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Angular correlations of photons
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We study angular correlations of the radiation emitted by spatially extended sets of atoms. Such
correlations result from the fact that the photons are identical quantum particles. We show that the
symmetry (or the antisymmetry) alone of the wave function for identical, indistinguishable particles
always leads to significant angular correlations and that in full agreement with our intuition, bosons
tend to travel in the same direction while fermions tend to travel in opposite directions. In order to
quantify these intuitive notions, we introduce —as a measure of angular correlations —the average
value of the cosine of the angle between the directions of the momenta of two particles. The angu-
lar correlation coefficient is calculated for simple, model wave functions and the results are com-
pared with those obtained from an exactly soluble model describing radiating harmonic oscillators.
We find that even though the interaction modifies the exact values of the angular correlation
coefficient, the gross features can be obtained from quantum statistics, i.e., from the symmetry of the
many-photon wave functions. Moreover, the angular correlations as measured by the average
cosine exhibit an almost universal character, at least for a small number of emitting atoms. Finally,
we compare angular correlations obtained in quantum electrodynamics with the correlations result-
ing from the phenomenologically introduced randomness of the phases in the classical description
of the electromagnetic field.

I. INTRODUCTION

The quantum nature of light manifests itself predom-
inantly in the statistical properties of photon states. Usu-
ally, one studies the time correlations of photons and
those studies have led recently to the discoveries of anti-
bunching and squeezing which reveal and underscore the
quantum nature of photons. In the present paper we con-
sider a different aspect of quantum photon statistics,
namely, the tendency of the photons to form collimated
beams in space.

Angular correlations and the tendency of the radiating
systems to emit photons in a narrow bundle were studied
in several previous papers. ' All these papers dealt with
a large number of emitters, and the approximations used
to evaluate the angular correlations of emitted photons
took advantage of this fact. The angular correlations in
the case of a small number of emitters were studied by
Steudel and Richter and Richter with the use of the
Markov approximation and more recently by Duncan
and Stehle and by Duncan, Mawhinney, and Stehle,
who found numerical solutions of the exact dynamical
equations describing the spontaneous decay of a system
of two-level atoms. Among other things, Duncan and
Stehle demonstrated "the tendency of the photons to
form a single ray. "

The aim of our paper is to determine to what extent
this tendency is due to the dynamics of radiation and to
what extent it can be attributed just to the quantum
statistics of the photons. Our paper is devoted exclusive-
ly to the study of the angular correlations of photons (or

other identical particles; for example, neutrinos) pro-
duced by a small number of emitters. In contradistinc-
tion to previous work we rely on analytical results ob-
tained with the use of two models.

The first model is based on a set of simplifying physical
assumptions which replace specific dynamical equations
and which, in essence, mean that we disregard all interac-
tions except those directly responsible for the radiation of
photons. Under these assumptions we are able to write
down, in a general case, a model N-particle wave function
and to derive an explicit expression for the angular corre-
lations of the emitted particles. Unfortunately, the num-
ber of terms in this explicit formula grows with the num-
ber N of particles even faster than N!, and the evaluation
of the correlation coefficient for a large N takes a lot of
computer time. However, for the systems containing a
few atoms (N =2, 3 and 4) that were considered by Steu-
del and Richter and by Duncan and Stehle the formulas
become so simple that they can be easily evaluated by
hand.

The second model studied in our paper is that of
several harmonic oscillators distributed in space and in-
teracting with the continuum of modes of the radiation
field. Angular correlations of photons calculated in this
case confirm qualitatively the results obtained within the
first model. Moreover, when the spacing between the em-
itters is more than one wavelength, there is even a sub-
stantial, quantitative agreement between the full dynami-
cal description and that employing the model wave func-
tion. Therefore, the simplified description based on our
assumptions does seem to capture all essential features of
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the problem.
Our results show that the bosonic nature of the emitted

photons, embodied in the symmetry of their wave func-
tion, plays a decisive role in the formation of angular
correlations. This is further underscored by the fact that
for the fermions the antisymmetry of the wave function
leads to the reversal of the angular correlations. In other
words, fermions have a tendency to travel in opposite
directions.

In Sec. IV, we use the same set of distributed emitters
as in the preceding sections to calculate angular correla-
tions in classical electrodynamics, assuming an ensemble
of wave fields with random phases. We show that, even
though the classical correlations have similar general
features, they are weaker than their quantum counter-
parts.

II. SIMPLE PARAMETRIZATION
OF ANGULAR CORRELATIONS

In order to measure the angular correlations of parti-
cles we introduce —as the correlation coefficient —the
average value of the cosine of the angle between the mo-
menta of two particles. Such an average can be calculat-
ed either from the wave function describing the N-photon
state or from the intensity correlation function.

In the first case the angular correlation coefficient (c ),
i.e., the average value of the cosine is given by the formu-
la'

(c)=(n, n ) =g I d k 4*(ki,Ai, . . . , k~, A~)

X (n; nj )%(k„A,„.. . , k Jv, A~ ),
(2.1)

where %(k„Ai, . . . , kz, Az) is the wave function in
momentum space, the parameters A, , label the spin or the
polarization states, and n, =k, /~k, ~.

In order to take into account only the truly two-
particle correlations one should, in principle, subtract
from the expression (2.1) the contribution resulting from
a possible existence of a preferred direction in the one-
particle emission. Such a corrected expression would
read

&c&=(n, n, ) —(n) &n&

coefficient (again in the simplest case when ( n ) vanishes),
based on the intensity correlation function, reads

I d'k, d'k2(n, n2)2(k„k2)
(c)=

J d'k, d'ki J(k, , ki)

where the intensity correlation function 2(k„k~) is
defined as the following expectation value of the normally
ordered product of the particle number operators:

J(k„k~)=('P~:a (k, )a(k, )a (k2)a(ki): 'II) .

The state vector
~
4 ) describes the states of the complete

system composed of particles and emitters.
The definition (2.3) will be used for the study of the

time evolution of angular correlations. It coincides with
the definition (2.1) when the state

~
4 ) contains exactly N

particles and when these particles are uncorrelated with
their sources. The state of N initially excited sources,
however, in its time evolution gives rise to a superposi-
tion of states with different numbers of particles, since for
short times some emitters have not yet decayed. We ex-
pect that for times larger than the lifetime of the emitters
the dominant term in this superposition will be the one
with exactly N emitted particles. In Sec. IV we show
that, due to dynamical effects, even for longer times the
formulas (2. 1) and (2.3) give different results.

III. ANGULAR CORRELATIONS CALCULATED
FROM THE MODEL WAVE FUNCTION

In this section we use a model of the wave function
describing N photons emitted by N excited atoms which
are fixed at the positions r&, . . . , r&. This wave function
is deduced from the following assumptions.

(i) All emitted photons have the same energy because
all emissions are due to the same atomic (or nuclear) tran-
sition and all linewidth effects are neglected.

(ii) Photons are emitted by pointlike sources, i.e., the
atomic dimensions are much smaller than the wavelength
of the emitted photons.

(iii) Every photon after its emission propagates freely
and does not interact with the sources of radiation.
There is also no interaction between the emitters.

In the Appendix we derive froin assumptions (i) —(iii)
the following form of the N-photon wave function in
momentum space:

=&(;—( &).( J
—

& &)&, (2.2) 4(n, , . . . , n~)
where (n) is the average value of the direction n of the
wave vector. Owing to the symmetry (or antisymmetry)
of the wave function, the angular correlation coefficient
( c ) does not depend on the choice of the indices i and j
in the formulas (2.1) and (2.2). In all the cases that we
shall be dealing with in this paper, the average value of n
vanishes. The vanishing of ( n ) does not mean, of
course, that the angular distribution of particles is isotro-
pic. The general form (2.2) of the angular correlation
coefficient (c ) underscores its role as a measure of the
uncertainty (or fiuctuations) in the directions of inomenta
of emitted particles.

The second definition of the angular correlation

=JV $ exp( ikn; .r,—— —ikn, .r~ )

perm i

=S g exp( —ikn, .r„— —ikn~. r„),
perm A

(3.1)

where JV is the normalization factor and k is the common
length [assumption (i)] of the photon wave vectors. The
equality of the two expressions for the angular photon
wave function (3.1) follows from the fact that the sum of
the permutations over the directions of the photon wave
vectors is equivalent to the sum of the permutations over
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the atom positions.
The N-photon wave function (3.1) describes the sym-

metrized combination of undistorted plane waves [as-
sumption (iii)] originating at the atomic positions. Such a
wave function can describe only the system of photons at

I

times so large that practically a11 the atoms have emitted
their photons.

For the wave function (3.1) the normalization constant
A'is defined by the following normalization condition:

1= dQ) ' ' ' dA~ 4 H), . . . , n~

=JV f dQ, dQ~ g g exp[ikn, (r„—ra )+
perm A perm B

+ikn~ (r„—ra )] . (3.2)

S =(4n) N! $ S(R,„) . S(R~„),
perm A

(3.3)

In the formula (3.2) the integrations j dQ; over all

directions can easily be performed and give the following
expression for JV:

M = g @ps(R,„) S(R~„),
perm A

(3.10)

S'(R ) =cos(R ) /R —sin(R )/R

where pAB is the unit vector in the direction of R„B and
the function S'(R) is the derivative of S(R),

where R AB is the distance between the Ath and the Bth
atom measured in units of 1/k,

=R/3 —R /30+R /840+ (3.1 1)

R „a= ~R„a ~
=kr„a =k ~r„—ra ~,

and the function S(R) is defined as

(3.4)

(3.7)
Upon inserting this expression into (3.6) and after the in-
tegrations over the angles and the differentiations with
respect to r, we obtain the angular correlation coefficient
as the following ratio of a double sum with respect to all
permutations over a single sum:

&c) =L/M, (3.8)

&pe~, a, P~,a,
perm A perm B

XS'(R„a )S'(R„a )

XS(R„a ) S(R„a ),
(3.9)

R RS(R)= =1— + + . (3 5)
R 6 120

One summation over all permutations in formula (3.3)
has been already performed because every term in the
sum over the permutations of A, , . . . , A~ was the same.

We can now use the expression (3.1) for the wave func-
tion 4 to calculate the average value & c ) of the cosine,

&c&=f dQ& dQ&4'(n„. . . , nz)(n; n~)

X4(n), . . . , n~) . (3.6)

This calculation is greatly facilitated by the observation
that the vectors n, standing next to the wave function 4
can be replaced by the appropriate derivatives. For ex-
ample,

(n, n2)4(n, , . . . , n~)

=JV g (ik ) (V„V'„)
perm A

Xexp( —ikn, r„—. . —iknz r„) .

& c );=(S')'/(1+S'),
& c );=—(S')'/(1 —S'),

);=(I+S)(S')'/(I+3S +2S ),
&c)3=—(S') /(1+S —2S ),

(3.12)

(3.13)

(3.14)

(3.15)

&c)4=(1+2S+3S )(S') /(1+6S +8S +9S ), (3.16)

&c)4= —(S') /(1+2S —3S ), (3.17)

where we have introduced the superscripts B and F to
denote the coefficients for bosons and fermions and the
subscripts 2, 3, and 4 to denote the number of particles.
In order to simplify the formulas, we have omitted the ar-
gument R of the functions $ (R ) and S'(R ). The varia-
tion of the angular correlation coefficients, given by the

The sign factor ep has been introduced to cover also the
case of fermions. For bosons it is always equal to 1, while
for fermions it is equal to —1 when the permutation of
the B indices is odd, as compared to the permutation of
the A indices. In the second summation over all permu-
tations in the formula (3.9) we need to consider only
N(N —1)/2 different terms (the number of combinations
of order 2 of N elements).

As we have already mentioned in Sec. II, the average
value of n vanishes. This can be easily proved by the
same method that was used to derive the formula (3.9).
The expression for & n) obtained in this manner will have
the numerator made of terms linear in the pAB. In the
sum over all permutations all such terms cancel pair-
wise, since they change sign under the interchange of the
indices A and B.

Now, we shall apply formulas (3.8)—(3.10) for the angu-
lar correlation coefficient to various special cases. Our
general formula for the angular correlation coefficient
simplifies greatly when all the distances between the emit-
ters are equal. This can happen, of course, only when
X =2, 3, and 4, for the linear, triangular, and tetrahedral
configurations. The results for bosons and for fermions
are
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FIG. 1. Average cosine (c) calculated with the use of the
model wave function for bosons as a function of the common in-

teratomic distance r (in units of the photon wavelength) for
linear, triangular, and tetrahedral configurations of N atoms
(N =2, 3, and 4).

formulas (3.12)—(3.17), with the distances R between the
atoms is shown in Fig. 1 for bosons and in Fig. 2 for fer-
mions.

As was to be expected, bosons tend to travel in the
same direction, since the average cosine is always positive
( ( c ) )0), whereas fermions tend to travel in opposite
directions ((c) (0). For bosons, the effect is largest
when the distances between the emitters are close to a
half of the wavelength of the emitted particles. For fer-
mions, the effect is largest for small distances between the
emit ters.

For N &4 not all the distances between the emitters
can be made equal and the formulas for the coefficient
(e ) become more cumbersome. In addition, the number
of terms grows so rapidly with N that we reach very
quickly the stage when even large computers cannot han-
dle the calculations in a reasonable amount of time. For
example, when N = 12, the numerator (3.9) contains more
than 30 billion terms.

We calculated the value of (c ), when N =5, 6, 7, and

00 --——

FIG. 3. Angular correlation coefficient for photons emitted
by 5, 6, and 7 atoms, plotted in the same fashion as in Fig. 1.

8, for those distributions of atoms for which we expect
maximal correlations, i.e., for those which most closely
resemble the equidistant configurations studied for N =2,
3, and 4. For N =5, 6, and 7, we have calculated the an-
gular correlation coefficient as a function of the typical
distance between the atoms when they are located at the
corners of two joined pyramids based on a triangle, a
square, and a pentagon, respectively. The results are
shown in Fig. 3.

We have also calculated the angular correlation
coefficient for various configurations of eight atoms; for
example, a cube, a twisted cube (top face rotated 45'), and
two joined pyramids based on a hexagon. The results
were very similar to those shown in Fig. 3 for 5, 6, or 7
atoms. Therefore, we can conclude that for our "almost
equidistant" configurations the correlation coefficient
practically does not depend on the number of atoms; the
angular correlations of photons, measured by the average
cosine, exhibit an almost universal character.

The tetrahedral configuration for N =4 has been re-
cently studied also by Duncan and Stehle and our values
of the angular correlation coefficient reproduce the re-
sults of their fully dynamical calculations within 7%.
This is, however, just a lucky coincidence, since, as we
show in Sec. IV, where we study the influence of the
dynamical effects with the use of an exactly soluble mod-
el, the influence of the dynamical effects on the angular
coefficient is not that small.

c& —0.2—

0.5 1.0 1

FIG. 2. Average cosine (c ) for fermions as a function of the
common distance r for the same configuration of emitters as in

Fig. 1.

IV. ANGULAR CORRELATIONS
IN AN EXACTLY SOLUBLE MODEL

The exactly soluble model used by us to verify the re-
sults of the simplified analysis describes a set of N oscilla-
tors coupled to all modes of the radiation field in the di-
pole approximation. The Hamiltonian of this model has
the form (A'= 1 =c )

N

H =coo g b„b„+f d k cuba (k)a(k)
A =1

+ g P„ f d k g(co)[a (k)e' '"+a (k)e
' '"],

(4.1)
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where PA is the dimensionless momentum operator of the
3th oscillator,

ikr —ikr
f (r,z)= f d k[g(co)] 2+1N Z EN

(4.6)

P~ = —&(b~ b—~ » (4.2)

(z+ico)a(k, z)+i g g(co)e "P„(z)=a (k),
A=1

(4.4a)

(z+icop)b„(z)+ f d kg(co)[a(k, z)e

and we have incorporated the coupling constant into the
cutoff function g (co). The Heisenberg equations of
motion for the creation and annihilation operators in this
model can be solved by the Laplace transformation. The
resulting integrals can be performed analytically for
properly chosen cutoff functions. In our study we have
adopted the same form of this function,

2 2

[g (~}1'= (4.3)
Sn co co +f3

as in the papers by Rzyiewski and Zakowicz' and
Lewenstein and Rzq, zewski. "

The Laplace transforms of the Heisenberg equations of
motion for the annihilation operators have the form

depends only on the length of r. For the choice (4.3) of
the cutoff function this integral can be explicitly evalu-
ated giving

e 2P2( e
—zr e

—Pr)f (r, z) =
2i r (/3 z—}

(4.7)

—ikr—[a (k))
Z l CO

(4.8)

Since the electromagnetic field operators depend only
on the operators of the momenta P„(z) of the oscillators,
we shall solve Eqs. (4.4) and their conjugates for P„(z).
The equations for P„(z) read

[z +cop 2icopf—(O, z)]P„(z) 2icop —g Pii(z)f (rett, z)
B (XA)

The operator K(r, z) contains the initial photon creation
and annihilation operators,

i k.r
K(r, z)= —f d kg(co) a (k)

Z +lN

+a (k, z)e "]=b„, = —J„(z)—2copK(r z,z), (4.9)

(4 4b) where

where a (k) and b„are the annihilation operators at
t =0 and z is the Laplace variable. Equations for the
creation operators are obtained from Eqs. (4.4) by Hermi-
tian conjugation (keeping z unchanged). After solving
Eq. (4.4a) with respect to a(k, z) and substituting the re-
sulting expression into Eq. (4.4b), we obtain the following
set of linear equations for b A.

J„(z)=i(z scop)b„i (z+icop)—(b„)

The solution of this set of equations has the form

P„(z)=—g M„(z)[Jii(z)+2 coKp(rii, z)] .
B=1

(4.10)

(4.1 1)

(z+icop)b„(z)+i g Pa(z)f (r„ti,z)=b„+K(r„,z),
B=1

(4.5)

where f (r, z), defined as the following integral,

The matrix elements of the matrix M„(z) depend on the
mutual distances between all the atoms and will be
specified later. Upon substituting the expression (4.11)
into Eq. (4.4a), we obtain the solution for the photon an-
nihilation operators in terms of the initial value opera-
tors,

a(k, z)= 1

Z +lN A=1 B=1

N -a r
a (k)+ g g(co)e " g M„(z)[Js(z)+2copK(rii, z)] (4.12)

a„(k,z) = g g(co)e 'M„(z)Je(z) .2+le
A B

(4.13)

In our calculation of the intensity correlation functions
(2.4) the relevant part of the solution (4.12} for the pho-
ton annihilation (creation) operator is the part propor-
tional to the oscillator creation and annihilation opera-
tors taken at the initial time t =0, since we assume that
there are no photons in the initial state. We shall call it
the source part. The other two parts are the free part
[the first term on the right-hand side in Eq. (4.12)] and
the scattered part [coming from the operator K(r„,z}].
The source part a„(k,z) has the form

In order to find the time dependence of these operators
we must invert the Laplace transform,

a„(k,t)= f dz
1 1

27Tl Z + I CO

e" g g(co)e "M„(z)Jii(z),
A, B

(4.14)

where the integration contour runs parallel to the imagi-
nary axis to the right of all singularities of the integrand.

The calculations simplify greatly when all the distances
between the atoms are equal, because then in Eqs. (4.9) all
the arguments of the functions f (r„ti,z) are equal. Thus,
to find the matrix M„(z), we must invert a matrix all of
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whose diagonal elements are equal to H (z),

H(z) =z +co() —2itoof (O, z) (4.15)

z3 4 =+i (coo —bo —y(N —1 )C)—y(1+(N —1)S),
(4.21)

G(z) = 2i—aloof (r, z) . (4.16)

and also all of whose off-diagonal elements are equal. We
will denote them by G(z),

where 60 is the constant part (i.e., the part that does not
depend on the distances between the atoms) of the fre-
quency shift,

Such matrices can easily be inverted,
—( e 2p3(p2+ 2) —1 (4.22)

H 6 6 G

G 8 6 6

G 6 6 H

B B B
B A B B

, (4.17)

B B B

y is the single oscillator decay rate,

1e2P2 (P2+ 2) —
1

and

C =cos(actor ) Icuor, S =sin(actor ) la10r .

(4.23)

(4.24)

N —1 1 1 1

N H —G N H+(N —1)G
(4.18)

where the diagonal and the off-diagonal elements of both
matrices are related by the formulas

In what follows we shall restrict ourselves to the study
of angular correlations of those photons whose frequency
co is equal to the frequency of the harmonic oscillators re-
normalized by the position independent shift hp,

1 1 1 1B=—— +—
N H —G N H+(N —1)G ' (4.19) CO

—
COp 5p . (4.25)

z, 2=+i(too bo+yC) y(—1 —S), — (4.20)

where N is the dimension of the matrix (the number of
atoms).

Now we can easily perform the inverse Laplace trans-
formation; we must only find the zeros of the denomina-
tors H —G and H+(N —1)G. An additional contribu-
tion comes from the purely imaginary pole at the fre-
quency a1=c~k~ in the formula (4.13).

In the weak-coupling approximation the zeros of the
denominators in formulas (4.18) and (4.19) diff'er only by
small corrections from their unperturbed values
z =+irido Since bo.th functions H(z) and G(z) are real,
the zeros come in mutually complex conjugate pairs, each
pair representing one damped mode of radiation. The
real and the imaginary parts of these corrections are the
radiative level shifts and the widths of the damped modes
of radiation.

The positions of the zeros of the denominators in the
first order of perturbation theory with respect to e are

Under this resonance condition the contributions to
a„(k, t) from the poles at the positions z, and z3 can be
disregarded, since they are smaller by the factor of e
than those from the remaining three poles at co, z2, and
z4. For the same reason one can neglect the part
i (z +i t(30)(b„) of J„(z). These approximations are
essentially equivalent to the rotating-wave approxima-
tions but had we made this approximation in the Hamil-
tonian the functions H(z} and G(z) would have
developed bothersome cuts in the complex plane.

At the resonance, after the integration over z, the lead-
ing part of the annihilation operator has the form

a,„(k,t)=e '"'g(t(3)D ' g e "m„(t)btt,
A, B

where the denominator D is equal to

(4.26)

D =2@ o cON(C +i S—i)[(N —1)(C +iS)+i] (4.27)

and the matrix m„(t) has all of its diagonal elements
equal to

a(t)=N[(N —2)(C+tS)+t] (N —1)[(N ——1)(C+iS}+i]e 'y' e "' '+(C+iS i)e' " —" e

(4.28)

and all of its off-diagonal elements equal to

b (t) = —N (C +iS)+ [(N —1)(C +iS)+i]
Xe e

—iyfC —yt(1 —S)

iy(N —1)C —yt(NS+ 1 —S1 (4 29)

In order to calculate the average cosine of the angle be-

I

tween the directions of any two photons we shall now use
the second definition (2.3) based on the intensity correla-
tion function. We assume that all oscillators are initially
excited to their first level. Substituting the expression
(4.26) for the annihilation operators and the correspond-
ing expression for the photon creation operators into the
formula (2.4), we obtain

J(n, ,n2)=constX g g e ' " e ' [m„(t)]'me(t)[mC(t)]*mD(t)((p~(bt)t(bz) bJbL~+) .
A, B,C, D, I,J,K, L

(4.30}
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The constant in front of this expression is irrelevant because it will disappear from the ratio (2.3) that determines the
angular correlation coefficient. In order to evaluate this ratio we have to perform the integrations over n, and nz indi-
cated in the formula (2.3) and to find the expectation value of the product of the oscillator creation and annihilation
operators. The integrations over the angles are easily performed with the use of the techniques described in Sec. III
with the following result:

(c )(I)=L (I)/M (I),
L(t)= — g g P„B.PcDS'(R„B)S'(RcD)[m„(t)]*mB(t)[mc(t)]*mD(t)(4~(bl ) (bK) blbL ~%),

A, B,C, D, I,J,K, L

M(t)= g g S(R„B)S(RCD)[m„(t)]*mB(t)[m C(t)]*m D(t)(4~(b I) (bK) bJbL~+) .
A, B,C, D, I, J,K, L

(4.31)

(4.32)

(4.33)

If we assume that in the initial state all harmonic oscil-
lators are singly excited, which corresponds to our previ-
ous calculations, the expectation value is equal to

&~l(bl) (bK) bJbL +~ ~IJDKL+flL~JK 2oIJbKLfIK .

(4.34)

The formulas (4.31)—(4.34), supplemented by the ex-
pressions (4.28) and (4.29) for the matrix elements m „(I),
represent the final results for the angular correlation
coefficient in our dynamical model. These results are
represented in Fig. 4 for N =2, 3, and 4 and for different
values of the time variable. As was to be expected for
short times the angular correlation coefficient does not
depend on the number of atoms, since for times much
shorter than the lifetime the number of photons in the ra-
diation field is very small. It is worth noticing that ini-
tially the angular correlation is practically the same as for
N=2 in our previous calculation based on the model
wave function. For distances of the order of one wave-
length and larger the angular correlation coefficient does
not vary with time and is almost the same for all N. We
do not show the parts of the plots that correspond to
small separations between the atoms, because for closely
spaced atoms the one-dimensional harmonic-oscillator
model without the dipole-dipole interactions does not
represent correctly the real physical situation. The oscil-
latory behavior of the angular correlations found in this
region was not present in our previous reports ' in
which we disregarded the position-dependent level shifts.

Our full dynamical calculations in the harmonic-
oscillator model do confirm the gross features of the an-
gular correlations found with the use of the model wave
function, but these results differ in details. These
differences are due to the fact that the model wave func-
tion does not include the photon exchanges between the
emitters. Without those exchanges the matrix m„(t)

V. COMPARISON OF QUANTUM
AND STOCHASTIC CORRELATIONS

We attributed the angular correlations studied in the
preceding sections to the quantum nature of the emitted
particles. However, intensity correlations can also result
from the averaging over an ensemble of classical fields.
The need for such an averaging may arise, as has been
shown already by Lord Rayleigh, ' due to the random-
ness of the phases or due to the random distribution of
the emit ters. Since the evaluation of the quantum-
mechanical expectation values may be expressed in the
classical limit as an integration over the phase variable, '

we might expect that the angular correlations studied in
the preceding sections can be, to some extent, reproduced
by the classical averaging over random phases.

In order to compare the classical case and the quantum
case we will consider a collection of point sources of the
classical electromagnetic waves of the same intensity,
placed at the positions r „and radiating at the same fre-
quency. The spatial dependence of the wave produced by
these sources is in the far zone given (up to an unimpor-
tant common factor) by the real part of the following ex-
pression:

F(n)=+exp(ikn r„+ia„), (5.1)

where n is the direction of observation and a„ is the
phase of the 3th source. The classical analog 2„(n, , n2)
of the quantum intensity correlation function (2.4) is
given by the following average over the stochastic phases:

would have been diagonal and the results would coincide.
It is worth noticing that for times longer than the decay
time y

' of the oscillator excitation the importance of
the off-diagonal elements diminishes with increasing N.
Thus, our basic assumption C from Sec. III would turn
out to be better for a larger number of emitters.

2,&(n&, n2)=constX f da, f dalvF*(n, )F(n, )F'(n2)F(n2)
ikIIl' I

A ~B ikII2 [IC rD
(bABbCD ~ADbBC ) '

A, B,C, D

(5.2)

To compare this formula with the corresponding quan-
tum expression (4.30), we must incorporate the dynamics
of the radiation process by introducing the elements of
the matrix m„(t) into the formula (5.2). Even after this

correction is introduced, the classical result differs from
its quantum counterpart, because the two terms within
the last brackets in Eq. {5.2) replace the three terms ap-
pearing in the quantum expectation value (4.34). The



2836 I%0 BIALYNICKI-BIRULA AND ZOFIA BIALYNICKA-BIRULA 42

0.3

0.0
02

0.3

N = 2

r t i r t r t i ~ ~ ~ ~ r

0.7 1.2 0.2

t=0. 1

~ I f I t I I f I I I t I I 1 I r I I I I f r I 'I f

07 12 02 07 12 17

term —261J6&L61&, missing in the classical expression,
represents the contribution when both detected photons
come from the same emitter. As a result, the quantum
correlation coefficient (c ) is larger than the classical one.
The difference between the classical calculations and the
quantum calculations is substantial (cf. Figs 4. and 5); the
classical phase averaging gives the results scaled down by
roughly a factor of 2.
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FIG. 5. Time evolution of the average cosine (c ) plotted for
the same situations as in Fig. 4 but calculated in the classical
model of radiating harmonic oscillators.
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FIG. 4. Time evolution of the average cosine (c ) plotted as

a function of the common interatomic distance r (in units of the
photon wavelength) for linear, triangular, and tetrahedral
configurations of N atoms, calculated in the quantum model of
radiating harmonic oscillators. Time is measured in units of the
single oscillator decay rate y

N = 4
0.3

The main conclusion of this study is that the angular
correlations of photons that are due to the spatial distri-
bution of emitters are always positive, except for very
small separations of the emitters (smaller than —,

' of the
wavelength). Outside of this region, which is not correct-
ly described by our simplified model, we have not found a
single case where the angular correlation coefficient (c )
would be negative. This conclusion, of course, is not val-
id for emitters that could individually radiate correlated
photons. Such correlations are often a result of conserva-
tion laws (especially conservation of momentum and of
angular momentum) as, for example, in the cases of a
two-photon decay of an atomic excitation or of a scalar
particle.

Correlations in physics arise from loss of information.
In the quantum-mechanical description of emission pro-
cesses angular correlations arise because photons are in-
distinguishable so that the question of which photon was
emitted by a given atom cannot even be posed. In the
classical description no correlation will be found unless
we introduce some loss of information, ' typically the loss
of information about the phases of the wave fields emitted
by different sources. This phase averaging is automatic in
the quantum description when we deal with N-photon
states. We would like to stress, however, that the classi-
cal, phenomenological phase averaging does not repro-
duce fully the quantum results.

It is worth noting that in all cases studied in this paper
the quantum effects enhance the correlations in space,
whereas it is known that they decrease the correlations in

time, leading to antibunching. We expect a similar
phenomenon to occur for angular correlations when
emitters are closely spaced and we intend to study this
case with the help of a more realistic model.

Angular correlations of photons emitted by a set of
atoms distributed in space have not so far been measured.
We believe that with the present experimental techniques
involving ion traps and atomic and molecular clusters,
the measurement of angular correlations is now feasible.
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APPENDIX

In this Appendix we shall derive the form of the N-

photon wave function according to our assumptions (i),
(ii), and (iii). It will be convenient to use the Dirac (in-
teraction) picture and to write down the final-state vector
of our system made of atoms and photons as the product
of the S operator and the initial-state vector describing
the atoms in excited states and the electromagnetic field
in its ground (vacuum) state. Using the Dyson formula
for the S operator we obtain

~'0 &=Texp i f—dt H,„,(t) ~ip'&,

where the interacting Hamiltonian may be taken as
describing either the relativistic coupling of the elec-
tromagnetic potential A„ to the conserved current j"or
the nonrelativistic coupling of the electromagnetic field
to the electric and magnetic dipole and higher multipole
atomic operators. In both cases the interaction Hamil-

tonian is linear in the photon creation and annihilation

operators and this is the only property of the Hamiltoni-
an that we shall use in our calculation.

Under our assumptions (ii) and (iii) the N-photon com-
ponent i%f & of the final-state vector i%f & can be written
in the form

=g f d k a (ki, A. i)exp( —ik, ri) a (kz, Az)exp( iktt —rN)

X( i)—f dt, f dtNexP(i', t, + . +icotvttt)Ttj(t, ) f(ki, A, , ) j(t~) f(k~, k,iv))i'" &,

(A2)

where the vectors r A denote the positions of the emit-
ters, the vectors f(k;, A, , ) denote the photon polarization
vectors multiplied by the normalization factors arising
from the Fourier expansion of field operators
f(k;, A.;)=(2m) (2') 'i a(n, , A,;), and Tt ) denotes
the time-ordered product of all atomic operators. In the
nonrelativistic version of the theory the current operators
are to be replaced by the electric dipole operators. In or-
der to extract the final state of the electromagnetic field,
we must take the scalar product of the state vector (A2),
with the state vector i

4f
& describing the final

state of the atomic system. The N-photon wave function

%(k„A.„.. . , k~, A,z) will appear as the coefficient multi-

plying the product of the photon creation operators in
the formula

(%fi~4 & =g f d' k %(ki, k,„.. . , k~, ktt}

Xa (k„A., ) a (kiv, l,&)iQ&, (A3}

where iQ& denotes the vacuum of the electromagnetic
field. By comparing expressions (A3) and (A2), we obtain
the following formula for the photon wave function:

+(k„k,„.. . , k~, l~)=(N. )
' g exp( ik; .r, —— ik; riv—)

perm i

X( i)' f dt, — f dtzexp(ice, t, + +iaijvtz)

(A4)

Under our simplifying assumption that the emitters do
not interact among themselves, the expression in last line
of the formula (A4) becomes equal to the product of the
transition matrix elements for each atom. Each integra-
tion over time can then be separately performed leading
to the product of the energy-conservation 5 functions
o(co E, +Ef ), where E—

, and Ef are the initial and final
energies of emitters. Thus the wave function
4(ki, A, . . . , k&, A~) effectively reduces to a function
4(ni, l, i, . . . , nz, Az) of the directions of momenta n,
and the polarization indices k; only. In this way we ar-
rive at the following formula for the photon wave func-
tion, which can be used to calculate all the angular corre-
lations:

4(n, , A, , , . . . , n~, A, v)

perm i

d e(n, , A, , ) . d~ a(n, A. )

X exp( ikn, r,—— . ——tkn; .r~ )

(A5a)

(Asb)

=JV g d„e(n„A, , ) . . d„e(n~, iN }
perm A

Xexp( —ikni rz —. iknz. rz }—,
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where JV is the normalization constant and k is the com-
mon length of all the wave vectors k, Formula (A5b)
differs from the formula (A5a) only in the ordering of the
terms which are being summed.

In what follows we shall simplify the calculations by
dropping all the products d c from the photon wave
function. This procedure is justified when in the expres-
sion (2.1) for the angular correlation coefficient one per-
forms an additional summation over the photon polariza-
tions and also an additional averaging over all possible
orientations of the atomic dipoles (or in the terminology
of quantum mechanics the averaging over the magnetic
quantum numbers of the initial and of the final atomic
states). Upon substituting the expression (A5) into the
formula (2.1) for the angular correlation coefficient and
after performing the summation over the polarizations

and the averaging over the atomic orientations, all depen-
dence on the vectors d and c disappears. As a result, the
angular correlations become completely independent of
the photon polarizations. The same result would also en-
sue if photons were treated from the beginning as spinless
particles, as in the work of Duncan and Stehle.

The photon wave function without any polarization
dependence is a function of n, 's only,

4(n, , . . . , ntv)

=JV g exp( —ikn r, — ik—n rN)
perm i

=JV g exp( —ikn, r„— ikn—
tv r„) .

perm A

(A6)
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