of
V, . Varying the detuning Ace, reveals an inverse quadra-
tic dependence on bco, in agreement with traditional per-
turbation theory. At higher values of V„a transition to
a region where the amplitude increases faster than linear-
ly is clearly observed. Further increases in V, produce
saturation for values of V, & hen, . The regions linear in

V, exhibit perturbative line shapes (the equal imaginary
amplitude is not shown), whereas the saturating region
exhibits "strong-field-like" line shapes. Figure 6(b), com-
puted under the same conditions as Fig. 6(a) except that
the proper dephasing has been reduced by five orders of
magnitude, shows the FIRE behavior. At low V„a
linear dependence on V, is indeed observed, but decreas-
ing hen, by one order of magnitude increases the ampli-
tude by four orders of magnitude, a behavior not predict-
ed by traditional perturbation theory. As in Fig. 6(a),
higher values of V, lead to a region where the amplitude
is nonlinear in V„up to saturation for V, & Ace, . As
long as V, is small compared to Ace, "perturbativelike"
line shapes are observed.

Figures 6(a) and 6(b) were computed at moderate V,
(V, =10I sE). Under these conditions the strong field is
V„and the V, field can be thought of as a perturbation
around it. The situation becomes more complicated for

strong V, (V, =10 I sE) as shown in Figs. 6(c) and 6(d).
The linear dependence on V, reaches a plateau before the
nonlinear V, region is reached, producing a curve with
two "saturation" regions. The first plateau starts at a
field intensity that is pressure independent but depends
on the hen, detuning. For Aco, & V„a single plateau is
observed, displaying a "universal" saturation that does
not depend on any of the parameters (except for Vb and
its detuning)

Next we consider the dependence of the real amplitude
on V, and V, in the various FIRE regions. Figure 7(a)
depicts the situation for a very small proper dephasing
rate aP=10 I sE. (This rate is artificially small, and

was chosen to illustrate the dependence. ) In this figure
the logarithm of the amplitude is shown as a function of
the logarithm of V, for different values of V, . For
V, &I sE and V, &I sE, the amplitude is linear in V, and

V, [also linear in pressure and quadratic in (b,co, ), not
shown in the figure] which is the traditional PIER 4 be-
havior. In the intermediate region (b,co, ))V, ))I sE)
the amplitude is a nonlinear function of V, exhibiting a

fifth-power dependence on V, . For strong V, ( V, ) hen, )

the curves saturate in the same fashion as discussed in
Fig. 6, displaying the "universal" saturation.

Figure 7(b) is analogous to Fig. 7(a), for the V, field.
The same arguments apply, but in addition the asym-
metry between the two is seen by the decline of the FWM
amplitude at large V, levels. As discussed below, the
strength of the V, field determines the ground-state level
shift, determining the intensity required to saturate the jg
transition. When V, is increased further such that it is
greater than V„ the roles are reversed, and the level shift
is determined by V, . The amplitude exhibits a nonlinear
region, finally saturating [as in Fig. 6(a)] when V, ) b, co, .
If V, )Aco, the amplitude has only a single saturation as
shown by the top curves. In both figures, the dependence
on the weaker field may be seen by looking at the param-
eter describing each curve. Thus, in Fig. 7(a), as V,
changes from 10 to 1, the incremental increase in the
signal changes from linear at low values (V, &I sE) to
higher than linear at moderate values, and eventually it
decreases (not shown) for very high values (V, ) bc@, }.
This last behavior pattern is shown explicitly in Fig. 7(b),
and is discussed below. Figures 7(c) and 7(d} repeat the
condition of Figs. 7(a) and 7(b) for a higher proper de-

phasing rate (aP=I sE/2). The qualitative behavior is

the same except that the PIER 4 region moves up by the
appropriate factor, without significantly affecting the
FIRE region.

V. DISCUSSION

The analysis of saturation in a two-level system is rela-
tively straightforward. The criterion for saturation is
whether the field strength is larger or smaller than a
properly defined saturation parameter which depends on
the dephasing rate and the detuning. Close to resonance,
the dominant contribution to the saturation parameter is
the dephasing rate (Tz in the two-level notation), but at
larger detunings the dominant contribution is from the
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detuning. More specifically the dependence is on
(b,co, +I" )', so the well-known result is that it is more
difticult to saturate a transition if the saturating field is
tuned off resonance. ' In a four-wave mixing interaction
involving strong fields, the situation is more complicated.
A strong field, in addition to saturating its own transi-
tion, causes level shifts increasing or decreasing the ap-
parent detunings of other fields, and thus affecting their
saturation levels. In the cases illustrated in Figs. 5 —7 Vb

is detuned away from resonance, is nonsaturating, and
therefore the situation may be analyzed in terms of a
three-level system with two strong fields.

The three levels involved are the g, j, and k levels in
Fig. 1, and the two fields are the V, and V, fields. These
two fields are not equivalent, as the ~, is swept through
resonance while co, is fixed for a given experiment. The
two fields interact with the ground state g, and therefore
if either one is strong, it will effect the other one through
the level shift of the ground state. In what follows the
different cases where one or both fields are strong are dis-
cussed.

The standard dressed atom picture treats the case of
one strong field. Since here more than one field is
present, the order of dressing the levels is not a priori
clear, and should be defined for each case, depending on
the strength of the fields involved. If one of the fields ( V,

or V, ) is much stronger than the other, the situation is
obvious, the strong field dresses the levels while the weak-
er one induces transitions between the dressed levels. If
both fields are strong, the dressing is less trivial. For
each field three regions may be defined: weak ( V « I ),
moderate (detuning » V » I ), and strong ( V »de-
tuning, V» I ). The unique situation in the FWM exper-
iment is that the c field is scanned through resonance,
and therefore its relevant detuning always vanishes, and
the extra resonance transition is always saturated by the
V, field as long as V, & I sE.

When level shifts are considered, however, another
consideration enters. The frequency of the V, field is
fixed, and therefore this field should be considered with
its inherent detuning Aco, . If the c field is strong, it
causes the ground level to shift, reducing the detuning of
the a field. Thus, the relevant criterion is whether the c
field is capable of shifting the ground state into resonance
with the a field. At a certain V, strength, the c field shifts
the ground state to a complete resonance with the a field,
and under these conditions the saturation of the jg transi-
tion is the easiest, requiring the lowest V, . If V, is in-

creased further (V, & b,co, ), the level is shifted through
and away from resonance, making it more dif5cult to sat-
urate. This accounts for the behavior observed in Figs.
7(b) and 7(d) where increasing V, decreases the ampli-
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tude. With increasing V„ the strength of V, needed to
achieve the universal saturation is lower, until at
V, )hen, the FWM signal drops indicating level shifts
that are too large for V, to compensate. Thus, under
these circumstances, the relevant detuning for the
definition of a strong V, field is bm, . In all other cases,
detuning stands for the properly defined frequency
difference between the laser frequency and the shifted lev-

el frequency.
The dressing of a state by strong fields is a convenient

way to discuss the case of one strong and one weak field.
Consider first the situation of a strong V, and a weak V, .
Here one may analyze the situation by dressing the levels
by the a field, and continuing the discussion from the
split g and k levels after the proper superposition was im-
posed on them by the dressing process. Thus, the effect
of the a field is to shift the levels, and to determine the
population of the two split ground states. In accordance
with the standard dressed state theory, the population
of the two levels is determined by the strength of the field
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and its detuning. The two new ground-state levels g and

g,„have a very different character for weak fields. One of
them (g ) is ground-state-like (i.e., populated) while the
other one (g,„) has the excited state character. As the
field increases, mixing between the two is more pro-
nounced, until at very strong fields (where most of the
dressed states theories are analyzed) the two are com-
pletely equivalent. Here, since we are dealing with a
FWM situation, one may consider the FWM process to
start after the first photon dressed the levels. As shown
in paper I, the extra resonance and the ordinary reso-
nance both constitute the Rabi pair, starting off
differently at low fields, to become equivalent at strong
fields. Thus, the extra resonance is due to g,„, the un-

populated split ground state. As the field increases, the
population of this state increases, and the effective detun-
ings of the co, and the co, fields are decreased, causing an
increase in the strength of the FWM signal. The popula-
tion in a dressed state is given by the standard Bloch
equation result, which for the intermediate V, field case
behaves like V„while the level shifts depend on V, .
Since the level shift Ace, appears twice in the resonant
denominator, the expected dependence on the V, field is
the fifth power, which is indeed observed in Fig. 7(a).
Similar arguments will lead to the other observed power
dependencies in Figs. 5 —7.

The intermediate region can be addressed by looking at
the relative value of V, and V, . The larger of the two
determines which level shift is dominant, and the saturat-
ing intensity of the other field will change accordingly.
Going back to Fig. 6(d), the first saturation plateau is de-
scribed above, while the nonlinear region is reached for
V, & V, . Here the role of the two fields is reversed, in

analogy to the weak V, case discussed above, leading to
saturation at V, &Aco, . Thus, in these cases a double
plateau behavior is observed, with the transition regions
defined above.

VI. CONCLUSIONS

the extra resonances.
The perturbation approach to extra resonances made

the specific prediction that these are indeed extra reso-
nances which disappear at zero pressure (or other proper
dephasing mechanisms). A new prediction of the present
theory is that even at zero pressure there exists a field-
induced resonance. Moreover, at any field there is a pres-
sure low enough so that the extra resonance is field in-
duced rather than pressure induced. In the Na experi-
ments where I sE=10 MHz for buffer-gas pressure above
a few torr, aP/I sE & 1, the extra resonance is pressure
broadened, its width is proportional to pressure, and its
amplitude is constant, as observed in those experiments.
When the PIER 4 integrated intensity was plotted against
pressure, a nonzero intercept was observed, and in the
linewidth versus pressure a residual width is also ob-
served. Several factors may have contributed to these
nonzero intercepts, including the fluctuation induced ex-
tra resonances due to the finite laser linewidth. ' The ob-
servations are consistent with the predictions of the
present paper, but additional experiments are needed to
separate the various possible contributions to the signal
at low pressures.

In paper I relaxations were not considered. As shown
in this paper, that case is equivalent to the particular
choice of proper dephasing being equal to the level life-
time (T2 = T, ). This choice of dephasing rate does not
affect the physical nature of the resonances, or the quali-
tative description of the process as given there. In partic-
ular, in that paper we identified the extra resonance as be-
ing a part of a Rabi pair with the ordinary resonance.
We also predicted that when the strength of the third
field is comparable to the Rabi splitting of the ordinary
and extra resonances, stirring will occur, in analogy to
other exchange narrowing phenomena. All these predic-
tions are confirmed by the present calculation. The
present, detailed calculation identifies the pressure and
field strengths needed to see these (field-induced) effects.
Experiments are under way in our laboratory to verify
the predictions of the present paper.

The calculation in this paper was performed, for con-
venience, for an OLS atom, but all the results are present-
ed in normalized units. Thus, field strengths are present-
ed in terms of either the detuning Ace, or the relevant
linewidth (i.e., I ), and the comparison to real system
(i.e., Na) should be possible.

For experiments done on the Na D lines, I sE=10
MHz, and the values of the parameters can be estimated.
A pulsed laser experiment may achieve a Rabi frequency
of order 1 cm ', which gives V/I sE= 10000—the
highest number used in our calculations. As detailed
above, the perturbation limit applies for a11 fields being
weak. For the c field, which is scanning through reso-
nance, a weak field means V, /I sE«1 (which for Na
means intensities less than 1 mW/cm ). Such intensities
were not used in the original PIER 4 experiments, ' '

and therefore the theory presented here is necessary for
detailed pressure, power, and detuning dependence
analysis, even though the perturbation approach is cap-
able of predicting the existence and general features of
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APPENDIX A: APPLICATION OF THE FORMALISM
TQ A TWO-LEVEL SYSTEM

Consider a two-level system interacting with a mono-
chromatic field of frequency co. The excited state (2) de-

cays spontaneously to the ground state (1) with the decay
rate I z. Thus the term feeding population into the
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ground state is

(Al)

T(r)= i a)t /2 (A3)

one obtains

b co/2
0'=A

V

V
(A4)

In Eq. (A4), b,co is the detuning (i.e., b cu =cu coo). —
The steady-state matrix elements can be obtained by

the method indicated in Eq. (2.17), where p' is defined in

Eq. (2.5). Setting V real, one obtains

p» ~+~p

p»=-,' —~p

[(a~)'+ r'„]
hp=—

2 [(bc@) +4V I, /I +I, ]

(A5)

(A6)

(A7}

p",~
= (b,co+ ir, ~)

V
(A8)" [(~~)'+4r„/r, v'+ r'„]

The polarization at the frequency co is

P12P21 ~ (A9}

For this system, the rotating-wave approximation (RWA)
Hamiltonian is

—m/2 Ve' '

I cot /2
L J

where coo is the frequency separation between the levels.
Referring to Eq. (2.7}and using the transformation

e
—icof /2 0

where pz', =p",z is obtained from Eq. (A8).
A corresponding wave-function treatment, where at

t =0 the system is assumed to be in its ground state,
yields

2V

[(bee) +4V ]

P» = l —P21,

(A10)

(A 1 1)

where P» and P» are the steady-state populations in

states l and 2, respectively. The expression obtained for
the polarization at the frequency co is

P =P,25~
V

(A12)
[(Ace) +4V ]

ReP„=P,25m
V

[(a~)'+4r„/r, v']
Comparison of Eqs. (A12) and (A13) shows that the ex-
pressions are equal for r,z/rz= 1. In the absence of
proper dephasing, where the entire contribution to trans-
verse relaxation comes from lifetimes, I 12/I 2= —,'. Thus
the equivalence of the wave function and density-matrix
formulations occur for a specific value of the proper de-

phasing.

(A13)

The corresponding equations to be compared are Eq.
(A10) with Eq. (A6), Eq. (All) with Eq. (A5), and Eq.
(A12) with the real part of Eq. (A8). The general features
are similar. For instance, both sets of equations yield
equal populations of —,

' for V~ ~, the vanishing of the
real part of P exactly on resonance, and the vanishing of
P„ for V~ ~. Certainly, however, the effects of the in-
clusion of decay manifest themselves even for large V/I .
For instance, neglecting the I ~z in Eq. (A8), Eq. (A9)
yields

APPENDIX B: THE SUPERMATRIX Z

The supermatrix Z is given by
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