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The three-dimensional Coulomb system can be mapped onto the four-dimensional harmonic
oscillator. Additional perturbations of the type gr~ [r = (x + y + z )' j translate into anhar-
monic perturbations A(x )"+' (x = x, +xz+ xs+x4) to the oscillator W.e use this observation
to relate the large-order behavior of perturbation series of the perturbed Coulomb systems to
well-known large-order formulas for anharmonic oscillators. In this way, the leading behavior
of Coulomb systems can be understood by simple scaling and symmetry arguments within the
oscillator systems. Applications to more physical Stark- and Zeeman type perturbations are
briefiy discussed.

I. INTRODUCTION

The large-order behavior of perturbation series in
Coulomb systems has attracted much interest in the lit-
erature. Especially well studied are the Stark and Zee-
man effects. To gain an analytic insight into the lat-
ter, Avron2 considered a simplified model Hamiltonian
in which the Zeeman potential in a uniform magnetic
field, V oc (xs + y~), is replaced by the unphysical,
but easier to handle, rotationally symmetric potential
y M p2 = Z2+ $2+ Z2

p 1H= ———+gr .
2 7.

Using WKB techniques he was able to derive the large-
order behavior of the perturbation series for all energy
levels. For the ground-state energy, E(g) = —

z +
i EI„.g, he finds

(2)

The structure of this result, E&
" oc (—a)"I'(pk + P), is

completely analogous to the corresponding Bender-Wu
formulass for anharmonic oscillators. In their calcu-
lation, the parameters p and P in the leading factorial
growth factor can be deduced by very simple scaling and
symmetry arguments. In Avron's work, on the other
hand, it is not as simple to see how the leading behavior
I'(2k + 2) 2k(2k)! emerges.

The purpose of this paper is to point out that it was
not really necessary to redo the calculation by Avron
from the beginning. Ever since Schrodinger s~ early ob-
servation in 1941 and Kustaanheimo and Stiefel's more
recent classical work which was quantized via path in-

tegrals by Duru and Kleinert, it has been known and

exploited in many ways that Coulomb systems in th, ree

dimensions can be mapped onto oscillator systems in four
dimensions. Applying the same method to the Hamilto-
nian

p 2

0 = ———+gr"
2 r

it goes over into that of an anharmonic oscillator

2 2

h = —+ —x'+ A(x')"+'.
2 2

(4)

II. THE MAPPINC

The power of mapping three-dimensional (D+=3)
Coulomb problems onto equivalent four-dimensional

(Bold letters are three-vectors; letters with arrows denote
four-vectors. )

Our dimensionless variables in Eq. (3) measure lengths
in units of the Bohr radius ao ——li /me2 and energies
in units of me4/tt where rn and e are respectively (re-
duced) mass and charge of the electron. The dimension-
less coupling g is related to the physical coupling I" via
I' = ge /a~a+'.

By using known Bender-Wu formulas for Eq. (4),
we shall derive quite directly the large-order estimates
for the Hamiltonian (3). As an additional result, we

shall use a similar relation between Eq. (3) and Eq. (4)
when bo/h Hamiltonians are studied in two dimensions
to give the large-order behavior also in that case. It
should be mentioned that the same idea has appeared be-
fore in calculations of large-order estimates for the Stark
Hamiltonian, as will be brie8y sketched in the discus-
sion. The present work is a systematic model study in-
tended to prepare the grounds for a subsequent analysis
of the physically more relevant Zeeman effect, to be pub-
lished separately. 2
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(D = 4) oscillator systems became most transparent with
the path-integral quantization of the pure Coulomb sys-
tem by Duru and Kleinert. The basic result is that, us-

ing a path-dependent time reparametrization in the path
integral together with a Kustaanheimo-Stiefel transfor-
mation from three- to four-dimensional space, the D = 3
Coulomb Green function can be expressed in terms of the
D = 4 harmonic oscillator Green function. In the present
context we do not need the whole machinery involved in
this treatment. All we shall make use of here is the re-
lation between the energy spectra of the two systems.
Consider therefore the two Schrodinger equations

I /'
z

Dc —1——
i
8„'+ 8, —

2 ( r
L') Z
rz) ~

——+ V(r) 4= E0,

where L is the angular momentum operator satisfying

sions of e„ in powers of A = g/4J'+~ should determine also
the behavior of the expansions of E„(g) in powers of g.

Let us begin by deriving the relations (6)—(8) between
the two Schrodinger systems. We consider a general
spherical symmetric perturbation V(r) and the radial
part of the Dc-dimensional Coulomb problem

HQ= Eg, hP=eP, (5) L lcm —E (E + Dc 2)Yrc—m,

with the Hamiltonians in Eqs. (3) and (4). The result
can be stated as follows. The two systems are equivalent
if their parameters are related by j—„-(D -&)/&~ (12)

with lcm being hyperspherical harmonics in D dimen-
sions. The substitution

= -E/2,
transforms this into

(6)

(7)

The set of all bound-state wave functions of H is related
to all oscillator wave functions of a fixed energy

e = e(~, A) = 1.

These equations have to be supplemented by further rela-
tions between the dimensions Dc (Coulomb) and D (an-
harmonic oscillator) and the angular momentum quan-
tum numbers E and l, to be compiled in Table I. Equa-
tion (8) will be central to our calculation. The Bender-
Wu results for anharmonic oscillator systems give us the
oscillator energies e„(~,A), for various quantum numbers

n, when expanded in powers of A. The energies E„ofthe
Coulomb systems are found by solving the equation

—E„2, +, ——1

8„'+ [E (—l —+ D 2)+(D— 1)(D——3)/4]

Z——+ V(r)
~ p = Ey. (13)

A further change of variables,

r = z', y(r) = z'/ P(z),

leads to

(14)

+4( E)z'+4z'V—(z') P = 4ZQ. (15)

—-8.' +[4Ec(lc+ Dc 2) + (Dc —1)(Dc—3)+—3/4]
2 2z2

for E„. It is then obvious that the Bender-Wu formulas
for the large-order behavior of the perturbation expan-

Consider now the new centrifugal barrier in (15) for
Dc

4gc(~c+ 1) + 3/4
2g2

Identifying E = l/2 this becomes

(16)

Coulomb
(r")

Dc

An harmonic oscillator
[(x')"+']

TAB LE I. Relations between the spatial dimensions
D, D, and the angular momentum quantum numbers E

C C

in the equivalence (5)—(8).

I(E + 2) + 3/4
2X2 (17)

i.e. , the centrifugal barrier in (13) with D:D = 4
and Ec:l = 2Ec Hence, E.q. (15) can be interpreted
as the radial part of the four-dimensional Schrodinger
equation (after a further trivial rescaling)

DC D = 2(D —l)

Z=2S

with

2 2 (2) I g2)

~' = —E/2, e = Z.

(18)

For V(r) = grJ' we obtain the transformed potential
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V(~x~) = A(x')~+' with

A=
4p+1 (20)

III. SOLUTION OF THE IMPLICIT RELATION
BETWEEN E AND ~

As observed above the crucial point of the equivalence
(5) is the implicit relation between E and e in Eq. (8).

These are exactly the equations announced in Eqs. (6)—
(8).

In the case D+ = 2, Eq. (16) becomes A. Exact energies

4(E~ —1/4) + 3/4 4E~ —1/4
2z2 2z2

With E+ = E/2 we therefore find again the two
dimensional centrifugal barrier and (18) is replaced by
its two-dimensional version. The relation between the
parameters in Eqs. (19) and (20) remains the same.

In the general case, the relation is D = 2(D —1) and
E = 2E (see Table I).

First of all, Eq. (8) may be used to generate (numer-
ically) precise values of the energies E(g) from known
values of e(~, A), From Eq. (4) it is easy to read off
that e(~, A) scales as

E(Cat, A) = Celt(A) i A = A/41

where i and A are reduced energy and coupling. Using
Eqs. (6)—(8), this implies a parametric representation for
E = E(g):

TABLE II. Perturbation coeKcients for the anharmonic oscillator systems with p = 1, . . . , 5 in
D = 2 and D = 4 dimensions.

D=4

p=1
2

—9
89

5013

88251

6
—39
540

41433
4

242208

p=2
6

—249
28821

23700261
4

7459161843
4

p=3
24

—11400
21808560

—102141774120
959191470808464

p
—4

120
—826440

36358384560
—5600598555541800

2262348623667536526480

p=5
720

—89540640
118399164428160

—781951013486796585600
17524674002198720891773370880

24
—1752

322176
—96401928

40978267968

120
—110760

341494800
—2246022566760

27036786901714800

720
—10052640

694963877760
—145167171564124800

73563718336492244820480

5040
—1286681760

2610699387166080
—23076836642536465219200

646513091307250699118512181760
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(23)
it is easy to see that the coefficients in the resulting ex-
pansion of the right-hand side, biA+ b2A + bsA +
depend on the unknown ay as follows:

4p+ A

e(A) +&
(24) by

——by(ai, . . . , ay i). (29)

Certainly, an analytic solution of these equations for E(g)
is impossible. For our purpose this will not be necessary.
We shall only have to relate the power series of i(A) and

E(g) with each other.

B. Low-order perturbation theory

In this work, we shall concentrate on the perturba-
tion theory for the ground-state energies, to be denoted
shortly by E and e, omitting the ground-state subscript
n = 0. The starting point is the asymptotic expansion
for anharmonic oscillators (4),

A

+p
k=o

(25)

E = ) .Eyg".
k=o

(26)

In order to express the tom-order coefficients EI, in terms
of ey, it is convenient to rewrite Eq. (8) as

with the coefficients eI, given in Table II. The solution of
Eq. (8), e = 1, yields then the expansion for the Coulomb
problem

It is then straightforward to solve Eq. (27) recursively for
ak, k = 1, 2, 3, . . . , starting with k = 1. This gives

ai ———bi ———~p+'(~i/~o),

a2 — b2(ai) = [~p &2 (I + p)aiep ei]

cp [(C2/&p) + (1 + p)(ci/cp) ],
(3o)

as = -bs(ai, a2)

p '[(es/0p) + (3p + 4)(c /itp)(62/ep)

+(-p'+ —,'p+ 2)(~i/~o) ]

2E = —M = ——2[1+2aiA+ (2a2+ ai)A + ]E'0

2= Eo+Eiu+E2e + (31)

with A = g/4"+'. As a trivial check we note that, by in-
serting ep —D/2, the lowest expansion term in Eq. (31),

and so on. Obviously the ay depend on all coefficients er
with / & k. The expansion of E follows now simply from
Eq. (6),

1 l 2r' I
1 —&o~ =~ &iA

I 2+ I+~2A'I 2+ I +k~'+" ) ~2+p p Ep ——2/~p = 2/(D ——1), (32)

Inserting the ansatz

1~ = —(1y aiA+ a2A2+ ),
Co

(27)

(28)

reproduces the correct ground-state energy of the unper-
turbed Coulomb potential, as it should [Ep ———2 for
Dc = 2(= D);Eo ——i for Dc = 3(D = 4)]. For the
next coefficients, the elementary but tedious algebraic
manipulations yield, for general p,

Ei ——4~p ei/4"+

E2 ——e,p"[2(2p+ 1)c,'+ 4~2ep]/4 ~"+'&,

Es: E'o [2(3P + 5P + 2)Ei6'o + 12(P + 1)EiE2co + 4Esfp]/4

E4 = Ep [( s p + 32p + s p+ 10)EiEp + 8(4p + gp+ 5)EiE2cp + 2(4p+ 5)(2E E +isE2)Eo + 46qEp]/4 ~

Es = &p [ ( s p + s p + s p + s p+28)ciao+( s p +300p + s p+ 140)eie2eo

+2(25p + 65p+ 42)(tiEs + ti62)cp + 4(5p+ 7)(Eicos + E2E's)6p + 4E's6t]/4

(It is advisable to use an algebraic computer pro-
gram like, e.g. , REDUCE or RIEMANN. ) It is easy to
show that for general anharmonic oscillators ei ——F(p
+1+D/2)/I'(D/2) = (D/2)(D/2+ 1) . (D/2+ p), i.e. ,

ei ——(p+ 1)! for D = 2 and ei ——(p+ 2)! for D = 4.

Inserting this in Eq. (33) gives

(p+ 1)-'/4" (D = 2)
(p+2)'/2"" (D =3) (34)

in agreement with a direct first-order perturbation cal-
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culation for the Coulomb systems.
In Table II we have compiled further low-order coef5-

cients e» for anharmonic oscillators [(x~)&+ anharmonici-
ties with p = I, . . . , 5 and D = 2, 4] up to k = 5. Inserting
these values in Eq. (33), we find perfect agreement with

the values of E» calculated directly from the Coulomb
Hamiltonian (3) by means of the recursion relations de-

rived in the Appendix. Some results of this computa-
tion are shown in Table III for the most interesting cases
p=1 2-

C. Large-order perturbation theory

We now turn to the calculation of the asymptotic be-
havior of EI, as k ~ oo. To perform the inversion of
Eq. (8), we shall make use of the corresponding known
large-order formulas for anharmonic oscillators.

Let us briefly recall their derivation. For our purposes,
Langer's~4 framework is most convenient, which starts
with the calculation of the imaginary part of the en-

ergy for small negative coupling (i.e., the decay rate of'

TABLE III. Perturbation coe%cients for the Couloznb systems with p = 1, 2 in D = 2 and.

D = 3 dimensions.

~=1, D =2
E(1)=1/2
E(2)=—3/64
E(3)=21/1024
E(4)=—987/65536
E(5)=15555/1048576
E(6)=—600243/33554432
E(7)=13526613/536870912
E(8)=-2770115403/68719476736
E(9)=79111307439/1099511627776
E(10)=—4978189192881/35184372088832

p=1, D =3
E(1)=3/2
E(2)=—3/2
E{3)=27/4
E(4)=—795/16
E(5)=3843/8
E(6)=-5583
E(7)=9543339/128
E(8)=-1141062999/1024
E(9)=18769071555/1024
E(10)=-1343699301873/4096

~=2, D~=2

E(1)=3/8
E(2)=—159/1024
E(3)=17967/65536
E(4)=—15522195/16777216
E(5)=5189052801/1073741824
E(6)=—4896676641339/137438953472
E(7)=3094900497137871/87960930'F2208
E(8)=-20233178231139761499/4503599627370496
E(9)=20808558827825859998445/288230376151711744
E(10)=—52693485465369543566065089/36893488147419103232

@=2) D =3
E(1)=3
E(2)=-129/4
E(3)=5451/4
E(4)=—6609975/64
E(5)=734589303/64
E(6)=—880224055389/512
E(7)=169960252839003/512
E(8)=—1316458151745974019/16384
E(9)=391398896113218866535/16384
E(10)=—1124700335952727250306379/131072
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steps (27)—(31). We found it, however, more convenient
to work with the imaginary part (35).' Adding the real
part of e (which, perturbatively, does not take into ac-
count the metastability), we have then to solve (with A

small and negative)

the metastable system). For oscillators in D dimensions
with anharmonicity A(x )"+ the result is (using WEB
techniques~ s or insta, nton methods )

( ) D/2

Imc(u), A)
I, ( l~l/ '+ )""&

xe —1/(&I&I/~'+")' "

x[1+cg(alki/~ +") "+ ],

1 = e(~, A) = ~) ~g l l
+i 1m'(~, A).

k=p
(41)

where

(35)
The strategy is to determine (recall g = A/4P+')

1 (r(2+2/p) I"
2 «(I+ I/p)'r

(2a) I p 1 ( I'(2+ 2/p) )
I'(D/2) I'(D/2) i I'(I + I/p) r

For p = 1 (i.e. , lxl perturbation), also cq is known

analytically s

C1
20 + 54D + 21D2

72
P='

95 53 371 143
(72' l8' 72 ' lS ' ' ' ')

The connection with the perturbation coefficients ey is

given by the dispersion relation

2+p a 1 Ime(~, A+ i0)
calfy (d = — dA 4+1 (39)

where the integral runs on top of a cut along the negative
A axis in the complex coupling-constant plane, signaliz-
ing the metastability for A & 0. Inserting the small-A
expansion (35), one finds the following large-k behavior
of the perturbation coefficients [recall Eq. (25)]

p t /' Dl (
r~ == --7(- ) I'I p/-+ —

I II+ —+
kazoo p~

(4o)

We now derive the corresponding formula for EI, . In
principle we could start with (40) and go through the

I

~(g) =- ~(g)+is(g) (42)

and from this E = —2u2 = —2(z2 —y2) —4izy We. note
that obviously z g 0, so that it is irnrnediately clear that
y is of the same smallness as Im e, i.e., it is exponentially
small as g oc A ~ 0. We may therefore keep only terms
linear in y and find

1=&l &0+&1 2+ +&2 2(2+)+'''l
( (1+p)~gA (3+ 2p)~2%2+y

~&+2/p ) ' ( ~~+2/p

((alki)'I" r i, (alki)'/" )
x [1+cg(alAl/z'+p) " + ].

The real part of this equation agrees with Eq. (27) and
has been solved before,

z = —(I + a, A+ a2A + .)
=1 2 (44)

Cp

with aq, a2, . . . , given in Eq. (30). The solution of the
imaginary part is trivial

( &1+2/p ) ( &1+2/p

q(al) l)""r & (al~l)"" r

x
l
1+ cg(alAl/z'+")

(45)

Going to the imaginary part of E, and inserting z from
Eq. (44), we obtain

I DI2
4 ( 1ImE = —4zy = —3y l

I (.""
I&l) )

x 1+ c1 co Q 4 + 1+p &1 Ep &p ~+ 2+ — 1+ — ~1~+1/p D 2 t

pr

xexp( —[1/(eo+palAl) "](1+(1+2/p)az&+ (1+2/p)(aq/p+ a2)& + ))

(46)

For p & 2, all terms in curly brackets are subleading
corrections which we shall neglect for the moment. Only
for p = 1, the correction oc A in the exponential con-
tributes to the prefactor:

—(1/&', &Ix))[1+3&,X+O(W')]

= es ' " e /&"o ~&~)[1+ O(P)]. (47)
Inserting aq ———Po(eq/eo) from Eq. (30) and a = 3 for
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p = 1 from Eq. (36), the additional prefactor becomes

exp( —01/5o).
Thus, recalling A = g/4&+1, we find for the leading

behavior of the imaginary part, for general p,

) D/2

11T1E(g)
i( 'Isl)'")

x LI+ '1(o'l~l)"" +

e /('l9 I)

(48)

with the growth parameters

(50)

and

and, via the dispersion relation (39), for the large-order
behavior of the perturbation coeKcients

Ei, ———p'( —a') I (pk+ D/2)
l
1+p c'i

pk j
(49)

with (using a = 3 for p = 1)

2(c, /5o) (2+ ~D)ai
a Cpa

(2+ 2D)(ei/5o)
Ci 51 5O +3 3

(ci /co ) —(59/Eo ) —2 (Ei /5o )
3

D 1ci+ —(51/5o)+ —
l

—
l

+—
2 3 (eo) co

3(ui + u&)
~6a2

c1= c1—

Inserting ei/eo —(D+ 2)/2, 52/5o — (D ~—2)(2D+ 5)/4
(compare Table II) and ci from Eq. (38), we obtain

2D2+ D —6
C 1 =C1+

12
9DC 2 + 6DIC

1
53 1
18 3 18+2o611 1e ~ ~

(54)
143 + 5 49 5 4444 (Dc 3)

(47/sos)e "/" P = 1

(4~/5o)» 1. (51) For general p & 2, analyzing the diII'erent powers of A

in (46), we find that

Recall that eo ——D/2 = DD 1and —that a and p denote
the growth parameters for anharmonic oscillators given
before in Eqs. (36) and (37). Their numerical values and
those of a' and y' can be read off conveniently from Ta-
ble IV. Furthermore, we have 51(p = 1) = D(D+ 2)/4 so
that, for p = 1, ~1/5o —(D + 2)/2 = D

For p = 1, also the first-order correction c'1 can be
calculated analytically. Expanding the exponential in

Eq. (46), we find a total correction

1+ cl(5oQlAl) +2( 51/5)o5oA+ (2+ &D)aiA

3 + 6'
IAI =1+c'1(~soul~i/4'), (52)

EOQ

C~=Cn forn&p —1 (55)

and

1 + 2/p
C J-1 —CJ-1— E'] Cp )a

(56)

2
C 1 = Ci ——(51/5o) = Ci ——(Ci/Co) (p = 2)

a 16
for p = 2 and c'1 ——ci for all p ) 3.

(57)

with the correction coming from the expansion of the
exponential in (46). All higher-order coefficients c „with
n ) p are given by more complicated expressions similar
to (53) for p = 1. In particular, the first correction term
1S

TABLE IV. Using G, it is straightforward to obtain the values of a = &G", y = G /I'(D/2)
and to compute the parameters a', p' in Eq. (49). D and D = 2(D —1) are the dimensions of
the Coulomb and equivalent oscillator systems, respectively.

G = 1'(2+ -')/I'(1+ —,')'
6
s/~
1«(-'.)/F(-.')'
»V /F(-,')'
14r(-,')/r(-,' )'

2.546 479 089
1.886 822 268
1.618 057 804
1.473 451 345

1(D).(a G)P —.(—.)
4 s -'(~)~ for D = 32 2

4af D
4( ~ )aGD~2/F(D/2) =

1 2 & if p p 1. For p = 1, there is an additional factor
2 exp( —D ).



LARGE-ORDER PERTURBATION EXPANSION OF THREE-. . . 2799

Let us conclude this section by summarizing the main
results. Explicitly, we have for p = 1,

24, t' 3)" ( 471———e 'I ——
l F(k+1)11——-+

oo ir ( 16) 18k

(D = 2), (58)

18 sf 3) f 491I'(k+ 2) ~

1 ——-+
k~co n' I 2) 9 k )

andfor p=2
(D = 3), (59)

F(2k+1) (D =2),64 (
2ir~

64( 8'I
F(2k+ 2) (D = 3).n's

p

(60)

(61)

Let us now test the accuracy of the leading large-
order formulas (49)—(51) for the Coulomb systems, E&

"
—(p/7r)y*( —a') I'(pk + D/2), by comparing it with

the exact coefficients Et in high order (up to k = 500
for p = 1 and k = 200 for p = 2, 3, 4, 5). These

Equation (61) agrees with Avron's2 result (2) obtained
from a direct WI&B analysis of the decay rate of the
Coulomb system (if we correct a minor error in his for-
mula for E&—Avron's decay rate is correct).

IV. COMPARISON
WITH NUMERICAL RESULTS

can be generated quite easily from the recursion rela-
tion derived in the Appendix. Some care is necessary
with floating underflow problems which are easily over-
looked. To avoid any numerical tricks (like appropri-
ate rescalings) we have changed from a VAX 11/780
computer (with a floating-point range 0.29 x 10
0.17 x 10+as) to a CRAY-XMP 2/4 computer (with a
range 0.13 x 10 244s —0.78 x IQ+2~5 ) where no such
problems occur. Since single (64-bit) and double (128-
bit) precision calculations agree at least up to 11 digits
(implying that around 3—4 digits of the initial accuracy
are lost during the recursions), also roundoff errors are
under control. Some numerical values are given in Ta-
ble V for p = 1. As a first graphical test we have plotted
in Fig. 1 for p = 1, . . . , 5 the ratios

(62)

versus k in (a) D+ = 2 and (b) D+ = 3 dimensions. (For
clarity, we have erased in these figures the quite erratic
behavior for k+4.) We see that for p & 3 the asymptotic
region is reached very rapidly. The magnitude of the
correction terms y'i/k = c'i/pk can be read off from
Fig. 2, which shows the more sensitive ratios

gi ——(Ru —1)k = p'i + 0(1/k)

versus 1/k. The finite limits for 1/k ~ 0 verify the cor-
rectness of the asymptotic formulas (49)—(51) and pro-
vide a rough graphical estimate of y'~. More precise
values can be obtained by means of numerical extrapola-
tion procedures. We have used a modified Neville table
based on the recursions

TABLE V. Comparison of exact perturbation coeKcients Ek with the leading large-order es-
timate (49) for the Coulomb potential plus gr perturbation (p = 1) in D = 2, 3 dimensions

(Ro = Ei,/Ez'", Ri = (Ro —1)k = p'i + O(1/k), R,':—first modified Neville extrapolant [see
Eq. (64)]).

10
20
30
40
50

100
150
200

10
20
30
40
50

100
150
200

1,414 886 467
6.255 848 488
3.867 004 057
6.549 555 458
1.330 237 196
1.875 100 243
5.174 782 254
3.205 435 817

3.280 515 874
3.577 983 429
3.707 550 668
9.151 876 481
2.520 500 733
1.034 311215
6.j.49 830 450
7.272 058 065

—1
3

10
18
28
85

153
229

8
22
38
55
74

177
290
411

8
22
38
56

177
290
411

Easy
k

p=1, D =2
2.014 875 234 —1

7.254 750 204 3
4.247 864 373 10
7.017 272 730 18
1.404 788 298 28
1 ~ 925 764 898 85
5.266 918 834 153
3 ~ 247 995 793 229

p= 1) D =3
6.566 100 040
4.846 277 511
4.497 785 366
1.055 160 376
2.821 286 483
1.093 176 081
6.379 672 771
7.474 388 976

Ro

0.7022
0.8623
0.9103
0.9333
0.9469
0.9737
0.9825
0.9869

0.4996
0.7382
0.8243
0.8673
0.8934
0.9462
0.9640
0.9729

RI

—2.9778
—2.7538
—2.6898
—2.6661
—2.6535
—2.6309
—2.6240
—2.6207

—5.0039
—5.2341
—5.2708
—5.3062
—5.3306
—5.3848
—5.4041
—5.4140

—3.046 384
—2.613 084
—2.613 805
—2.611 782
—2.611 383
—2.611 135
—2.611 118
—2.611 114

—5.428 698
—5.221 952
—5.560 945
—5.457 668
—5.448 892
—5.444 759
—5.444 525
—5.444 476
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TABLE VI. Higher-order corrections (1 + 7'i/k + 7'q/k + 7'3/k + . ) to the leading large-
order formula for p = 1 and D = 2, 3 (MNE stands for modified Neville extrapolation, 5„

([7'„—7'„(MNE)]/7'„)). In the entries for 7„' (MNE), the numbers in parentheses indicate
the roundoff errors in the last digit. The numbers in square brackets are estimates of the error
propagation.

53
6

227
4

46513
72

Cn

53
18

1277
648

336437
34992

6c„

1163
1944

1205
648

315503
34992

1205
648

380573
34992

C n

J=1, D =2
47 47
18 18

7'„(MNE)

—2.611 111111117(8)

—1.859 567 897 5[100](6)

—10.876 001 5[260](1)

2.3 x 10

2.0 x 10

1.2 x 10

p=1, D =3
143

6

2 224

259021
72

143
18

4321
648

667673
34992

425
72

3395
1296

49
9

62
81

?2001
4374

503
81

99163
4374

—5.444 444 444 46(4)

6.209 876 550 0[350](8)

—22.671 013 0[800](2)

3.7x10 '

1.1 x 10

1.1 x10

TABLE VII. Modified Neville extrapolations of the higher-order corrections (1+7'i/&+7'q/k
+7 3/k + ) to the leading large-order formulas for the Coulomb and corresponding an harmonic
oscillator systems with p = 2, 3, 4, 5.

1
1 [Eq. (72)]

1
2

2 [Eq. (72)]
1
2
3

3 [Eq. (72)]
1

2

4
4 [Eq (72)]

1
1 [Eq. (72)]

1
2

2 [Eq. (72)]
1
2
3

3 [Eq. (72)]
1
2
3
4

4 [Eq. (72))

(Coulomb)

a~=2
—1.850 550 825 2
-1.850 550 825 204 3

-0.201 533 262 64
-1.160 032 763
—1.160 032 776
—0.229 074 464 48

0.026 237 70
—0.721 322
—0.721 270
—0.230 615 004 24

0.004 163240
0.017 132

—0.407 456
—0.407 189

D =3
—3.701 101 650 41
—3.701 101650 409
—0.443 373 177 85
—2.561 822 689
—2.561 822 63
—0.458 148 928 75

0.219 487 53
—2.091 441 3
—2.091 43
—0.428 285 007 89

0.110085 859
0.054 000 9

—1.356 8
—1.356 7

7„(anharmonic oscillator)

D=2
10 13

—0.201 533 262 63
0.163 255 602

—0.229 074 464 4
0.026 237 6
0.099 357 9

—0.230 615 004 24
0.004 163 244
0.017 130
0.057 253

D=4
10 12

—0.443 373 177 9
0.746 398 31

—0.458 148 928 7
0.219 487 5
0.370 45

—0.428 285 007 89
0.110085 862
0.054 000 2
0.268 8
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( ( 2 + 2[(R ) + (R ) + ][(R ) + (R ) ] (R( ))„ (R,)„(R, )q (R, )t~~ —
2 + 1 (,"~,—2(R("~ + (R

(64)

which eliminate two successive powers off l,~It; at each

step, i.e. , t, )~p ——p ~, (R "
) = ' + O(1/k "+ ). Using our double-

precision (128-bit) data for EI.„up to k = 200 we have
determined the values compiled in Tables VI and VII.

For p = 1, the extrapolated values for p'q in Table VI
agree very well with the analytical result (54). The con-

vergence properties of the first extrapolants (R& )t
be inspected in the last column of Table V. To illustrate
graphically how much the leading asymptotic estimate is
improved by including the p'~ correction, we have plotted
in Fig. 3 the ratio

= 1+ O(1/k').EP"[1 y y't/k]

—3+2/16 (D~= 2)
-3~'/8 (D~= 3) (66)

These predictions are implied by Eq. (57) under the
assumption of a vanishing first-order correction,
= cg/2 = 0, for the (z~ anharmonic oscillator in D = 2
and D = 4 dimensions. Recently this latter property has
indeed been observed for D = 1, . . . , 4 with an accuracy
better than 10

Let us now turn to higher-order corrections which, for
Im E(g) in (48), generically have the form

1+c"~(o'lgl)"'+ "2(o'I~I)'" + (67)

Via the dispersion relation (39) this yields a correction

For p = 2, our numerical results in Table VII are ex-
tremely well reproduced by

Ro —1+c"g/(pk+ D/2 —1)

+c'q/[(pk + D/2 —1)(pk + D/2 —2)] + (68)

to the leading large-order behavior (49) which can be
reexpanded as

1.0
0
0.9

~ ~ ~ 0 % ~ ~ ~ ~ ~ ~ ~~ ~ ~ I ~ ~ ~~ ~
$

~ \ ~ ~ g ~ ~ '~ 0
$

~ 0 ~ ~ I ~ ~ s ~ ~ ~ r ~ ~I

with

Ro ——1+p', /k + y;/k'+ (69)

0.8

0.7

0.6 {a)

/ 1 —C 1/P~

'2 —[c".—(D/2 —l)c'q]/p

p's —[e's —(D —3)c'q + (D/2 —1) c'q]/p,

(70)

0.5
20 40 60

~ I ~ ~ i ~ I ~ ~ i ~

80 100
In terms of p'„, the relations (55) and (56) between
Coulomb and oscillator systems become

1.0
0
0.9

0.8

~ ~ '~ ~ ~ e ~ ~ ~ ~ ~ 0 ~ ~ W 0 W ~~ w 0 ~ I I ~~ r ~ t e e ~ ~ ~ ~ ~ ~ e ( ~ ~ ~ ~ I

for n&p —1, (71)

(72)

0.7

0.6

0.5
20 40 60 80

k

100

with more complicated formulas for n & p.
In the case p = 1, the higher-order corrections p„ for

the ~z~ anharmonic oscillator have been determined nu

merically for all D up to n = 6 with very high precision.
More precisely, although the analysis in Ref. 15 is based
on series extrapolations, the correction is given for the
imaginary part of the ground-state energy e in the form

FIG. 1. The ratio Ro = Ei,/Ez" ——1+ p'q/k + . for
Coulomb systems with perturbation oc r",p 12 . . . , 5.
Ez'" is the leading asymptotic result (49), and Ez are the
exact coefEcients calculated by means of the recursion in the
Appendix. For clarity, we have omitted the quite erratic be-
havior for k & 4.

with

"+ r Db'

(=0

(73)

(74)
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and integral numbers b„t. For t = 0 and I = n, n + 1

these integers are known analytically from the D ~ 0
and D ~ oo limit, respectively. All other b„t up to n = 6
are determined numerically. We have checked that, for
D = 2, the resulting rational numbers c„,n = 1, . . . , 6
agree precisely with the 15 digit numbers computed in
Ref. 18 along completely different lines. [If we correct
a printing error in Table II of Ref. 15: Ib~o ——30220880

~ 30220800 (compare Table I in Ref. 15). The constants
b(") in Ref. 18 and our c„are related by b(") = 8"c„.j
Thus, besides cq(D) given in (38) also c2(D), . . . , cs(D)
are presumably exact. In fact, cq(D = 2) agrees with the
analytical value which was derived likewise in Ref. 18
(see also Ref. 19). If this special case is combined with
the results coming from the D ~ 0 and D ~ oo limits,
all coefficients for n = 2 in (74) are fixed and

6
-R)

5 Dc ~

~ w ~ w I e

C ~

4

P2- 0'2
2-

Dc

(a)
0 ~ ~ ~

0.00 0.01 0.02 0.03 0.04 0.05
1 k

(b)
0 ~ k ~ ~ I ~

0.00 0.01
~ I ~ i g ~

0.02 0.03 0.04 0.05
1 k

~'

5

0.4

0.3

0.2

0.
-R

0.

~ ~ I % ~ ~ ~ I I ~ I ~ ~ ~ ~ 'I ~ ~ ~ ~

0'= 3

0.5
-R

1 ~

0.4
W

0.3
W

0.2

~ I ~ ~ \ ~ I ~ \ ~ \

Dc

Dc

0.

0.

1

(c)
0 a a

0.00 0.01 0.02
~ ~ ~ I ~ ~ ~ ~

0.03 0.04 0.05
1 k

0.1

(d)
0.0

0.00

p ~ 4

0.01 0.02 O.O3 O.04 O.O5
1 k

0.5
-R

0.4

~ ~ ~ ~ I ~

0.3

0.2 Dc

0.1

0.0
0.

{e)

00 0.01

Pa5

0.02 0.03 0.04 0.05
1 k

FIG. 2. The ratio —Rt = (Et, /E„"" —1)k =——p't —p'2/k+ vs 1/k for r" perturbations of the Coulomb system in
D = 2, 3 with (a) p = 1, (b) p = 2, (c) p = 3, (d) p = 4, and (e) p = 5. These plots are very sensitive tests of the asymptotic
formula (49). The extrapolated y values to 1/k = 0 give —p't, and the asymptotic slope is an estimate for —p'2. Notice the
very good agreement in (a) with the analytical result (54) for p = 1, —p'z ——2.6111.. . , 5.4444. . . in D = 2, 3. In the other
cases, see Table VII for more precise values.
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l.0
Ro

0.9

0.8

0.7

0.6

0.5
20 40 60 80 100

FIG. 3. The ratio Ra —= Eq/[Ez'"(1 + p'i/k)]
for p = 1 in D = 2 (—) and D = 3
(- — -) dimensions including the theoretical 1/k correction
(p'i ————,——for D = '2, 3). For comparison, also the
zeroth-order ratio Ra = Eg/E&'" is shown.

general p, we have performed similar numerical analy-
ses of higher-order corrections also for p = 3, 4, 5. Since
we are not aware of any published y„ for general p, we
have generated (see Appendix) and analyzed the oscilla-
tor perturbation series as well. Our results in Table VII
nicely confirm that p'„= y„ for n ( p —1. Furthermore,

i and 7„ i are indeed related by Eq. (72), as can be
read ofI' from the last two lines for y'„at each p.

V. DISCUSSION

The large-order formula, (49) shows that the leading
factorial growth behaviors oc I'(pk + D/2) of the co-
efflcients EI, (Coulomb) and 6t. (anharmonic oscillator)
are identical. In the latter case this behavior has been
explained as follows. In the path-integral or instanton
approach i4 (the field-theoretical generalization of the
WI&B method) the starting point is the partition func-
tion Z = f 'Dxexp( —2[x]) with the euclidean action

441D + 792D3 —3660D —8352D —2480

10368

3[x] = di.
l

-x + —x + A(x )"+-2 +i&
2 2 (77)

(p = 1)
A saddle-point approximation yields, for small A & 0, the
leading exponential behavior of Im e. A simple rescaling,
x = A ~"'J'y, reveals its dependence on A,

13259 1277 3371 4321
i0368 ' 648 ' i0368 ' 648 ' ' ' ') Imt. cx e A~~~~ (78)

(D = 1, 2, 3, 4, . . .) (75)

may also be considered as an analytically exact result, for
all D. For D = 2, 4, we have compiled the constants b„
and c„up to n = 3 in the first two columns of Table VI.
The corresponding correction terms for the Coulomb sys-
tem are then given by c'„=c„+bc„,where the bc„ follow
from higher-order corrections similar to Eq. (53). For in-

stance, the next term is for p = 1 [6; = (3/a)'6, /60]

t'D l, D',
c 2 —c2+ci -&i+

l

——1
l
&i+ -&2 +

q2 ) ' 8
]~3 5 h2 1A A 1A $ 1 A4 1Q~3+D(66i —i26i + 66i62 —662) + i86i —276i

+ 9 6162 + 361 —
9 E1E2 + 186' + E2 — C3. (76)

Inserting a = 3 and the r; from Table II, we obtain the
numbers shown in the third and fourth columns of Ta-
ble VI. Finally, using (70) we find the y'„ in the fifth
column, which can be compared directly with our mod-
ified Neville extrapolations (MNE) in the sixth column.
The numbers in parentheses indicate the uncertainty in
the last digit due to roundoff'errors of the stable table en-
tries in the lower right-hand corner (for n & 3, Ic & 100,
say). The numbers in square brackets are estimates of
how much the last digits are aff'ected by error propaga-
tion. The last column gives the relative accuracy of the
numerical estimates for p'„as compared with the ratio-
nal numbers, which are analytically exact for n = 1, 2
and, in any case, extremely accurate for n = 3.

Finally, in order to test the relations (71) and (72) for

: z (Stark),
: z + y (Zeeman). (79)

Using the Kustaanheimo-Stiefel transformation, it is

where the proportionality constant A = a ~J' is the
extremal action (in the rescaled variables) at the sad-
dle point. Recalling the dispersion relation (39), this
implies that the perturbation coe%cients ep grow like

(—a)"I'(pk+ P). The remaining constant P can be de-

duced from symmetry considerations. The saddle-point
solution breaks "spontaneously" 7.-translational and in-
ternal O(D)-rotational invariance. This gives rise to
1 + (D —1) = D so-called zero-frequency fluctuations
(Nambu-Goldstone modes) which leave the action in-
variant. Their proper treatment leads to prefactors
oc (I/lAli/i') / in Im 6. Since there is one such factor
for each zero mode, the total prefactor for the ground-
state energy is oc (1/lAli/i')+/2. (For excited states there
are additional factors of this type. ) Using (39), this fixes

P = D/2.
Thus, via the above derived equivalence with the

Coulomb systems, also the leading large-order behavior
of the coefficients Fk can be understood without detailed
calculations. It goes without saying that, although all
calculations have been performed explicitly only for the
ground-state energies, the considerations in this paper
apply also to excited states without additional problems.

Finally, let us briefly discuss the "true" Stark and Zee-
man Hamiltonians which result from the following re-
placements in the potential term of (3):
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( 2)2 : (z, + z ) —(z + z„) (Stark),

(80)

easy to show that the equivalent four-dimensional os-

cillator systems have anharmonic terms
this way, a major part of the rich theoretical information
available for the anharmonic oscillator systems (such as
rigorous inequalities) will be transferable to the Coulomb
systems.

(x ) : 4x (z, + z2)(zs+ z4) (Zeeman),
ACKNOWLEDGMENTS

respectively. In the first case, this reproduces the known

energy formula

e(/ E/2—, A) + e( Q E/2—,
—A) = 1,

EI, oc I'(k+ 1) = k!, (82)

in agreement with detailed computations. i'i
In the case of the Zeeman Hamiltonian we stay even

closer to the problems studied in this paper. The only
difference is the fact that the equivalent four-dimensional
anharmonic oscillator (of the lxl type) is no longer ro-
tationally symmetric. There remains, however, a resid-
ual O(2)xO(2) symmetry which is responsible for the
1+ 1 = 2 rotational zero modes. Adding the contribu-
tion of the r-translational zero mode, we obtain P =
and consequently, since p = 2, the leading large-order
behavior

relating the Stark resonances to two decoupled two-

dimensional anharmonic oscillators of the lxl4 type. The
second oscillator with the coupling —A is unstable and
produces the decay-rates of the Stark resonances. In pre-
vious work, i'i this conclusion was derived from a direct
separation of the Stark Hamiltonian when expressed in

squared parabolic coordinates. In any case, the scaling
and symmetry arguments given above show that p = 1

and P = 2/2 = 1. This implies for the perturbation
expansion of the real part of the Stark ground-state res-
onance the large-order behavior

This work was supported in part by Deutsche
Forschungsgemeinschaft under Grant No. Kl.256.

AP PENDIX: RECURSIONS
FOR GROUND-STATE

PERTURBATION COEFFICIENTS
OF COULOMB PROBLEM

4=Coo =e 'V,

Eq. (Al) becomes

(A2)

II 1—-'V +
I

1 ——
l
W+gr"V =(&+-')V.2 ( r j 2 (A3)

Inserting the perturbation expansions [bp(r) = 1 = bp pj

~(r) = ) .b~(r)g" E+ 2
= ) E~g' (A4)

In this appendix we derive recursions for a direct and

simple calculation of the ground-state perturbation coef-
ficients of the Coulomb problem. These recursions were

used to compute the numbers in Tables III and V.
We start with D = 3 dimensions and the radial

Schrodinger equation for E+ = 0,

I 1—-'0 —-0' —-0+ gr" 0 = EM (Al)2 p r
Separating out the unperturbed ground-state wave func-

tion, gp ——e

Ei, oc 1(2k+ s),

in agreement with direct WKB analyses.

VI. CONCLUSION

(83) and comparing equal powers in g, we find

i ( I i
k —1

—2ba(r)+ l
I ——„ l 4(r)+ r"bi i(r) = )-.Ei ebe(r)-r) e=o

(A5)

The intimate relationship between the Coulomb po-
tential in three dimensions and the harmonic oscillator
in four dimensions has been generalized to include inter-
action terms. This allowed for an e%cient calculation of
the large-order behavior of Coulomb systems in external
potentials in terms of the known large-order results for
anharmonic oscillators.

Apart from the theoretical interest in this very appeal-
ing structure, it is conceivable that the extended equiv-
alence opens the way to new eScient numerical compu-
tation schemes, especially for the Zeeman Hamiltonian.
The present application has only made use of the relation
between the energy spectra. By exploiting the relations
between the amplitudes it will be possible to connect
the entire quantum mechanics of the two systems. In

This can be solved by the ansatz

bi. (r) = ) bi~re,
j=1

leading to the recursion

1 t (~+1)(i+2)
bk &+1 bk —1,~ —(p+1)2

k-1
—3).be,, ibi e2

1=1

Ek — ~~k, 2 )

(A6)

(A7)
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which has to be worked through with increasing k

1, 2, 3, . . . , and, for each k, decreasing j = k(p
+1), . . . , 2. Initially, bt. /

——0, k g 0, j g 0, and bp p ——1.
From (A5) and (A6) it is easy to see that all bt q remain
zero.

Repeating this analysis for general dimensions

D ( —(I/r)g' - [(D—+ —I)/2rjg' in (Al),
, e 2r—/(D 1) in

—
(A2), E + —' F + 2/(Dc 1)2 in

(A3)), one finds a similar structure. The generalization
of Eq. (A7) which is valid for all dimensions D+ reads

p24'+ 0—+ J"'"'"4= 0,2 2P 2
(Ag)

the analog of Eq. (A8) reads (e = D/2+ P& &
et%")

1
ba J

———. (j + 1)(2j+D)bs s+g

The scheme used in Eqs. (A2) —(A8) is completely anal-

ogous to that for anharmonic oscillators. In the lat-
ter case, starting from the radial ground-state (E = 0)
Schrodinger equation in D dimensions,

k-1
—b~ 1 Z ~J,+1~ —D be,Z

—a~a-&, 2 I,
1=1

(A8) &a = —D&k, 1

(A10)

Et = —D bt, »

k = 1, 2, 3, . . . , j = l(p+ l), , 2, bp p = 1.

k = 1,2, 3, . . . , j = k(p+1), . . . , 1, bpp ——1.

These recursions were used to generate the numbers in
Table II.
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