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General principles of the asymptotic theory of adiabatically slow atomic collisions are reviewed.
Special emphasis is placed on analytic properties of adiabatic potential energy curves for complex
values of internuclear separation. The significance of the complex branch points and hidden avoid-

ed crossings for the dynamics of one-electron collisional systems is discussed. Adiabatic asymptotes
of the cross sections for charge exchange, excitation, and ionization in slow He + +H(1s) and
H++ He+(1s) collisions are calculated and compared with other theoretical and experimental data.

I. INTRODUCTION

In the theory of atomic collisions the adiabatic approx-
imation is used for describing inelastic electronic transi-
tions when the collision velocity is small and the nuclear
motion can be treated classically. A variant of the adia-
batic approximation employed in the collision theory is a
further development of the approach of Born and Fock. '

The exactly solvable models have been considered first:
the two-level Landau-Zener model, ' the Rosen-Zener-
Dernkov model, ' the Nikitin model for the transitions
between the bound electronic states, and the Demkov-
Osherov model for bound-free transitions. These
models made it possible not only to calculate a number of
physically important processes, but also to construct a
more general asymptotic approach in which they appear
as partial specific (comparison) problems. The asymptot-
ic theory, first formulated for the two-level nonadiabatic
transitions, ' ' has subsequently been extended to mul-
tilevel transitions' ' and transitions to the continuum. '

In this theory there are no assumptions on the specific
form of the electronic Hamiltonian, which are present in
the exactly solvable models, and only the smallness of the
relative nuclear velocity is used. This results in deeper
understanding of the nature of nonadiabatic transitions
and allows calculations of the processes for which the
model treatments are not applicable.

In the present work we report on calculations per-
formed within the framework of the asymptotic theory of
nonadiabatic transitions for a number of excitation,
charge-exchange, and ionization processes in He ++H
and H++He+ collisions, i.e., for the simplest asym-
metric one-electron collision system. The general theory
can be found in the review article, ' but for the sake of
completeness and self-consistency, in Secs. II—IV we
present some of the results from Ref. 17 in a form which
is necessary for understanding the method and the results
of our calculations given in Sec. V.

II. GENERAL FORMULATION OF THE PROBLEM;
ADIABATIC BASIS COMPATIBLE

WITH THE BOUNDARY CONDITIONS

The standard adiabatic wave functions are calculated
for fixed positions of the nuclei, and as a consequence
they are not compatible with physical boundary condi-
tions imposed at internuclear separations R ~~. This
incompatibility is due to the fact that such a basis does
not contain the Galilean translational factors related to
the motion of the nuclei (the so-called electronic momen-
tum transfer problem). As a consequence, in some off-

diagonal matrix elements spurious couplings remain at
R ~ ao [see, for example Fig. 2(d) below] and nondecay-
ing transitions between adiabatic states occur. This prob-
lem is particularly important in numerical close-coupling
calculations which employ adiabatic bases (as shown

below, in the asymptotic adiabatic theory it is implicitly
assumed that this problem is solved, with no need for ex-

plicitly stating how this has been done). At present there
are several ways' of constructing the modified adia-
batic bases compatible with physical boundary condi-
tions. Following one of them' ' we consider here the
case of straight-line motion of the nuclei in the scattering
plane (I, Y), R=(vt, p, O), where v =const is the relative
nuclear velocity along the X axes and p is the impact pa-
rameter.

Within the classical approximation for the nuclear
motion the dynamics of the electron C is described by the
time-dependent Schrodinger equation in the center-of-
mass system of the nuclei A and 8 (atomic units
m, = ~e

~

=th'=1 are used throughout the work, except
where explicitly stated otherwise):

[ —
—,'b, ,+ V„c(r+y„R)+Vzz(r+y&R)]+=i 4, (1—)= a

Bt

where y „=RMtt /(M„+M~ ), y~ = RM„ /(M„—
+M+), R =R/R, and R is the vector connecting nuclei
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A and 8 .The initial condition associated with Eq. (1) is
the wave function 4, representing the product of the ini-
tial atomic wave function P"(r, ) located at one of the
two centers (j = A, B) with the Galilean translational fac-
tor which takes into account the motion of the nuclei:

r R
p

Ir, y—,R I'R—exp E

2R

in the vicinity of the jth center for R —+ 00, it is easy to
obtain the expression

4(r, t) — P"(r, ) exp[i(v r —,'u, t—E—'t)],
7 —+ —oo

(2) exp[i (v, r —,'u, —t)],
Rr

J

where r =r+y R, and v is the velocity of the jth nu-

cleus.
One of the possible ways to solve the problem of

momentum transfer is to introduce the nonstationary
scaling of the length by substituting r with the new in-
dependent variable

f(q, r)= ggp(r)Pp(q, r)exp i f—Ep(r')dr'
P 0

(10)

which is identical to the translational factor in (2).
Let us represent the solution of Eq. (6) in the form of

the expansion

q=r/R (t) (3) in terms of the eigenfunctions of the effective instantane-
ous Hamiltonian:

Hf (q, r) =i. Bf(q, r) (6)

where

~ = —
—,
' ~,+R 'v&c(R

I q+ y ~ I )+R 'I'~c(R Iq+ y p I )

+cul3+ —,'co q (&)

and subsequently transforming to the rotating coordinate
system (q„q2, q3) with the q, axis directed along the in-

ternuclear axis. In the new coordinate system both po-
tential centers are at rest. In order to transform the
Schrodinger equation (1) to the standard form let us
represent the wave function as

r

%(r, t)=R ~ exp i f (q, t),. r R
(4)

where R =dR/dt is the radial relative nuclear velocity,
and let us introduce a new time variable (tu=pu)

r(t)= f z
=co 'arctan(ut/p) .

dt
o R'(t')

The factor R ~ in (4) ensures the normalization and the
exponent is the generalized translational factor which
takes into account the change in kinematics due to non-
stationary length scaling (3). The quantity nu is the rota-
tion angle of the internuclear axis and the variation of t
from —~ to + 00 corresponds to the variation of ~ from
—m/(2tu) to +m/(2'). Substituting (3)—(5) into (1) we
obtain the modified Schrodinger equation:

II(r)gp(q, r) =Ep(r)gp(q, r) .

It is natural to call Pp(q, r) the dynamical basis functions
and Ep(r) the dynamical potential energy curves, since
besides depending on the internuclear separation R they
also depend on cu =pu. After the substitution of (10) in (6)
the problem is reduced to the solution of the coupled
equations for the expansion coefficients gp(r):

dgp(r)
(12a)Wp (r) exp i f AEp (r')dr'

y[~P)

where

bEpr(r) =Ep(r) Er(r), — (12b)

Wpr(r) =
dr (12c)

In the present approach the boundary conditions can
be formulated in the following way. In the limit R ~ oo

the last two terms in the Hamiltonian (7) make no contri-
bution [this can be seen by transforming back (11}to the
initial scale of length] and the basis functions Pp tend to
atomic functions Pp". Consequently, and also because
there is no momentum transfer in the present representa-
tion, the population probability amplitudes of atomic
states Pp' before and after the collision are identical to
gp(t =+ ), and the transition probability from the ini-
tial atomic state P" to the final state Pp' is given by

is the effective Hamiltonian in the new representation,
and

Pp (p, u)= lim Igp(r)I7~+ oc

under the condition

(13}

13 i q&
—

q2
Bq2 c3q)

lim g p( r ) =o,p .
7 —+ —oo

(14)

is the operator of the projection of the electronic angular
momentum onto the direction perpendicular to the
scattering plane.

As mentioned above, in the new coordinates both
centers are fixed and there is no momentum-transfer
effect. When transforming back to the original wave
function 4', the correct translational factor is obtained
automatically from the exponential factor in (4). Indeed,

By intergrating over the impact parameters we obtain the
cross section for the inelastic a~P transition:

cr p(u)=2' f P p(p, u}pdp,
0

which is our final goal.
The basis Pp introduced above, apart from the compa-

tibility with the physical boundary conditions, possesses a
number of other useful properties. Due to the presence
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of the oscillatorlike potential q, the spectrum of the
effective Hamiltonian (7) is purely discrete, i.e., the func-
tions P& form a complete discrete basis. The advantage of
a discrete basis, as compared to a mixed one containing
continuum eigenfunctions, is evident in numerical calcu-
lations and is confirmed by the wide use of Sturmian-type
bases in many problems of atomic physics. It is easy to
show that by using the dynamical basis P&, the transition
probabilities calculated in the center-of-mass frame, labo-
ratory frame, or in a frame centered on either of the nu-
clei are all equal. All these reference frames differ from
each other in new variables (q„q2, q3) by a constant dis-
placement vector along the q, axis. With such a dis-
placement the Harniltonian H and eigenfunctions P& are
transformed similarly to the gauge transformation in a
magnetic field, and the coupled equations (12a) remain in-
variant. The disadvantage of the basis P&, as compared to
the traditional basis of the two-Coulomb-center problem,
is the absence of the separation of variables in Eq. (11)
due to the presence of the 13' term in the effective Ham-
iltonian H (oscillatorlike interaction does not prevent the
separation of variables in prolate spheroidal coordinates).

III. ANALYTIC PROPERTIES OF POTENTIAL
CURVES AND NONADIABATIC TRANSITIONS

Some general characteristics of the asymptotic theory
of nonadiabatic transitions are that not only are the po-
tential curves at real values of internuclear separation
used, but some local properties of the corresponding
analytically continued functions in the complex R plane
are also used. Of course, in a collision process the transi-
tions occur for real R, and the properties of the potential
curves for complex values of R enter as a result of ap-
proximate (asymptotic} solution of the dynamical prob-
lem (1). Here one can make a formal analogy with the
approximate calculation of an integral by the saddle-
point method, where deforming the contour of integra-
tion from the real axis into the complex plane one ob-
tains the value of the integral along the real axis in terms
of the values of the integrated function at complex saddle
points. Therefore, in the adiabatic approximation, the
analyticity of the Hamiltonian as a function of R is of
essential importance, since this is the property on which
the application of the asymptotic methods relies. In the
collision theory this property follows from the R analyti-
city of the Coulomb interaction of the electrons with nu-
clei. On the other hand, from the analyticity of the Ham-
iltonian H(R), it follows that all eigenvalues E&(R) of
the given symmetry are different branches of a single ana-
lytic function E(R) defined in the entire complex R
plane.

At low collision velocities the transitions occur in the
regions of avoided crossings (the exact crossing, for real
R, of the two potential curves of same symmetry is, ac-
cording to the Neumann-Wigner theorem, exceptional).
An avoided crossing of two potential curves E, (R) and
E2(R) reflects their exact crossing at complex-conjugate
branch points R, and R,' [the eigenvalues obey the obvi-
ous relation E&(R *)=E&(R),and consequently all their
singular points are distributed in pairs, symmetrically

with respect to the real axis]. The degeneracy of the ei-
genvalues at points R, and R,* is characterized by an im-
portant property. Off the real R axis the Hamiltonian is
no longer Hermitian and in the case of the equality of
two eigenvalues [E,(R, ) =E2(R, ) =E,], in the degen-
erate subspace for R =R„ it can be reduced to the Jor-
dan form rather than to a diagonal one:

E, 1

H(R, }= (16)

Ei q=E, +(U bR)' (18)

i.e., instead of the linear small-parameter dependence, as
is usual in the perturbation theory, we obtain here the
square-root dependence as a consequence of the non-
Hermiticity of the Hamiltonian. The square-root branch
point connects both potential curves into a single analytic
function in such a way that going once around the point
R, the sign is changed in Eq. (18) and the eigenvalues go
over into each other. The similar property holds for the
corresponding eigenfunctions P, 2.

Another peculiarity of the Jordan form is that it has
only one eigenvector, i.e., when approaching the point
R, not only E, ~E2 but also P, ~P2. At first sight, this
statement seems to be in contradiction with the orthonor-
malization condition of the wave functions (below in P&,
for real R, we formally substitute R with R* in order to
preserve the analyticity with respect to R of the matrix
elements):

fP, (q, R)P&(q, R')dq= J $2(q, R)$2(q, R*)dq=l,

1q R 2 q R* dq=0.
(19)

(20)

The above conditions can analytically be continued into
the complex R plane and, in particular, to the point R, .
Since the wave functions are identical at this point, one
might conclude that the same is true for the integrals (19)
and (20). However, it can be shown that the wave func-
tions P, 2 can be represented in the following form:

Pp( q, R ) =Cp(R )yp(q, R ), (21)

where C&(R) is a normalization factor which tends to
infinity at R, (see Fig. 1), and y&(q, R ) is a bounded func-
tion for all R with the properties

y, (q, R, )=y, (q, R, ), I y&(q, R, )y&(q, R,*)dq=O .

(22)

The eigenvalues E&(R) and E2(R } in the vicinity of R,
can be obtained by using the perturbation theory with
small parameter AR =R —R, . In the generic case of
perturbation linear in AR:

U12
U(R)=b, R U U, U, = const (17)

21 22

the eigenvalues, up to the first order are
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simplified (comparison) system of equations which
correctly takes into account the singularities at ~, of the
energy differences and nonadiabatic coupling matrix ele-
ments. The asymptotic expression for g&(r), uniform in

~, together with the transition-probability amplitude is
obtained by matching at the boundary of the region 0
the solution of comparison problem with the asymptotic
expression (23) obeying the initial condition (14) (this pro-
cedure is completely analogous to calculation of the semi-
classical overbarrier reflection coefficient). In the general
case of simultaneous avoided crossing of N potential
curves, related to an exact crossing at complex point v„
the final expression for the transition probability is'

FIG. 1. Singularities of the normalization coefficient C(R) in

the complex R plane.

'2
sin[m v/(N +v) ]

Ppa
[ l(N+ )]

exP( —2bpa») ~

where

(24)

(i) Common branch point of a pair of potential curves ~
(ii) Singularity in normalization factors ~ (iii) Peak in
nonadiabatic coupling matrix element ~ (iv) Intensive
transitions in the region of avoided crossing.

This chain connects the branch points with the nonadia-
batic transitions and to some extent qualitatively explains
the fact that in the asymptotic theory the transition prob-
ability is expressed only through the difference of the po-
tential curves along a line connecting the real R axis with
the branch point R, . On the other hand, this means that
all necessary information about the nonadiabatic cou-
pling matrix elements is implicitly contained in the com-
plex potential curves of the problem.

The technique of the asymptotic evaluation of the tran-
sition probabilities can in short be described as follows.
For u~0, the solutions of the coupled equations (12a)
have in the complex ~ plane the following asymptotic be-
havior:

gIi(r) exp i I A-Eii (~')d~' (23)

which holds everywhere except in the small region 0
around the complex branch point r, =r(R, ). In the re-
gion 0 it is necessary to extract and exactly solve the

In the orthonormalization conditions the singularity of
C&(R) is combined with the zero of matrix element (22)
giving indefinite values that are resolved in different ways
in the normalization and orthogonality conditions, giving
unity in (19) and zero in (20).

The singularity of C&(R) at points R, and R,' induces
singularities in all (except normalization) matrix ele-
ments, and this leads to a sharp increase of matrix ele-
ments for real R in the vicinity of an avoided crossing.
Such a behavior is qualitatively illustrated by curve A in
Fig. 1. In particular, this explains the bell-shaped profile
of the nonadiabatic coupling matrix element [see, for ex-
ample Fig. 2(d), below].

Summarizing, we emphasize the following logic chain.

U7

Im hE& vv. d v~ (25)

is the generalized Massey parameter which tends to a
constant when v ~0, and v is the multiplicity of the root
r, of the difference:

hE& =- constX(r v, )", P—,a=1,2, . . . , N . (26)

For the standard two-level avoided crossing, v= —,
' [see

Eq. (18)] and from (24) one obtains the well-known
Landau-Zener result with the preexponential factor equal
to 1. [For full collision the region of strong nonadiabatic
coupling has to be taken into account twice, and an esti-
mate of the full transition probability (averaged over the
interference oscillations) is given by P& ——2p& (1
—p&, ).] However, for example, in the case of the two-
level rotational X-H transitions, v=1, ' ' and the result
is twice the one which would be obtained by the applica-
tion of the Landau-Zener model with the same Massey
parameter.

In the above discussions the eigenvalues involved are
the dynamical potential curves of the effective Harniltoni-
an (7). However, if we confine ourselves to calculation of
the transition probabilities accurate up to the leading or-
der in v, which is in complete accord with the asymptotic
character of the obtained results, then in the expression
for the transition probability (24) we can substitute in-
stead of the dynamical potential curves the usual quasi-
molecular potential curves. Indeed, when u~0 ( co~0)
the last two terms in (7) are small perturbations and the
unperturbed part of the Hamiltonian is the quasirnolecu-
lar Hamiltonian which generates the standard adiabatic
basis. In the first-order perturbation theory, the correc-
tion to a quasimolecular eigenvalue coming from the os-
cillatorlike interaction [the last term in (7)] is quadratic in
v. The perturbation col3 gives a contribution to E& only
in the second order, because the diagonal matrix elements
of this operator in the adiabatic basis are zero due to the
symmetry of the unperturbed Harniltonian with respect
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to rotations around the internuclear axis. Therefore the
correction associated with col3 is also quadratic in u. As a
result, the power expansion in v of the Massey parameter
(25) has the following form:

Z2
P (r, R)=E (R)P (r, R)

jr —R2

(28)

a,.=a,".'+ U'a,".'+ O(U'),

where b&
' is the Massey parameter calculated by using

the quasimolecular potential curves.
It should be emphasized that if the power expansion in

v of the dynamical eigenvalues contains a linear correc-
tion, then it is not possible to calculate transition proba-
bility by using only quasimolecular potential curves, be-
cause the preexponential factor remains undetermined.
Such a situation is realized, for example, for excited
states at R ~0 and R ~ 00, when the quasimolecular po-
tential curves are degenerate or almost degenerate.

7'i + f2 P) l"p

p = arctan(x /y ),
R ' R

1~(~ oo, —1&r)~1, 0 y~2m. .
(29)

Substitution in (28) of the wave function in the form

P (r, R)=[(g —1)(1 ri )]' —F(g)G(ri)exp(imp) (30)

allows, as is well known, for the separation of variables in
prolate spheroidal coordinates (r, =

~
r —R; ~

):

IV. POTENTIAL CURVES
IN TWO-COULOMB-CENTER PROBLEM

In the above-discussed asymptotic theory the potential
curves are assumed to be known and the question why
the avoided crossings occur is not treated at all. We here
discuss this question by using as an example the two-
Coulomb-center problem, which plays a fundamental role
in the atomic collision theory. Usually, the behavior of
the potential curves and nonadiabatic coupling matrix
elements for real values of R are investigated. That infor-
mation is necessary for numerical intergration of the
molecular-basis close-coupling equations. However, in
the asymptotic approach the probabilities for inelastic
transitions are expressed in terms of the characteristics of
the adiabatic eigenenergies in the complex R plane and
general analytic structure of these eigenvalues is of par-
ticular importance. Namely, this aspect of the two-
Coulomb-center problem (Z, eZz) is discussed below.
Earlier investigations of this problem for real values of R
led to the conclusion (see, for example, Ref. 26) that in
the symmetric case Z, =Z2 there are no avoided cross-
ings at all. In other words, this would mean that in a col-
lision of such partners like proton and hydrogen the in-
elastic transitions cannot be explained within the frame-
work of the adiabatic approximation. Only as a result of
the direct numerical calculations of the potential curves
in the complex R plane for the symmetric case, was it
possible to discover new series of branch points and in-
troduce a new type of avoided crossings —the "hidden"
avoided crossings. Although they cannot be explicitly
seen on graphs of the potential curves for real values of
R, only with the help of these avoided crossings is it pos-
sible to explain not only the bound-bound transitions but
also the ionization process for which the underlying
physical mechanism was not known before.

The stationary Schrodinger equation for the two-
Coulomb-center problem

leads to the following equations for the functions F(g)
and G(ri):

d F(g) z ag —
A, 1 —m

d g' g' —1 (g' —1)'
(31)

2d26 (ri) q bri A, 1 ——m
G ( ) 0 (32)

dg 1 —ri (1—g )

where p =( 2E)' R/2—, a =(Z~+Z2)R, b =(Z~
—Z2 )R, and A, is the separation constant. In
classification of states, the united-atom spherical quan-
tum numbers a = (N, 1, m ) are commonly used (in the lim-
it R ~0, the potential curves of the two-Coulomb-center
problem tend to energy levels of the united atom). They
are related to the numbers of zeros k, q, m of the wave
function in variables g, ri, y by the following expressions:
X=k+q+m+1, l =q+m. For I and m we shall also
use the spectroscopic notation 3 =s,p, d, . . . instead of
1=0,1,2, . . . and m =o,m, 5, . . . instead of
m =0, 1,2, . . . .

In the two-Coulomb-center problem there are two non-
trivial parameters —internuclear separation
R =

~ R2 —R, ~
and the ratio of the charges Z, /Z2. Let us

consider first the symmetric problem Z& =Zp. In that
case the eigenstates are of definite parity with respect to
inversions in a coordinate system with the origin at the
middle point of the internuclear axis and can be divided
into even (g states) and odd (u states). Obviously, the po-
tential curves with different values of m or with different
parity cannot have common branch points, since the ex-
act symmetry of the states cannot be changed discontinu-
ously as a result of continuous variation of the parameter
R. Figure 2(a) shows the branch points of the potential
curves 1so. and 2po. in molecular ion H2, obtained as a
result of numerical calculations. ' As seen from the
figure, all branch points can be grouped into two series:
S series and T series.
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FIG. 2. Branch points of the potential curves 1so and 2po in the complex R plane for three values of the charge Z2 (Z] =1). The
quantum numbers in brackets indicate the pairs of the potential curves connected by the branch points. (a) Zz =1; (b) Z2 =1.001,
open circles are approximate values obtained by using Eqs. (37) and (38); (c) Z2 =1.08. (d) Two examples of matrix elements of the
nonadiabatic coupling for the H, + ion (Ref. 37).

A. S series of hidden avoided crossings;
superpromotion of diabatic potential curves;
boundary of the united atom approximation

Any of the SI series consists of an infinite set of
branch points RN connecting pairwise the potential
curves E~&~(R) and Ez+, 1~(R), consecutively for a]]
N~l+1, and has the following structure. All branch
points are localized within the small region 0 in the R
plane [on the scale of Fig. 2(a) individual branch points
cannot be reso]ved] and have a limit point

The appearance of S series of hidden avoided crossings
is related to the qualitative changes of the electronic wave
function in the vicinity of R& where the transition from
the two-center geometry of the quasimolecule to the
single-center geometry of the united atom occurs [see
Figs. 4(a) and 4(b)]. Based on such considerations, an ap-
proximate analysis of the two-Coulomb-center problem
gives a simple and sufficiently accurate analytic expres-
sion for the limit point:

R „=(Zi+Z2 ) 'I (1+—,
'

)
—

—,'(m + I )

R„= lim R~ .
&~ oo

(33) +i(m +1)[2(l+—,') ——„'(m +1)2]'~ I.

In the vicinity of the region 0 (but not within it) the ener-

gy surface has the shape of a corkscrew with a pitch de-
creasing as N . Part of this surface, in the case of S
series, is shown in Fig. 3(a). By associating to each
branch point in the given S series an avoided crossing and
replacing these avoided crossings with exact crossings we
obtain the set of diabatic potential curves which qualita-
tively illustrate the possible directions of nonadiabatic
transitions [see Fig. 3(b)]. As seen from Fig. 3(b), a]] dia-
batic potential curves, except one (Wl ), behave mono-
tonically. At large R the diabatic level W& coincides
with the lowest adiabatic level in the given series, and
with the decrease of R sharply goes upwards crossing the
continuum border at R& = ReR „.Such a behavior has
been named "superpromotion, " namely, the possibility of
the evolution of the system along the diabatic potential
curve 8'I explains the ionization process in adiabatic
approximation.

(34)

The above expression holds equally well for all branch
points in the given series (as mentioned above R~ weakly
depends on N and therefore sets the position of a Sl
series.

The existence of S series clarifies also the problem of
determination of the range of validity of the united-atom
approximation. This expansion is widely used in various
applications, but it was not clear why in some cases it
well approximates the exact potential up to considerable
distances, while in other cases the range of validity is ex-
tremely small. As is well known, the range of validity is
determined by the distance to the nearest singularity.
For the united-atom approximation these singularities
are in fact the branch points of S series, and the corre-
sponding distance ~R ~, as seen from (34), strongly de-
pends on l. For example, in the case of the H2

+ ion, it is
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FIG. 3. The region of the S series for the H, ion. (a) The surface ReE~ (R) of the multivalued analytic function E~ (R). (b)
Adiabatic (solid lines) and diabatic (dashed lines) potential curves. The region indicated by the dot-dashed line corresponds to the
front cut of the energy surface in (a).

equal to 17 a.u. for I =5 and only 0.5 a.u. for l =0.
Another consequence of the existence of S series is the

appearance of minima in adiabatic potential energy
curves. These minima show up only in potential curves
having S series close to the real R axis, i.e., for small m
[see Eq. (34)]. Figure 3(a) illustrates formation of minima
for the levels 3po. and 4po under the influence of S
series which causes the screwlike form of the energy sur-
face and pulls down the potential curves in the interval
0(R (2R

B. T series of hidden avoided crossings;
boundary of the quasimolecular region

In Fig. 2(a), together with S series there is another
series of branch points located around ReR =—5 a.u. The
merger of two series of branch points associated with 1so.
and 2po. potential curves into a single series is due to the
exponential degeneracy of these levels at R ~ (x). In the
symmetric case (Z~ =Z2), all potential curves are divided
into (g, u) pairs, such that at R —+ oo, g states go over into

~ Zp

~ Z)

(b) (c)

RT Rp Rl

FIG. 4. Qualitative sketch of the classically allowed regions for electronic motion (shaded areas), in the following intervals of the
internuclear separations: {a)0 & R & Rz, (b) Rz & R & R T, (c) R T & R & Rp; (d) R p & R & R, ; {e)R, & R & ~.
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the sum, and u states go over into the difference of the
hydrogenic states of isolated atoms (Z~e) and (Z2e), hav-

ing the same set of parabolic quantum numbers
(n, , n2, m). The relation to the above introduced united-
atom quantum numbers is the following:

sidered in the studies of quasiresonant charge-exchange
processes. The P series match together the same pairs of
potential curves involved in the above-discussed T series.
However, these potential curves are not now degenerate
in the limit R ~~, but exhibit the resonance defect:

i =m +2nz —
—,'[( —1) —1], N=q+n, +m +1 6=(Z2 —Z, )/(2n „) (37)

(g states),

(35)

1 =m +2nz+ —,'[( —1) +1], N=q+n&+m+1

(u states) .

As the calculations show each pair has a common series
of branch points T„„with the higher-lying potential

1 2

curves. These series have the following properties, illus-
trated in Fig. 2(a). All branch points of a given series lie
on a line, almost perpendicular to the real R axis, with
the step b,R =-2vrin„/(Z, +Zz) (n„=n~+n~+m +1 is
the principal quantum number of a separated atom Z;e).
The branch points of the g- and u-potential curves alter-
nate and connect the states of the same parity and with
the same values of m and quasiradial quantum number k.

The appearance of a T series is related to the promo-
tion of a pair of (g, u)-potential curves to the top of the
barrier in the effective potential of quasiangular equation
(32). The position of the branch point closest to the real
R axis is well approximated by the expressions

R,'g'=6n „(n„—x.}+1+4in„(g terms),

R,"'=6n „(n„—~)+ 1+8in „(u terms),
(36)

C. I' series of hidden avoided crossings;
boundary of approximate (g, u) symmetry

For Z, WZz the exact (g, u) symmetry is broken, and
additional series of branch points appear. Figure 2(b)
shows the branch points of 1so. and 2po. potential curves
for the case Z, =1 and Z2 =1.001. Besides the S, , Sz,
and Tooo series, a new series labeled Pooo appears in the
region ReR =-10 a.u. This series is related to the Rosen-
Zener-Demkov type coupling, which is usually con-

where ~=k +(m +1)/2. As in the case of the 5 series,
the existence of the T series is related to the qualitative
change of adiabatic states: for R &Rz= ReR,'~'"' the
electron moves in the common potential well of both
centers and its wave function is essentially quasimolecu-
lar [see Fig. 4(b)]. For R )Rr the regions of classically
allowed motion of the electron in the vicinity of each of
the centers are separated by a potential barrier and the
wave function can approximately be represented as a
(symmetrical or antisymmetrical) superposition of the
wave functions corresponding to separated atoms Z&e
and Zze [see Fig. 4(c)]. Therefore R r represents an upper
boundary of the quasimolecular region. At the same
time, Rz- defines the validity range of the asymptotic ex-
pansions of potential curves in terms of inverse powers of
R.

(38)

In this approximation the potential curves are given by

—(Z2+Z2)/(4n2 )+ 1 [g2+w(R)2]1/2 (39)

and the branch points R, can be found as a roots of the
transcendental equation 6 +w(R} =0. The results of
such a calculation are indicated in Fig. 2(b) as open cir-
cles and are in good agreement with the exact values.

The existence of P series is related to the breakdown of
the approximate (g, u) symmetry. On the left of such a
series (R (R~ = ReR, ) it is possible to neglect the reso-
nance defect with respect to the exchange interaction,
and the situation is similar to the symmetric case
Z& =Zz, i.e., the adiabatic wave functions are character-
ized by approximate (g, u) symmetry [see Fig. 4(c)]. On
the right of the series (R & R~) the crucial property is the
resonance defect, i.e., the asymmetry of the nuclei, so
that the approximate symmetry no longer holds and the
states are localized at one of the centers [see Fig. 4(d)].

D. Q series of hidden avoided crossings

With further increase of the charge difference
AZ =Z2 —Z&, the S, , S, and T~ series at first practi-
cally stay at rest, while the Pooo series moves as a whole
to the left and for hZ =0.07 the branch points of the
Pooo series pass in between the branch points of the Tooo
series. At that moment the qualitative change of the
Riemann surface occurs and the Pooo series continuously
goes over into Qooo series, and Tooo series into Qzz' [in
Q„"„ the superscript i =1,2 indicates the atomic com-

l 2

plex (Z, e) to which a given potential curve correlates at
R ~oo]. In each of the series of a new type Qz'z', the
branch points connect the original potential curve 1so. or
2po. consecutively with all potential curves having the
same value of quasiradial quantum number k [see Fig.
2(c)]. This phenomenon is due to the fact that at
bZ =0.07 the approximate (g, u) symmetry is destroyed
from the outer side down to R =Rz, so that the approxi-
mately forbidden avoided crossings between the potential
curves in T series having the same parity for Z, =Zz are

and correspond to parabolic hydrogenic states localized
at different centers. The branch points of a P„„series

1 2

can approximately be found within the two-state approxi-
mation, by taking for the exchange interaction its asymp-
totic expression in the two-Coulomb-center problem with
unit charges: '

2(2R/n„) " ' 'exp[ n„——(R/n„)]
w(R)=

n „nz!(n2+m)!
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now allowed. Thus, at bZ =0.07, the P series, which is
characteristic for the Rosen-Zener-Demkov model, disap-
pears and this model is no longer applicable. We note
that Rosen-Zener-Demkov coupling disappears at very
small values of the resonance defect, constituting only
7%%uo of the energy separation to the closest multiplet.

With further increase of hZ, the 1so. and 2po. poten-
tial curves reach the top of the potential barrier at
different values of R, and the corresponding Qzz' series
moves to the left and Qzz' series to the right.

Concerning Figs. 2(a) —2(c), we add the following re-
mark. When a particular branch point [Nlm-N'I'm]
(N'& N) turns out to be on the left or further from the
real axis than Si series (Si series is always on the left
of such branch point), then starting from the potential
curve E~, (R) at the real R axis, going around the
branch point and returning back to the real R axis, we
shall not find ourselves on the potential curve E~ &

(R),
but rather on some antibonding (virtual or quasistation-
ary} potential curve denoted as N'I'm. Further discus-
sion on antibonding states in the two-Coulomb-center
problem can be found in Refs. 17 and 32.

E. Isolated Landau-Zener avoided crossings

b, =n.b,E;„I(4b F), (40)

where b,F = ~Fz F, ~
is the—slope difference of the corre-

sponding diabatic potential curves at R~ = ReR, . In Eq.
(40), hE;„and hF can be substituted by their asymptot-
ic expansions for large values of R. Asymptotic expres-
sions for hE;„have been obtained in semiclassical
and quantum ' ' approaches. They all give the same
accuracy, of the order of 10%. The most compact ex-
pression is of the form

n2+n&+m +1
4Ei (4pz ) exp( —2pi )

[n n' n !n z!(n z+mz)!(n' +mz)!]
(4l)

In addition to the above-discussed series of branch
points, in the two-Coulomb-center problem with Zz@Zi
and R & R (or R & R& = ReR,",after the coalescence of
T and P series) there are pairs of conjugate branch points
R, and R,*, related to the avoided crossings of the usual

type between the potential curves of the adiabatic states
localized on different centers and characterized asymp-
totically by the parabolic quantum numbers n „n2,m at
center Z, and n', , nz, m' at center Z2. Due to the addi-
tional dynamical symmetry of the two-Coulomb-center
problem, the avoided crossings are allowed only if
k =k', q =q'+l, and m =m'. These avoided crossings
are known for a long time and have been used for calcula-
tions of various processes. The minimal separation be-
tween the potential curves EF. ;„ is determined in this
case by the underbarrier exchange interaction and there-
fore the avoided crossings are sharp and clearly visible.
For the calculations of the Massey parameter one can use
the Landau-Zener approximation:

2(Zz —Z, )

(Zz/n'„) —(Zi/n „)
Zp Z]hF=

R~

(43)

Passing through an isolated avoided crossing is also ac-
companied by the qualitative change of the adiabatic
state. Thus, if for R &Rz the state was localized at
center Zz [see Fig. 4(d)] then for R & Rr it will be local-
ized at center Zi [Fig. 4(e)] and vice versa.

F. Summary

Summarizing the above discussions, we emphasize that
the nonadiabatic transitions occur whenever the variation
of the internuclear separation is accompanied by the
qualitative change of the adiabatic states, i.e., whenever
the topology of the classically allowed region for the elec-
tronic motion is changed. One might have the impres-
sion that S, T, and Q series of branch points play no role
in the theory of nonadiabatic transitions, because they do
not influence significantly the behavior of the potential
curves for real valus of R. However, this is not true. Ac-
cording to the general asymptotic theory any branch
point is related to the transition probability (24), which,
of course, is the smaller the further the branch point is lo-
cated from the real R axis. The region of strong nonadia-
batic coupling may not be visible on the diagram of the
potential curves for real R, as is the case, for example in
the Rosen-Zener-Demkov model. More decisive in this
respect are the matrix elements of nonadiabatic coupling
to@ (R). In Fig. 2(d) two examples of these matrix ele-
ments are shown for the case of the H2+ ion. As seen
from the figure the clearly pronounced maxima appear in
the regions where S and T series are located [see Fig.
2(a)], although on the diagram of the potential curves
[Fig. 3(b)] no peculiar behavior is visible in these regions.

The approximate expressions (34}and (36) for the posi-
tions R, of the branch points have been obtained within
the modified semiclassical approximation. ' They are
very useful for obtaining the simple estimates of the cross
sections of inelastic processes. The real part of R, deter-
mines the range of impact parameters relevant for the
nonadiabatic transitions and the imaginary part is neces-
sary for calculation of the Massey parameter. An esti-
mate of the Massey parameter, for the head-on collisions,
can be obtained from the following approximate expres-
sions: in the case of S series,

The quantities E~, Rz, and AE can be obtained from the
expansions of potential curves in inverse powers of R,
and in the first approximation are given by

(Zz —Z, )

2(nz nz—)

where

pi= —,( 2EJ) RJ, n „=n—', +nz+in +l .

b~ = )AE@ (ReR, ) ImR, ~,

(42) and in the cases of T, P, and Q series,

(44)
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b~ = —b,Ep ~(ReR, ) ImR, (45)

V. APPLICATION TO He2++H(ls)
AND H++ He+(1s) COLLISIONS

where AE& is the energy difference of the pair of poten-
tial curves linked through the branch point R, . In deriv-
ing (45), the following convenient parametrization of the
energy difference has been assumed:

b Ett (ReR, )
DER (R)= ' [(R —R, )(R —R;)]' . (46)

ImR,

The above expression gives the correct energy difference
at R = ReR, and incorporates the square-root behavior
in the vicinity of the complex branch point.

The hidden avoided crossings are broad, characterized
by large values of the Massey parameter 5, and the tran-
sitions caused by these avoided crossings become
significant at sufficiently high collision velocities v. In
connection with this, the question of the validity range of
adiabatic approximation arises. In general, there are no
quantitative, sufficiently rigorous, validity criteria for the
asymptotic expansions. Usually the leading term of the
expansion gives satisfactory results even in the region
where the first correction becomes larger than the leading
term (in that case the first correction should be rejected,
since, being only the measure of accuracy, its inclusion
will certainly make the result worse). When applied to
adiabatic approximation this means that it is justified to
extrapolate it to higher values of U, up to U -= 6, where the
transition probability and the cross section approach the
maximum.

plained below. The positions of the S series have been
taken from formula (34) while other parameters have
been obtained from numerical calculations.

Any of the branch points R ~ & belonging to a given Q
series connect two surfaces E and E& and the associated
single-pass transition probability is [see Eqs. (24) and (25)]

p&
= exp( —2h& /U), (52)

with the Massey parameter given by
X(R p}

Im J
'

b,E+ (R(X))dX

Im J E(R (X))dX (53)

p

H + He (n=2)

H{1s) + He

where E (R ) is the multivalued analytic function and C is
the path in the complex plane of variable X =Ut

=(R —
p )'~, starting at the real X axis [where

E(R)=E (R)], going around the branch point
X &

=X(R & ) and returning back to the real X axis
[where E(R)=E&(R)]. For given impact parameter p,
the integral in (53) can then be calculated numerically by
using a program which generates the potential curves of
the two-Coulomb-center problem in the complex R plane.

The ideas presented in the previous sections will now
be applied in calculations of the adiabatic asymptotes of
the total cross sections for the following processes:

1sg H + He(ls)

He ++H(ls)~He+(n =2)+H+

~He ++H++e,
H++He (Is)~H(ls)+He +

+HH+e+(n =2)

~H++He ++e .

(47)

(4&)

(49)

(50)

(51)

The charge-exchange processes (47) and (49) are known
to be the dominant inelastic channels at low collision ve-
locities. The relevant quasimolecule is (HeH) + and adia-
batic potential energy curves are those of a two-
Coulomb-center problem with Z, =1 and Zz=2. The
low-lying adiabatic levels are shown in Fig. 5(a), while
Fig. 5(b) shows series of branch points in the complex R
plane, relevant for the processes (47)—(51). The asymp-
totic estimates for transition probabilities at U~0 are
determined by the branch points which lie closest to the
real R axis, and these are R] zp Rzp 3p, and S and
S& series. Table I gives the positions of the branch
points and the corresponding energy differences, neces-
sary for the calculation of the Massey parameters, as ex-

taj

1sU-4f 0'

1s0-3do

. 2- 000

ls 0—2pl7
0

Sa~
Sp5tJ ~

I ) l t

0 2

I

6
R( a. u. )

~ 2pO-4fO
t~)~

Wo 2p(T-3do'

tb)

6

R. P(a.u. j

FIG. 5. (a) Low-lying adiabatic potential energy curves of the
(HeH)'+ quasirnolecule. (b) S and Q series of branch points.
Underlined are the branch points which govern the processes
(47)—{51)and the corresponding transitions are symbolically in-
dicated in (a) by arrows.
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TABLE I. Positions in the complex R plane of the branch

points R & of the Qo'0'o series and the limiting points R „ofthe

Sl series with the corresponding energies.

(a,P) R p Im EI+ I & m (Re R ~)

1so,2p cr (1.21,1.36)
2p o., 3d o. (6.06,3.14)

p o. (0.58,0.69)
d cr (1.92, 1.17)

—1.22
—0.56

Each «S&m =
t R I +, ,R, + 2, . . . , R „]series of branch

points is responsible for the population of the whole Ryd-
berg series I(I+2, l, m), (1+3,l, m), . . . I, including the
transitions to continuum from an initial (I + l, l, m) state.
In particular, the probability of the ionization, which, as
discussed in Sec. IV A, occurs via the superpromotion of
the diabatic 8'I potential curve into the continuum in
the first half of the collision, can be estimated from the
formula

2c 2DP„= exp( c,D —),
2+c22D2

with

(57)

transitions are particularly important in the limit of small
and large internuclear separations where the degeneracy
of quasimolecular levels of difFerent symmetry occurs.

For the present purposes, we have ignored rotational
mixing within the He+(n =2) manifold at large separa-
tions, which predominantly affects only the final sublevel
populations in reactions (47) and (50). The 2pcr-2pm rota-
tional coupling at small internuclear separations has,
however, been included by using the results of Demkov,
Kunasz, and Ostrovskii. These authors have proposed
a general scaling formula for the o.-m transition probabili-
ty in the united-atom approximation. In the case of
straight-line trajectories it reads

S
Im, i+]I m P exp

N =I+1
co= exp —— g bN

U

(54)

c =—' c = (2/3)"
I (4/3)

' ]/3 (Zi+Z2) Z, Z2
p) (59)

where
X(R~, )

~N ™f (g )(EN+1 j m(R (X) )

EN( (R (X—))]dX (55)

In Eq. (54), it is assumed that the total probability is sim-

ply the product of individual probabilities, based on the
Demkov-Osherov model. Further simplification relies
on the special behavior of EI+&I~,EI+2I~, . . . energy
surfaces in the range of intergration of formula (55). As
established in previous numerical calculations, these en-

ergy surfaces are nearly constant in this region, except in
the close proximity of the branch point RN. Therefore
the limits of integration can, to a good approximation, be
replaced, respectively, by ReX(R„) and X(R „), and

ENI by their values on the real axes at 8 = ReR„.
Then, in the sum in (54) all terms containing

EI+zI,El+3I, . . . cancel, yielding

2P'-i, i+» m
= exp ~EI+ i I m(ReR - )

U

X Im(R —
p )' (56)

The S and Q series of branch points shown in Fig. 5(b)
are responsible for the transitions between the states of cr

symmetry, i.e., they correspond to what is called the radi-
al coupling in the close-coupling approach. In order to
have a complete description of the collision dynamics, the
transitions involving states of difFerent symmetry should
be included, too. They are related to the rotation of the
internuclear axis and in the approach of Sec. III would
require the knowledge of the dynamical potential curves
which include the contribution of the col3 operator in the
effective Hamiltonian (7). As also discussed there, these

where N is the united-atom principal quantum number
(in our case Z~ = 1, Z2 =2, and N =2).

A. He2++H(ls) collisions

The entrance channel corresponds to the 2po state,
and the charge-exchange (CX) process (47) is dominated
by the 2po-3dcr coupling, induced by the branch point
R2 3d (see Fig. 5). At close collisions, 2po 2prr rota--
tional coupling also contributes significantly. The total
electron capture probability per collision with given im-

pact parameter can be estimated by summing up indivi-
dual two-state transition probabilities over the possible
reaction paths:

PCX P3da, 2pa( P3da, 2pa )+(1 P3da, 2pa )Pm, aQ Q Q

+ ( P 3da, 2pa ( rr, a )P 3da, 2pa (60)

By summing up probabilities in Eq. (60), rather than deal-

ing with quantum amplitudes, we have neglected all in-
terference efFects, which is a reasonable approximation as
long as we are interested in total (integrated) cross sec-
tions. In addition, when writing Eq. (60), all transitions
caused by other Q- or S-type branch points (as well as the
rotational 3dcr 3drr 3d5 coupling) -have-been neglected in
the first approximation.

Figure 6 shows the impact-parameter dependence of
the product pPcx (solid line), calculated from Eq. (60) for
He + impact energy of 0.75 keV/amu. The dashed line
shows the result obtained by setting P =0, i.e., by
neglecting the rotational 2p0. -2@m. coupling, which is ob-
viously responsible for the peak at small impact parame-
ters. Also shown in Fig. 6 (dash-dotted line) is the result
of Hatton, Lane, and Winter obtained in ten-state
molecular-basis with plane-wave translational factors
close-coupling calculations. These results are for the cap-
ture into all states included in the basis, but at this low
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FIG. 6. The product pP«vs impact parameter p for the
charge-exchange process (47). Solid line, present results; dashed
line, present results with rotational 2po-2pm coupling neglect-
ed; dot-dashed, results of the molecular close-coupling calcula-
tions (Ref. 39).

collision velocity they actually correspond to capture into
He+(n =2) states. As seen from Fig. 6, the oscillatory p
dependence, representing the quantum interference effect,
is smoothed out in our approach. Although there are
differences in the magnitudes of the transition probability
at small and large impact parameters, our model seems to
incorporate the basic capture mechanism.

Total cross sections for the charge-exchange process
(47) at various collision energies are obtained by integrat-
ing (60) over the impact parameters. Results are given in
Table II and shown in Fig. 7 (solid line). Also shown are
the theoretical predictions of Hat ton, Lane, and
Winter and experimental data of Nutt et al. for elec-
tron capture into all states of He+. As seen from Fig. 7,
our asymptotic result gives a good estimate of the cross
section at low energies. The dashed line is obtained by
neglecting the 2po-2pm. rotational coupling and indicates
that the discrepancy between the theoretical and experi-
mental results at lowest energies is due to the overestima-
tion of the role of the rotational coupling, presumably
due to not taking into account the curvature of the classi-

10 "
10 1

E (keV/ Gmu j

10

FIG. 7. Cross sections for charge exchange in He ++H(1s)
collisions vs He' impact energy. Solid line, present results for
capture into He (n =2); dashed line, present results with

2p o -2p m- rotational coupling neglected; solid circles,
molecular-basis close-coupling calculations for capture into all

states of He (Ref. 39); open circles, experimental data for cap-
ture into all states of He+ (Ref. 40).

cal trajectories.
The ionization process (48) predominantly occurs in

the first half of the collision via the sequence of transi-
tions caused by the Sd and S series of branch points,
after the division of probability Aux induced by the
R zp 3d branch point:

Q 5 Q S
I P 3da, 2pcrp ood+, 3du + ( I 3da, 2pu )~ aopo2po'', (61)

Total ionization cross section as a function of He + im-

pact energy is given in Table III and shown in Fig. 8.
Calculations show that the main contribution comes from
the Sd series, while the contribution of the Sz series de-
creases with increasing energy frotn 30% to about 10%.
Also shown in Fig. 8 are the experimental results of Shah

TABLE II. Cross sections a.«(in 10 ' cm ) for the charge-
exchange process (47) as a functions of the He + impact energy
E (in keV/amu).

TABLE III. Cross sections cr, (in 10 "cm') for the ioniza-
tion process (48) as a function of the He + impact energy E (in
keV/amu).

0.2
0.4
0.6
0.8
1

1.5
2.0
2.5

Ocx

0.130
0.329
0.726
1.29
1.98
4.14
6.76
9.74

2
3
5

8
10
20
30
50

'a [ b) stands for a X 10—

2.00[—2]'
8.06[—2]
0.343
1.02
1.61
5.39
9.77

19.0
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another possible ionization mechanism. This mecha-
nism is related to excitation (an eventually ionization) of
the electron in the second half of the collision (at large
internuclear separations) via the sequence of non-
adiabatic transitions, such as 2p o.~3d 0., 3d 0.

~4fo, . . . , ( I, I —1, cT )~ (1 + 1,1, 0 ), . . . , associated
with the closest to the real 8-axis members of various g
series. This mechanism corresponds to the excitation of
an electron localized at the top of the potential barrier in
quasiangular equation (32), i.e., near the saddle point of
the three-dimensional potential. It should also be noted
that the low-energy results of Winter shown in Fig. 8 (for
E =2 and 5 keV/amu) are not converged and have the
tendency of decreasing with increasing the size of the
basis. The trend of the experiment also suggests that
the triple-center calculations overestimate cross sections
at low energies.

FIG. 8. Cross sections for ionization in He'++H(ls) col-
lisions vs He'+ impact energy. Solid line, present results; solid
circles, triple-center pseudostate close-coupling calculations
(Ref. 42); open circles, experiment (Ref. 41).

et al, ' and the theoretical predictions of Winter ob-
tained by the triple-center pseudostate close-coupling cal-
culations. Our results predict lower cross sections. The
reason for this could be the omission in our treatment of

B. H++He+(1s) collisions

In this case the initial quasimolecular state is 1so. The
charge-exchange process (49) proceeds mainly via the
1s0.~2po. transitions induced by the R Q

2p branch
point (see Fig. 5), with a part of probability llux taken
away by the rotational Zpe-2pm transitions at small sepa-
rations and by 2po. ~3do. transitions at large separations
in the second half of the collision:

CX P2pa, lscr( rr, a )( P2pa, isa )( P3dcr, 2pa )+( P2pcr, lsa )P2pa, lsa P3dcr, 2pcr )Q R Q Q Q Q Q (62)

The most probable competitive process is the excitation (EX) [Eq. (50)], which involves the contributions from the
same branch points:

EX P 2pa, iso rr, a +P 2pcr, iso ( Psr, a )( P 2palsa )P 3d, o, 2pcr +( P 2po, lscr P 2pa, lsoP 3da 2pcr
Q 8 Q R Q Q Q Q Q (63)

The calculated cross sections as functions of the col-
lision energy in the center-of-mass frame for the process-
es (49) and (50) are given in Table IV and shown in Figs.
9 and 10 (E, =0.8E, where E is the proton energy rela-
tive to He ion).

Also shown in Fig. 9 are the results of molecular-basis
close-coupling calculations of Kimura and Thorson
(solid squares) and of Winter, Hatton, and Lane
(crosses), the Sturmian-basis close-coupling results of
Winter (solid circles), as well as the experimental data
of Peart, Grey, and Dolder and Rinn, Melchert, and
Salzborn (open symbols) for electron capture into all
states of H. As seen from the figure, our asymptotic esti-
mate for the dominant charge-exchange channel (49)
(solid line) is reasonably good, especially at low energies.

In Fig. 10 our results (solid line) for the excitation pro-
cess {50)agree well with the molecular close-coupling cal-
culations of Kimura and Thorson (solid squares) and
Winter, Hatton, and Lane (crosses). At higher energies
our predictions presumably overestimate true cross sec-

I P 2pcr, 1so oo po, 2pa (64)

The calculated cross sections are given in Table V and
shown in Fig. 11, together with the experimental data of
Watts, Dunn, and Gilbody (open squares) and Rinn et
al. (open circles), the theoretical results of atomic-
orbital-pseudostate (solid triangles), Sturmian '

(crosses), and triple-center-pseudostate (solid circles)
calculations. The agreement with our asymptotic results
is reasonably good, although the same remarks hold, as in
the above-discussed case of ionization in He ++H col-

tions, since, as seen from Table IV, the excitation cross
section becomes larger than the electron capture cross
section.

The basic mechanism responsible for the ionization
process (51) is the electron promotion into the continuum
in the first half of the collision, via the sequence of transi-
tions induced by the 5 series of branch points, after the
1so.~2pa. transition:
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TABLE IV. Cross sections o.&z (in 10 " cm') for the
charge-exchange process (49), and o.Ex (in 10 "cm') for the ex-
citation process (50) as functions of the center-of-mass energy
E, (in keV).

10-"—

10 -17

1.5
3
5

8

10
15
20
30

ocx

2.97[—3]'
7.85[ —2]
0.472
1.72
2.89
6.44

10.4
18.2

6.67[—4]
2.83[—2]
0.244
1.22
2.38
6.87

13.2
29.6

10 -18

1() -19

10 -21

'a [ b] s—tands for a X 10

10 22

1

I I I I I I I

10
E {I eV)

I I I I I

10

lision. The experimental results are rather uncertain,
especially at lower energies, since they have been ob-
tained as a difference of the measured cross sections for
the He + production and the charge exchange (see, e.g. ,
Ref. 49). The ionization process (51) has previously been
treated by the present authors, assuming a simplified
model [see Eq. (46)] for b,Ez~ &, (R) in the complex R
plane. Present cross sections, obtained by numerical
evaluation of the Massey parameter (53) with the exact
adiabatic potential curves, are about 50% larger.

VI. CONCLUDING REMARKS

I I I I f I

I
I f I I i I

10 -I7

goo%~
0

10 -18

E
LJ

10

At the present time, the theoretical investigations of
electronic transitions in atomic collisions are to a large

FIG. 10. Cross sections for excitation of He+(n =2) in
H+ +He+( 1s) collisions vs center-of-mass collision energy.
Solid line, present results; solid squares and crosses, molecular
close-coupling calculations {Refs.43 and 44, respectively).

extent reduced to a numerical solution of close-coupling
equations and development of packages of programs for
automatic calculations of cross sections (see, for example,
Refs. 42 and 51). However, in the region of slow col-
lisions, where the transition probabilities are small, this
approach becomes more complicated due to the presence
of nonphysical transitions related to the incompleteness
of the basis functions. These transitions, being accumu-
lated during the intergration of the coupled equation, can
significantly change the true value of the transition prob-
ability. On the other hand, the asymptotic theory con-
sidered in the present work has no problems of this kind.
This theory also provides important information: why
and at what internuclear separations a particular process
predominantly occurs. Wider application of the adiabat-
ic approximation has been limited in the past due to the
absence of the general method for determination of the
avoided crossings connecting the given initial and final
states. In practice, the only transitions considered were

10-20 .

TABLE V. Cross sections o.
z (in 10 "cm ) for the ionization

process (51) as a function of the center-of-mass energy E, (in
keV).

10 -21 I I I j I I I I

10
E&z{keV)

I I r ! i I

10

FIG. 9. Cross sections for charge exchange in H +He+(1s)
collisions vs collision energy in the center-of-mass frame. Solid
line, present results for capture into H(1s); solid squares and
crosses, molecular close-coupling calculations (Refs. 43 and 44,
respectively); solid circles, Sturmian close-coupling calculations
(Ref. 45); open triangles and circles, experiment {Refs. 46 and
47, respectively).

E,.

4
6
8

15
20
40
60
80

'a ( —b) stands for a X 10

1.08[ —3]'
8.52[ —3]
2.99[—2]
0.286
0.672
3.70
8.36

14.0
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10 -E6

10 -17

E
LJ

10
—18
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10
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E (keV)

j

10

FIG. 11. Cross sections for ionization in H++He+(1s) col-
lisions vs center-of-mass collision energy. Solid line, present re-
sults; solid triangles, atomic-orbital pseudostate calculations
(Ref. 50); crosses, Sturmian pseudostate calculations (Ref. 51);
solid circles, triple-center pseudostate calculations (Ref. 42);
open circles and squares, experiment (Refs. 48 and 49, respec-
tively).

those of Landau-Zener or Rozen-Zener-Demkov type
which are induced by the underbarrier resonant interac-
tions of the states localized on different centers. As a re-

sult, the conclusions were drawn, such as that in the

quasimolecule H2
+ there are no avoided crossings.

However, with the discovery of the S, T, I', and Q series
of hidden avoided crossings, it is possible to obtain the
complete description of inelastic transitions within the
framework of the adiabatic approximation for the sim-
plest quasimolecular system Z, eZ2. The analysis of this
system points towards the universal method for describ-
ing the hidden avoided crossings. As was shown in Ref.
30, in the Z, eZz problem the hidden avoided crossings
occur whenever the adiabatic state, in the classical limit,
can be related to an unstable periodic orbit. An ap-
proach based on the investigation of periodic orbits and
associated monodromy matrices does not require the sep-
aration of variables and would be applicable in a general
case.

Concerning the general approach of Sec. II, more de-
tailed studies of the dynamical states and eigenvalues re-
lated to the effective Hamiltonian (7) are necessary. The
first step would consist in considering the limiting cases
R ~0 and R ~ac, where analytic treatments seem to be
possible.
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