
PHYSICAL REVIEW A VOLUME 42, NUMBER 5 1 SEPTEMBER 1990

Reconstruction of the potential from scattering data
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%'e propose an efficient method for reconstruction of the potential from scattering data. Starting
from experimentally determined phase shifts and taking into consideration the incompleteness and
inexactness of the input information, we construct iteratively a local potential that approximates the
input phase shifts. The method is first tested on model examples and is then used for construction
of a local e6'ective potential describing the scattering of low-energy electrons by noble-gas atoms.
Convergence of the method is usually very fast, and the reconstructed potential is close to the true
one. A relation between the inverse-scattering problem and the Fourier analysis of experimental
data is discussed.

I. INTRODUCTION

It is well known that, for a solution of the inverse-
scattering problem by the classical approaches of Gelfand
and Levitan, ' Marchenko, or Newton, one requires a
knowledge of either all the phase shifts at one energy or
of one phase shift at all energies together with the ener-
gies of any bound states and their normalization
coeScients. Obviously, such complete information can
never be obtained from experiment. Usually only a finite
set of phase shifts at discrete energies, measured with an
(often large) error, is available. All practical methods for
construction of the potential from experimental data
must take into account the fact that the input inforrna-
tion is incomplete and inexact. The classical Gelfand-
Levitan-Marchenko methods are inappropriate for this
purpose. The commonly accepted way of avoiding such
problems is to construct a model analytic potential and to
fit its parameters to the experimental data by the least-
squares method. In most cases only the %'oods-Saxon
potential has been used to construct a nuclear optical po-
tential. This approach has several shortcomings: (i) lack
of uniqueness; (ii) the quality of the fit is not always satis-
factory; (iii) a relative complexity and inconvenience of
the whole procedure which fits simultaneously many non-
linear parameters; (iv) lack of correlation of the parame-
ters obtained at various energies; etc.

A detailed analysis of these shortcomings leads us to
the development of an efticient inversion method that is
largely free of such drawbacks. The method is linear, i.e.,
no nonlinear minimization procedure is used, and at each
step in the construction of the potential only a simple sys-
tem of linear equations of low dimension must be solved.
The method is iterative and usually rapidly convergent.
The potential is assumed to belong to a class of "reason-
able" functions (see the following), but no specific form of
the potential is assumed in advance. The uniqueness of
the constructed potential depends of course on the class
of functions selected to represent the potential, on the

starting approximation to it, on the input data set, etc.
Moreover, experimental data at various energies and
different partial waves are used simultaneously and, what
is most important, the method is closely related to the
Fourier expansion of the interaction potentials in scatter-
ing wave functions. This fact makes it possible to relate
the uncertainty of the constructed potential to the incom-
pleteness and inaccuracy of the experimental data. Re-
cently several practical approaches have been proposed
for solving the inverse-scattering problem with realistic
input data. The most important among them are prob-
ably the method of inverting the potential at one fixed en-

ergy developed by Mackintosh and co-workers, which is
closely related to our approach, namely the method of
Lipperheide et al , that of v. on Geramb, Miinchow and
Scheid, and very recently by Staszewska.

The purpose of the present paper is to study the gen-
eral properties of the inversion scheme rather than to car-
ry out the inversion procedure for realistic data.

The method of inversion is described in Sec. II. Sec-
tion III is devoted to a comprehensive test of the method
for a simple potential. A relation with Fourier analysis is
established, and error bars are estimated. In Sec. IV the
method is used to invert model data representing elastic
scattering of electrons on noble-gas atoms.

II. INVERSION METHOD

In this paper we shall discuss the problem of construct-
ing a local energy-independent potential that reproduced
given phase shifts with a prescribed accuracy. In general,
such a problem may have no solution because the input
data set &nay be inconsistent. In practice there is no
reason to use only data at one fixed energy or a fixed an-
gular momentum for the reconstruction of the potential
since such input data may not contain all the information
required for the unique reconstruction of the potential.
This is so because the phase shifts at high energies E and
large values of angular momentum l cannot be deter-
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If the functions y;(r) form a complete set of orthonormal
functions, the coefficients c; are the Fourier coefficients of
the unknown potential V(r):

c, = f V(r)(p;(r)dr . (2)

Hence, to solve our problem we must find the coefficients
c; that minimize the sum

M

y = g [5k (c, ) —5),"~'], M ~ X .
k=1

(3)

Here, 5k(c;) denote the phase shifts calculated with the
potential (1), and the sum runs over all energies and par-
tial waves available; M is the total number of experimen-
tal points.

Clearly, the minimum of y [Eq. (3)] will decrease to
zero with increasing number X of terms in the expansion
(1), provided the solution exists and lies in the space
spanned by the functions [((();]. In the vicinity of a
minimum, say, at the point [c( '), we can employ a sim-

ple linear algorithm for finding a better approximation
to the parameters [c, ). This algorithm has been widely
used in the least-squares methods and consists in retain-
ing only the linear terms in the expansion

a
l I l

(4)

To minimize g we set the derivatives of g equal to zero:

D, (c, ) = =2 g [5„(c,) —5'k"~'] =0 .k g k

mined accurately from experiment. For simplicity we re-
strict our discussion to real phase shifts and real poten-
tials. The inverse-scattering problem with complex po-
tentials will be considered separately. As we have already
stated, we use, in contrast to the classical approaches, all
available experimental information. As the input infor-
mation, we use all the known phase shifts, i.e., the avail-
able phase shifts at all l and E. This makes the method of
inversion more reliable. In the following we shall denote
the experimental phase shifts by 5k" ', where the single
subscript k labels the phase shifts at various energies E
and various momenta l. We shall represent the required
local potential in the form of the expansion in a class of
"reasonable" functions (e.g. , in the class of functions hav-
ing all derivatives and decreasing sufficiently rapidly at
infinity, etc.)

N

V(r)= g c, (p, (r) .

This system can be written as

gA, bc, = D-
, ,

J

where

85k 86k
A,, =2+

C) C~

(6)

and the derivatives are taken at the point c
The matrix 3, the so-called covariance matrix, is a

symmetric positive-definite matrix approximating the
matrix of the second derivatives of y:

2m

d 1(1+1)
, r2 r

+ V(r)+ V'(r) Eg((p, r—) =0 (9)

as

tan5((p)= —
2 fF((pr)V(r)g((p, r)dr .

2m
(10)

The regular solution g((r) is normalized as

P&(p, r) —F((pr)+tan5(G((pr),

where F& and G& are the regular and irregular wave func-
tions of the Coulomb potential V'(r)

If V'=0, then F(=j((pr) and G(=n&(pr). The deriva-
tives of the phase shifts with respect to the parameters c;
can be easily obtained from Eq. (10):

For the system of linear equations (6) to have a solution,
the number of experimental points M must exceed the
number of parameters, i.e., M ~X. It is worth noting
that the exact matrix of the second derivatives of y is
equal to the sum

8 85
+2 g (5 —5'")")

Bc;Bc

and, if the minimum of y is equal to zero, i.e., 5k =5k" ',

this matrix coincides with A, . In other words, those
solutions that lead to small absolute values of y, i.e., that
yield an accurate solution of the inverse-scattering prob-
lern, can always be found by the linearized algorithm de-
scribed above.

The phase shift is determined in terms of the real angu-
lar solution 1(( of the Schrodinger equation

Retaining only the linear terms in the expansion of 6k, we
arrive at a system of linear equations for the increments
hc-=c —c' '. Bc,

cos 5( 2m 2 BV(r)
P((p, r) dr .

p $2 Bc;
(12)

gg(0) gg[0)
5(o)+ y )' g 5exp(

k

with

5(o) 5 (c(0))

This is an analog of the Hellman-Feynman theorem for
the case of the continuum spectrum. As a result, the
derivatives of the phase shifts are easily calculated simul-
taneously with the solution of the Schrodinger equation.

Summarizing, the proposed algorithm is defined as fol-
lows.
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(1) A starting approximation V' '(r) is chosen:

V(0) —y c(0)~ (r)

(2) The phase shifts and their derivatives are computed
for this potential.

(3) After constructing A; and D, , Eq. (5) is solved and
a new improved potential

V,'„'~'= g (c '+bc;)y;(r)

is generated.
Steps (2) and (3) are repeated until one of the following

conditions is satisfied:

(hD, )
i=1

N
- 1/2

g (hc, )

Here, y„denotes the current value of g at the nth itera-
tion. The rate of convergence of this scheme depends on
the initial input data set (its completeness and consisten-
cy), on the choice of the basis functions [y;), and on the
starting approximation [c ']. As a rule, if the iteration
process converges, its convergence rate is very fast, and
3—5 iterations usually yield converged results.

The proposed method therefore comprises the follow-
ing elements: (1) decomposition of the potential in a
complete basis; (2) determination of the derivatives of the
phase shifts by means of Eq. (12); (3) the linearized pro-
cedure for minimizing y; and (4) the iterations.

It is this combination of all these elements that makes
it possible to construct accurately a potential for all types
of input information (given one partial phase shift at a
number of energies, all partial-wave phase shifts at one
energy, or any combination of input information), provid-
ed the input information is sufficient for reconstruction of
the potential.

If the input information is not sufficient for precise
reconstruction of the potential, it is possible to relax the
condition of the completeness and to retain only a few
terms (say 1 —3) in expansion (1). Then the solution ob-
tained is unique on the restricted basis space. Equation
(12) greatly reduces the computational effort required and
serves as a basis for the linearization of the g minimiza-
tion. This linearized iterative approach to the minimiza-
tion permits a rapid determination of a minimum with a
very small function value even in the case of a very large
number of variables. It is very difficult and time consum-
ing to find such a minimum by general nonlinear minimi-
zation methods.

III. MODEL POTENTIALS

For the functions I y, I we employ the standard oscillator
basis

T
(r).=N, ,exp

Tp

2
T

1

L i —1
rp

2'

with various values of the parameter ro (here L„are the
generalized Laguerre polynomials).

The starting approximation to the potential must be
chosen so as to describe the phase shifts qualitatively and
to ensure the necessary number of bound states. If the
starting potential is not selected properly, no minimiza-

tion procedure can yield the required minimum of g . It
is not easy to give a general prescription for the starting
potential and any information about the true potential
may be useful. For instance, estimates of the volume in-

tegral of the true potential are sometimes available. All
our numerous calculations confirm that the Gaussian po-
tential selected so that its volume integral is equal to that
of the exact potential constitutes a very good starting ap-
proximation, i.e., we choose V' '(r) as

1 T
V'0'(r) =cIO'qi(r), yi(r) =N, exp

fp

f V (r)r dr
(p)—

fgi(r)r dr

2

(13)

In our calculations we used input data of various forms
(see Table I). The quality of the solution of the inverse

problem, i.e., the accuracy with which the phase shifts
are reproduced, is given by the value of y and by the de-
viation of the reconstructed potential from the true one
defined as

E =f [ Vws(r) —V(c; r)] dr (14)

Besides these quantities, Table I also shows the expansion
coefficients c, . In the majority of cases we used the oscil-
lator basis with %=9. The blank spaces in the table indi-
cate the cases in which a basis of lower dimension was
used. In some cases enlargement of the basis did not lead
to convergence of the algorithm. This is indicated in the
table as "nonconverged, " and the occurrence of noncon-
vergence means that the information contained in the in-

put phase shifts is not sufficient to determine the required
number of coefficients. The reconstructed potentials give

extremely accurate phase shifts, coinciding to four to six
significant figures with the input ones (see the value of y
in Table I). From these model calculations the following
conclusions can be drawn.

mined. As the model potential we choose the %oods-
Saxon (WS) potential

Rp
Vms(&) =

1+exp[(r —r )la ]

To gain insight into the efficiency of our method, we

apply it first to the case in which the phase shifts are ob-
tained from a given model potential. No existence prob-
lem arises in this case even if the data set is overdeter-

A. Dependence of the convergence on the basis

In most cases the inversion method converges rapidly,
after 3 —5 iterations. %'hen one more basis function is
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deteriorates (see cases 1 and 10 in Table I). This serves as
a confirmation of the standard fitting procedure widely
used in optical-model calculations.

B.Uniqueness of the reconstructed potential

If the input phase shifts do not contain enough infor-
mation to reconstruct the potential, it is possible to ob-
tain extremely accurate phase shifts (5—7 figures coincid-

ing), but the reconstructed potential can difFer substan-

tially from the true one (see cases 1, 4, 5, 10, and 15 in

Table I). The value of y is very small (10 or even less)

but c„ is large and the reconstructed potential has noth-

ing in common with the true one.
What information is needed for a unique reconstruc-

tion (in the sense discussed previously) of the potential?
The potential under consideration possesses one bound
state in the s wave and a rather narrow resonance in the p
wave (see Fig. 1). Our experience shows that to recon-
struct the potential from one partial wave, it is better to
employ the p wave rather than the s wave, which requires
phase shifts for very large energies (1—2 GeV; see cases
1 —3 and 4—9 in Table I).

When the reconstruction is to be carried out at a fixed
energy, one must know the phase shift for all values of I
for which the phase shifts are not small, i.e., up to the re-
gion where the Born approximation becomes accurate.
For example, it is sufficient to take five partial waves to
calculate five expansion coefficients c; at energy 50 MeV.
The phase shifts with higher I do not carry any additional
information because they are very small and the accuracy
of their determination is low. The first five phase shifts
permit a reasonable reconstruction of the potential even
at energies as low as 30 MeV (see case 15 in Table I and
Fig. 2). Of course, the central part of the potential is not
well reproduced. For a further improvement of the po-
tential, it is necessary to increase the number of phase
shifts and simultaneously to increase also the energy be-
cause at l —10-14 the phase shifts are not yet close to the
Born approximation. At the energy 2 GeV the first 15
phase shifts all show little difference and do not allow a
reconstruction of the potential at all. The algorithm ei-
ther diverges or converges to a very large value of y .
Hence, to reconstruct N expansion terms of the potential
at a fixed energy it is necessary to choose the energy in
such a way that at l -N the phase shifts are accurately
given by the Born approximation. Addition of phase
shifts at lower energies to this data set does not improve
the quality of the reconstruction.

C. Relation to the Fourier analysis

There exists a close relation between the Fourier
analysis and the inverse-scattering problem that allows us
to use many important results, such as spectral theorerns,
error analysis, etc. Namely, the phase shifts are given by
Eq. (10) as

Ac, 0c,( y '
~gexpt~

C C ggexPt
k k

(19)

1 2m
, Fu«pkr)fo, (Ik r) (16)

p $2

This means that we are given a set of "Fourier
coefficients" Xk of the unknown potential V with respect
to a system of unknown nonorthogonal functions Yk(r).
These functions are not normalizable, but this causes no
difficulty because the potential is assumed to be short
ranged. Moreover, Hylleraas' proved that the functions
Y„(r) generate a biorthogonal basis and found the corre-
sponding biorthogonal complement. In all real cases it is
assumed that the potential is confined to a finite range
and attains its asymptotic form at some distance R. The
inverse-scattering problem can now be formulated as the
problem of finding N Fourier coefficients I c; j with
respect to the basis I tIp; j, given M coefficients IXk j with
respect to the unknown basis I Yk j. To do so the set of
functions I Yk j must be complete in the space spanned by
the functions I tIp, j. For example, if Itp; j is a polynomial
basis, then y~ has N zeros. Hence, the input data set
must allow the construction of an ¹ ero function from
the functions Yk. To reconstruct the potential from one
partial-wave phase shift, energies up to pR -Nn. (R is the
interaction radius) are needed.

Evidently, from a finite number of input data we can
determine only a finite number of the expansion
coefficients c„and their accuracy decreases with increas-
ing i. This behavior is demonstrated by the examples col-
lected in Table II. This situation is analogous to the
Fourier analysis of a signal containing noise passing
through a filter with a finite bandwidth. We recall that
the complete system of orthonormal functions
possesses the following property: in approximating a
function f(x)=f (x)= g~, c,p, by the least-squares
method the minimum of y = f [f(x)—f (x)] dx is ob-

tained by setting c; = ff (x)q&;(x)dx, and with increasing

N the previously determined coefficients c; do not change.
This property is approximately satisfied by our method of
reconstructing the potential from the phase shifts (see
Table II).

A few words on the errors in the coefficients c; calcu-
lated from inexact experimental phase shifts are now in
order. In our linear approximation,

Bc,
ggexpt

ggexpt
k k

where the function c, (5k"p') are given by Eq. (6). Hence

ac, , aS,=2 (A ');
ggexpt " Bc

J 1

where 3,, and 85k/dc are evaluated at the minimum of
Assuming that all the phase shifts have a uniform er-

ror E, i.e., b, 6k ~ E~5&"p'~, we obtain the estimate

tan51, =Xk = f V (r }Yi ( r)dr,

where

(15) Some characteristic values of Ac;/c; are given in Table
III. From this table we conclude that the approximation
error grows rapidly with increasing i and for i ~ 5 exceeds
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TABLE III. Error estimates of the parameters c„(b,c, /c, )(1/e), for a unique relative error e of the
input data for case 19 (see Table I).

(Ac; /c, )(1/e)
4 5

0.0026
0.001
0.026
0.017
0.029
0.038
0.057
0.061
0.091

0.07
0.025
0.18
0.086
0.28
0.19
0.29
0.34

2.4
1.49
3.9
5.4
7.8
7.4

10.6

13.4
6.2

15.3
12.0
19.5
22.0

13.2
18.3
12.8
18.3
28.0

324
287
125
220

251
278
113

2000
2311 33 203

TABLE IV. Parameters of the reconstructed electron-atom potentials (in atomic units).

Atom

Ne
Ar

2.663
11.08

0.85
1.5

7'p

0.430 14
0.5

0.430 14
1.0

10.219
16.67

C)

—1.1365
0.890 22

C2

5.5585
0.091 46

C3

—7.0083
—0.0206

C4

2.1652
0

TABLE V. Comparison of the phase shift calculated with our reconstructed potential (columns denoted by a) with the input phase
shift (denoted by b) for neon and argon. The energies used for the reconstruction are in the first column; 1=0,1, . . . , 3 is the angular
momentum.

Atom

Ne

Ar

E (eV)

0.1361
0.5442
1.2245
1.9958
3.4015
4.8982
6.6669
8.7078

11.0209
13.6060
19.5926

0.0999
0.1361
0.1999
0.3004
0.4002
0.5442
1.2245
2.0000
3.0005
3.4015
3.9999
4.9999
6.0006
7.0005
8.0001
8.9998
9.9999

15.0006

—2.3178
—6.5235

—11.8807
—16.8657
—24.3339
—30.8626
—37.3435
—43.6655
—49.7625
—55.6014
—66.4753

2.5909
2.2984
1.5918
0.2842

—1.0776
—3.0495

—11.5350
—19.6065
—28.2643
—31 ~ 3262
—35.5544
—41.8782
—47.4750
—52.4953
—57.0533
—61.2327
—65.0952
—80.9765

1=0

—2.2918
—6.8755

—12.0894
—16.6158
—23.8923
—30.2522
—36.6693
—42,9718
—49.2743
—56.0925
—68.1246

2.5497
2.2460
1.5642
0.2865

—1.0829
—2.9679

—11.1727
—19.0050
—27.6280
—30.7220
—35.0822
—41.6998
—47.6414
—53.0616
—58.0348
—62.6414
—66.9271
—84.7290

0.1727
0.2006

—0.3908
—1.4304
—3.6238
—5.9982
—8.6676

—11.4989
—14.3850
—17.2462
—22.6889

0.6492
0.8149
1.0566
1.3219
1.4753
1.5604
0.6774

—1.4720
—4.7628
—6.1183
—8.1224

—11.3608
—14.4217
—17.2929
—19.9832
—22.5101
—24.8875
—34.9958

0.1719
0.2636

—0.2349
—1.1459
—3.3232
—5.6723
—8.4798

—11.4592
—14.3239
—17.7044
—23.4913

0.6761
0.8480
1.1001
1.3980
1.5642
1.6673
0.7391

—1.6215
—5.3170
—6.8640
—9.1730

—12.9546
—16.5871
—20.0421
—23.3079
—26.4076
—29.3240
—41.8259

0.0443
0.1894
0.4660
0.8325
1.6083
2.5103
3.5853
4.7698
6.0130
7.2949

10.0282

0.1289
0.1842
0.2736
0.4215
0.5735
0.7998
2.0727
3.9359
6.8990
8.2330

10.3565
14.2211
18.4475
23.0091
27.8967
33.0988
38.5891
67.9162

1=2

0.0458
0.1833
0.4354
0.7448
1.3751
2.1658
3.1513
4.0107
5.7296
7.2193

10.4851

0.1375
0.1891
0.2750
0.4240
0.5787
0.8079
2.0455
3.8331
6.7953
8.2048

10.5138
14.9370
19.9962
25.5711
31.5241
37.6777
43.8599
70.5368

1=3

0.0123
0.0599
0.1376
0.2314
0.4268
0.6733
1.0071
1.4256
1.9120
2.4396
3.5248

0.0286
0.0510
0.0868
0.1321
0.1789
0.2467
0.5644
0.9625
1.5607
1.8284
2.2537
3.0223
3.8443
4.6984
5.5704
6.4490
7.3279

11.5800

0.0172
0.0630
0.1375
0.2235
0.3896
0.5730
0.8021
1.0886
1.4209
1.8163
2.7445

0.0458
0.0632
0.0917
0.1375
0.1833
0.2521
0.5730
0.9568
1.4782
1.7017
2.0397
2.6299
3.2601
3.9190
4.6008
5.2999
6.0103
9.6142
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10'. This means that if the experimental error is, say,
10%, we cannot determine more than five expansion
coefficients.

IV. ELECTRON-ATOM SCATTERING

0-

The interaction between an electron and an atom is
very complicated. Exchange of the incident electron with
the atomic electrons is an important effect at low and in-
terrnediate energies. In the Hartree-Fock theory the ex-
change potential is nonlocal, and this fact considerably
complicates the calculations. A phase-shift equivalent lo-
cal exchange potential offers practical advantages from a

computational point of view and can also afford insight
into the exchange effect. Consequently a number of ap-
proximate local exchange potentials have been pro-
posed. " ' These potentials are given analytically and
are simple to apply. The effective interaction consists of
three terms

-10-

-20-

-30
0 1

r (a. u. )

V= V, + V,„+V (20)

where V, is the static interaction, V,„ is the local ex-
change potential, and Vz is the polarization interaction
which accounts for virtual excitations of the atom. As an
example of localization of the exchange interaction we
quote the so-called Xa approximation used recently"'
to calculate elastic scattering of electrons on Ar and Ne.
In this approximation the local exchange potential reads

' 1/3
3

V,„(r)=—
—,'a — p' (r) .

Here, p(r) denotes the total charge density and a is a free
parameter. The p' dependence has been introduced by
Slater' and has been widely used in many areas. In con-
trast to the approaches in which an analytic form of the
exchange potential is assumed, the proposed inverse
scattering method allows us to find local effective poten-
tials without any a priori assumptions about the shape of
such potentials.

We represent the local effective potential as follows:

/ N
V(r)= V (r) e' —2—e g e;r' ' (22)

with
—r/r

1 —e
Vp(r) = ap-(r+r )

(23)

where a is the experimentally determined polarizability
of the atom. ' As the input data we use the phase shifts
calculated in Ref. 19 for /=0, 1, 2, and 3 for Ne and Ar.
Our algorithm makes it possible to find not only the
linear expansion coefficients c, and Z but also the non-
linear parameters ro and r~. The algorithm is not always
convergent with respect to the nonlinear parameters, but
when the iterations do converge they usually converge
very rapidly.

Parameters of the reconstructed potentials are collect-
ed in Table IV, and the calculated phase shifts are com-
pared with the input ones in Table V. Figure 3 shows a
comparison of our potential obtained for Ne and Ar

FIG. 3. Comparison of the reconstructed potentials (solid
line) with the Herman-Skillmann potential (dots) and the X ap-
proximation (circles) for e + Ne and e + Ar low-energy
scattering.

atoms from the phase shifts calculated by Nakanishi and
Schrader' with the well-known Herman-Skillman poten-
tial (dots) and with the Xa approximation (circles). In
the latter case we set a=0.55, which is the commonly ac-
cepted value. ' In Fig. 3 only the short-range part of the
respective potentials is plotted; the polarization part,
which is identical in all three cases, has been omitted.
Both the Herman-Skillman potential and the Xa approxi-
mation potential are typical atomic structure potentials
defined in terms of charge density. Although our poten-
tials result from pure scattering data, they are very close
to the Herman-Skillman and Xa potentials in a very
broad region. It should be noted, however, that in spite
of their similarity, their phase shifts differ substantially
from each other. These results indicate that the low-
energy electron —noble-gas-atom phase shifts calculated
with a complicated energy-dependent exchange poten-
tial' can be well described in terms of a simple local stat-
ic potential. We have applied our potentials to the calcu-
lation of the induced bremsstrahlung cross sections of
electrons on atoms in laser field for which the off-energy-
shell scattering amplitude is needed. '

V. CONCLUSION

In this paper an efficient method for calculation of the
potential from a (finite) set of phase shifts has been pro-
posed. The principal features of the method are as fol-
lows. The inversion gives a local energy-independent po-
tential, whose form is not assumed in advance. The
method is iterative, very fast, and uses all the data sirnul-
taneously, i.e., it makes use of the knowledge of the phase
shifts at various energies and various momenta in a single
analysis. The method has been tested in detail for model
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potentials, its convergence has been studied, and a rela-
tion to Fourier analysis has been discussed. The method
has proved to be very eScient. The present paper has
been aimed at studying the general properties of the in-
version method. A subsequent paper is planned to be de-
voted to the inversion of realistic data.
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